Using GNG to improve 3D features extraction - Application to 6DoF Egomotion
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Abstract

Several recent works deal with 3D data in mobile robotic problems, e.g. mapping or egomotion. Data comes from any kind of
sensor such as stereo vision systems, time of flight cameras or 3D lasers, providing a huge amount of unorganized 3D data. In this
paper, we describe an efficient method to build complete 3D models from a Growing Neural Gas (GNG). The GNG is applied to
the 3D raw data and it reduces both the subjacent error and the number of points, keeping the topology of the 3D data. The GNG
output is then used in a 3D features extraction method. We have performed a deep study in which we quantitatively show that the
use of GNG improves the 3D feature extraction method. We also show that our method can be applied to any kind of 3D data. The
3D features obtained are used as input in an Iterative Closest Point (ICP)-like method to compute the 6DoF movement performed
by a mobile robot. A comparison with standard ICP is performed, showing that the use of GNG improves the results. Final results

of 3D mapping from the egomotion calculated are also shown.
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1. Introduction

One of the main research topics in mobile robotics is the
determination of the movement performed by the robot using
its sensor information. The methods related to this research
are called pose registration and can be used for automatic map
building and SLAM Dissanayake et al. (2001). Our main goal
is to perform six degrees of freedom (6DoF) pose registration in
semi-structured environments, i.e., man-made indoor and out-
door environments. This registration can provide a good start
point for SLAM. We use dense raw 3D data as input sets. Our
method is developed for managing 3D point sets collected by
any kind of sensor. For our experiments, we use three main
data sources: a sweeping unit with a 2D laser Sick, a Digiclops
stereo camera and an infrared camera SR4000, mounted on a
mobile robot. Sweeping laser provides 3D data with a low error
and a higher range compared to stereo systems, but data from
this sensor is slower to retrieve than the other two systems. We
are also interested in dealing with outliers, i.e., environments
with people or non-modeled objects. This task is hard to over-
come as classic algorithms, like ICP and its variants, are very
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sensitive to outliers. Furthermore, we don’t use odometry in-
formation.

The extraction of feature points from 3D data has been ex-
tensively studied in the last years. Some examples of works
that deal with this problem can be found in: Weingarten et al.
(2004), Hihnel et al. (2003), Rusu et al. (2008), Steder et al.
(2009), Steder et al. (2010), May et al. (2009) and Ruhnke et al.
(2010).

This paper is focused on studying the movement performed
by a mobile robot just using the environment information col-
lected by its 3D sensor device. The trajectory followed by the
robot can be reconstructed from the observations at each pose
and thus a 3D map of the robot environment can be built. The
problem of automatic map building has been challenging mo-
bile robotics researchers during the last years Agrawal (2006);
Koch & Teller (2007); Goecke et al. (2007).

Handling raw 3D data is not suitable for most of the mobile
robot methodologies, due to the huge size of data that has to be
managed. In our previous work Viejo et al. (2011) we proposed
a method for extracting and modeling planar patches from 3D
raw data. Using this method we achieve two main advantages:
first, a complexity reduction (when comparing with raw data)
is done and time and memory consumptions are improved (we
obtain over 500 features from 100000 3D points); second, out-
liers are better overcome using these features, as points not sup-
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ported by a planar patch are deleted. Planar patches are useful
features as man-made environments are easily described with
them. Our method can extract and model planar patches from
3D raw data, although it can be applied to other applications,
like Villaverde & Granya (2009), Munyoz-Salinas et al. (2008)
or Katz et al. (2010).

Nevertheless, in some situations, the planar patches extrac-
tion method is not sufficient to obtain a complete environment
model. As we will explain later in this article, this kind of
problems arise when the 3D sensor used combines both a short
measurement range and a high measurement error. In these sit-
uations, we propose the use of a Growing Neural Gas that by
means of competitive learning produces an adaptation of the
reference vectors of the neurons as well as an interconnection
network among them; thus obtaining a mapping that tries to
preserve the topology of the input space. Besides, the network
is capable of a continuous re-adaptation process even if new
patterns are added, with no need to reset the learning. These
features allow to represent fast and high quality 3D spaces, thus
obtaining an induced Delaunay Triangulation of the input space
very useful to obtain easily features like corners, edges, etc. We
modify the original GNG method in order to be applied to data
sequences: the GNG is adapted sequentially, i.e., the result in a
given frame is taken as an input in the next frame. Modeling 3D
scenes using GNG produces a more detailed result and thus fur-
ther computations such as planar patches based egomotion are
also improved. Some 3D reconstruction applications of Neu-
ral networks can be found in Cretu et al. (2008), do Rego et al.
(2007), Ivrissimtzis et al. (2003), Fanany & Kumazawa (2004)
and Holdstein & Fischer (2008). However, none of them man-
ages 3D sequences of data.

In this paper, we show some new experiments, both quanti-
tative and qualitative, proving the validity of our initial method.
We also show that our method can be applied to any kind of 3D
data. Besides, we describe deeply the main device used in this
work, the Time-Of-Flight camera SR4000.

The rest of the paper is organized as follows: first, Section 2
describes the physical systems used for experiments; then, in
Section 3 the GNG algorithm is explained and in Section 4 the
algorithm for feature extraction is described; we continue with
Section 5 where some results of 6DoF egomotion are shown;
Finally, some conclusions are drawn and future work is com-
mented in the last section.

2. Data acquisition

One of the goals of our work is to create an algorithm in-
dependent of the data source, i.e. to be applied to any robot
platform, any 3D measurement device and can be used in in-
door and outdoor man-made environments. We present here
the physical systems used in our experiments.

We have used several robot platforms, depending on the
perception system used. In Figure 1, two of these platforms
are shown. The left one is an indoor platform, a Magellan Pro
from iRobot. It is used for indoor experiments, given its di-
mensions (diameter: 40cm, height: 24cm). For outdoors we
have used a PowerBot from ActiveMedia. It has a battery life

of 5 hours, which is necessary for long outdoors experiments.
Furthermore, PowerBot can carry the 3D sweeping laser unit,
which is very heavy. Both come with an onboard computer.

Figure 1: Mobile robots used for experiments. Left: Magellan Pro unit
used for indoors. Right: PowerBot used for outdoors.

We use 3D data that come from different devices. First, we
use a stereo camera Digiclops from Point Grey. It has a range of
8 meters and is ideal for indoor environments. It can provide 24
images per second with a grey level information for each point.
Howeyver, it suffers the lack of texture: areas in the environment
without texture can not provide 3D data. Furthermore, it has a
measurement error of 10%. For outdoor environments we use
a 3D sweeping laser unit, a LMS-200 Sick laser mounted on
a sweeping unit. It does not suffer the lack of texture and its
range is 80 meters with an error of Imm per meter. The main
disadvantage of this unit is the data capturing time: it takes
more than one minute in one shot.

Finally, we have just acquired a SR4000 camera, which is
a time-of-flight camera, based on infrared light. Time-of-Flight
(ToF) cameras have been developed as a new technology that
obtains range (distance) and amplitude maps by the use of a
modulated light source. The main advantages with respect to
other 3D devices are the possibility to acquire data at video
frame rates and to obtain 3D point clouds without scanning and
from just one point of view. The egomotion experiment of this
paper is carried out using this camera, although other different
devices were used, in order to show the validity of our method
with different 3D sources. This was done because the SR4000
camera provides more outliers than the other devices used.

In our tests all the data was acquired directly from the cam-
era, which obtains point coordinates XYZ, amplitude data of
the scene and a confidence map of the distance measurements.
In particular, the confidence map is obtained using a combina-
tion of distance and amplitude measurements and their temporal
variations: it represents the probability that the measurement
of the distance in each pixel is correct, so it can be useful to
select regions containing high quality measurements or to re-
ject low quality ones. In our experiments the amplitude data
has low contrast so they have been equalized. Figure 2 shows
an overview of the typical data obtained using a SR4000. The
recorded 3D points cloud can be observed in the figure top cen-
ter, corresponding amplitude on the left side and confidence on



the right. Reference camera coordinates system is also shown.

Figure 2: Left: SR4000 camera. Right: camera data overview. The SR4000
captures both a 3D point set and two maps: amplitude (left) and confidence
(right).

ToF cameras allow the generation of point clouds during
real time acquisition. The accuracy of ToF cameras varies de-
pending on the internal components and the characteristics of
the observed scene, such as objects reflectivity and ambient
lighting conditions. These errors cannot be fully eliminated,
but they can be reduced and optimized thanks to filtering or
several techniques, such us averaging techniques or calibration
procedures Chiabrando et al. (2009) where the proposed dis-
tance error model provided a reduction of distance errors in the
1.5-4m distance measurement range.

The basic principle of ToF cameras consists of an amplitude-
modulated infrared light source and a sensor field that measures
the intensity of backscattered infrared light. The infrared source
is constantly emitting light that varies sinusoidally. Objects lo-
cated at different distances are reached by different parts of the
sinusoidal wave. The reflected light is then compared to the
original one, calculating the phase shift, by means of measur-
ing the intensity of the incoming light since the phase shift is
proportional to the time of flight of the light reflected by a dis-
tant object. A detailed description of the time-of-flight principle
can be found in Gokturk et al. (2004).

3. GNG Algorithm

Using Growing Neural Gas (GNG) Fritzke (1995) a growth
process takes place from minimal network size and new units
are inserted successively using a particular type of vector quan-
tization Kohonen (2001). To determine where to insert new
units, local error measures are gathered during the adaptation
process and each new unit is inserted near the unit which has
the highest accumulated error. At each adaptation step a con-
nection between the winner and the second-nearest unit is cre-
ated as dictated by the competitive Hebbian learning algorithm.
This is continued until an ending condition is fulfilled, as for
example evaluation of the optimal network topology or time
deadline. In addition, in GNG networks learning parameters
are constant in time, in contrast to other methods whose learn-
ing is based on decaying parameters. In the rest of this Section

we describe the growing neural gas algorithm and the ending
condition used in this work. The network is specified as:

e A set N of neurons (nodes). Each neuron ¢ € N has
its associated reference vector w. € R¢. The reference
vectors can be regarded as positions in the input space of
their corresponding neurons.

e A set of edges (connections) between pairs of neurons.
These connections are not weighted and its purpose is to
define the topological structure. An edge aging scheme
is used to remove connections that are invalid due to the
motion of the neuron during the adaptation process.

The GNG learning algorithm used to map the network to
the input manifold is as follows:

1. Start with two neurons a and b at random positions w,
and wy, in RY.

2. Generate at random an input pattern £ according to the
data distribution P (&) of each input pattern.

3. Find the nearest neuron (winner neuron) s; and the sec-
ond nearest ss.

4. Increase the age of all the edges emanating from s;.

5. Add the squared distance between the input signal and
the winner neuron to a counter error of s; such as:

Nerror(sy) = |lws, — €| (D

6. Move the winner neuron s; and its topological neighbors
(neurons connected to s1) towards ¢ by fractions €,, and
€n, respectively, of the total distance:

Awsl = €y (§ - wsl) @)
Nws, = €,(§ — ws,) 3)

for all direct neighbors n of s;.

7. If s; and s, are connected by an edge, set the age of this
edge to 0. If it does not exist, create it.

8. Remove the edges when age is larger than a,,,,. If this
results in isolated neurons (without emanating edges), re-
move them as well.

9. Every certain number ) of input patterns generated, insert
a new neuron as follows:

e Determine the neuron ¢ with the maximum accu-
mulated error.

e Insert a new neuron r between ¢ and its further neigh-
bor f:
wy, = 0.5(wq + wy) )

o Insert new edges connecting the neuron r with neu-
rons g and f, removing the old edge between ¢ and
f
10. Decrease the error variables of neurons g and f multiply-
ing them by a constant «. Initialize the error variable of
r with the new value of the error variable of ¢ and f.
11. Decrease all error variables by multiplying them by a
constant 1.



12. If the stopping criterion is not yet achieved (in our case
the stopping criterion is the number of neurons), go to
step 2.

With regard to the processing of image sequences, we have
introduced several improvements to the network in order to ac-
celerate the representation and allow the architecture to work
faster.

The main difference with the original GNG algorithm is the
omission of insertion/deletion actions (steps 8 to 11) after the
first frame. Since no neurons are added or deleted the system
keeps correspondence during the whole sequence, solving in-
trinsically this problem. For the initial moment ¢, the repre-
sentation is obtained making a complete adaptation of a GNG.
However, for the following frames the previous network struc-
ture is employed. Thus, the new representation of the object is
obtained by performing the iteration of the internal loop of the
learning algorithm of the GNG, relocating the neurons and cre-
ating or removing edges. This adaptive method is also able to
face real-time constraints, because the number \ of times that
the internal loop is performed can be chosen according to the
available time between two successive frames that depends on
the acquisition rate.

For the experiments, the GNG parameters used are: N =
2000, A = 2000, €, = 0.1, €, = 0.001, a« = 0.5, § = 0.95,
Qmar = 250. In Figure 3 a result of applying GNG to a set
of 3D points obtained from a SR4000 is shown, the same for
stereo data in Figure 4 and, finally, in Figure 5 the resulting
GNG for 3D laser data set can be observed.

In the case of a low rate of data acquisition, the representa-
tion obtained for a frame could be very different from the previ-
ous one and GNG should be reinitialized. Since GNG learned
from the previous frame differs too much and should not be
used as a started point for the next frame.

Figure 3: Applying GNG to SR4000 data set. The original data set can
be observed at the top right corner. The intensity image captured by the
camera is shown at the bottom right corner. Left, the resulting GNG
(green) can be observed over the original data set.
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Figure 4: Applying GNG to stereo data set.

4. Features extraction method

We can still reduce more the amount of information con-
tained in a 3D scene by modeling object surfaces included in
it. Normal vectors estimated from a local area around each
3D point into the scene are a good starting point for obtain-
ing surfaces descriptions. Some methods, such as Page et al.
(2002) or Mitra & Nguyen (2003) were developed for handling
noisy input data sets. The basic idea consists in analyzing each
point in the local neighborhood by means of a robust estimator.
In Martin et al. (2004) a singular value decomposition (SVD)
based estimator is used to obtain surface normal vectors. Using
this method, when the underlying surface is a plane, the mini-
mum singular value is quite smaller than the other two singular
values, and the singular vector related to the minimum singular
value is the normal vector of the surface at this point.

From this information we can label each point in a 3D scene
as belonging to a planar surface, when one of the singular val-
ues is much smaller than the others, or to not defined objects
in other case. In Figure 6, we can see an example of the appli-
cation of this segmentation for both outdoor and indoor scenes.
Despite the segmentation of the scene points, we need to do
some extra work to extract planar patches from the scene. We
use a template matching to fit the labelled points into a planar
patch model.



:-..~-~¢;-.';:§~‘=:~“¢‘~‘-ka¢ X
N ';sgf:i\\\\
M)

V3 {2iwq (G

1
LI 1 _r} ”
r‘*"v:“r!’ f/;"'

e

Hianiee

Figure 5: Applying GNG to a 3D laser set. Top: original 3D point set. Bottom: the GNG network (green) over the data set.

This process retrieves the underlying surface normal vector
of a given set of points. Furthermore, a threshold called thick-
ness can be defined from singular values in order to determine
in which situations a point, as well as its neighborhood, belong
to a planar surface or not. This thickness value can be used to
measure how a 3D point set fits to a plane. The lower the thick-
ness value we find, the better the fitting between the points and
the planar surface is. The size of the window used to obtain
neighbor points has an important impact on the results. As it
is considered in Cole & Newman (2005), sample density of 3D
laser range finder data presents large variations due to the diver-
gence of consecutively sampled beams. In general, this charac-
teristic is present in any 3D data set, independently of the sen-
sor used. A complete study on the impact of different window
size was performed in Viejo & Cazorla (2008). Summarizing, a
depth-based adaptive window provides better results. Depend-
ing on the sensor measurement error, this window has to be set
up at different starting sizes. The bigger the measurement error
is, the bigger window size has to be set up.

Using SVD based normal vector estimation method we can
obtain a model that represents the planar surfaces in the scene.
We propose an optimal method that can obtain a planar patch
model from a 3D point set in O(log n). This method is based
on automatic seed selection methods Shih & Cheng (2005) Fan
et al. (2005). The idea consists in performing a selection of
the most representative points in the whole 3D scene. These
selected points must belong to planar surfaces. To ensure this
we use the thickness value, that can be obtained from the SVD

based estimation method as we described above. In order to find
out the most representative points, we randomly select points in
the scene until all points are visited. For each point visited we
compute its normal vector and thickness value. If its thickness
value is low enough, the point is inserted into the most repre-
sentative points list and its neighbors inside the window used
to compute its normal vector are marked as visited. When this
process ends, planar patches model is directly computed from
the most representative points and its normal vectors. The size
of the planar patches depends on the size of the window used to
compute normal vectors. The overall procedure for fast planar
patches estimation is as follow:

function Fast_Patch_Estimation (II: 3DPoint_set; thick : R)
return: planar_patch_set
var p;: 3DPoint; (), neighs: 3DPoint_set; w : R;
< nj,7y; >: normal-and-thickness_tuple; NV : N
begin

Q:=1I
while (Q # 0) do
N = Q|

p; := Remove(Q), Random(N))
w := ComputeWindowSize(p; )
neighs := GetNeighbours(II, p;, w)
< ny,7; >:= NormalSVD(p;, neighs)
if (y; < thick) then
Add(result, newPlanarPatch(p;, n;, w))
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Figure 6: The points labelled in yellow color represent planar surfaces.
The points labelled in green and blue represent another kind of sur-
faces.

RemoveAll(Q, neighs)
endif
endwhile
Fast_Patch_Estimation := result;
end.

In Figure 7 we can observe the result of applying this method
for computing planar patches models from 3D scenes captured
by a 3D range laser. Since our method is supposed to work
using any data source, the result of applying it to a stereo 3D
image can be observed in Figure 8.

As we stated before, the window size (Parameter w in func-
tion GetNeighbours) is a key factor. It depends on both the
depth of the point and the 3D sensor measurement error. Big-
ger windows will produce better results for noisy 3D sets but
will also discard small objects, compared to window size in the
scene. This lack of small details may lead to problems in further
computations, specially when 3D sensors with a short range (up
to 10 meters) are used. Frequently, under this configurations the
sensor can not obtain important information such as the end of a
corridor or the bottom part of a big room and these small details
are really important. To overcome this problem in this paper we
introduce the use of GNG in order to improve the feature extrac-
tion method. GNG produces a Delaunay Triangulation which
can be used as a representation of the points neighborhood. In

this way we can state the neighbor searching according to GNG
and produce more detailed and accurate planar patches descrip-
tions. Figure 9 shows planar patches extraction from a 3D im-
age obtained by a SR4000 camera. The bottom image shows
the results of combining GNG with the features extraction pro-
cedure. It can be compared with the upper image in which no
GNG has been used.

Figure 7: Planar patches extracted from 3D laser range finder data.
Patches are represented by blue circles. Radius of each patch depends
on the size of the window used to compute the patch.

Figure 8: Planar patches extracted from a stereo scene.

5. Using 3D models: 6DoF egomotion

In the previous section we described a method for building
3D models from scenes captured by a 3D sensor. Furthermore,
we want to use these models to achieve further mobile robot ap-
plications in real 3D environments. The basic idea is to take ad-
vantage of the extra knowledge that can be found in 3D models
such as surfaces and its orientations. This information is intro-
duced in a modified version of an ICP-like algorithm in order to
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Figure 9: Planar patches extracted from SR4000 camera. The image in
the bottom uses GNG for improving planar patches extraction. As a
result we obtain a more detailed planar patches descriptions

reduce the outliers incidence in the results. ICP Besl & McKay
(1992); Zhang (1994) is widely used for geometric alignment
of a pair of three-dimensional points sets. From an initial ap-
proximate transformation, ICP iterates the next three steps until
convergence is achieved: first, closest points between sets are
stated; then, best fitting transformation is computed from corre-
sponding points; finally, transformation is applied. In the mo-
bile robotics area, the initial transformation usually comes from
odometry data.

Nevertheless, our approach does not need an initial approx-
imate transformation like ICP based methods do. We can use
the global model structure to recover the correct transformation.
This feature is useful for situations where no odometry is avail-

able or it is not accurate enough, such as legged robots. In our
case, we are going to exploit both the information given by the
normal vector of the planar patches and its geometric position.
Whereas original ICP computes both orientation and position at
each iteration of the algorithm, we use the advantage of know-
ing planar patches orientation to decouple the computation of
rotation and translation. Thus, we first register the orientation
of planar patch sets and when the two planar patches sets are
aligned we address the translation registration. In Figure 10
we can observe the steps performed for computing the align-
ment between two sets of planar patches. The top image shows
a zenithal view of two planar patches sets computed from two
consecutive 3D scenes obtained by a robot during its trajectory.
The middle image shows the result of rotation registration. Fi-
nally, bottom image shows the result after the translation be-
tween planar patches sets is computed.

In the next experiment we compare quantitatively the per-
formance of our algorithm with the classical ICP one. To es-
tablish a ground truth, we put the SR4000 camera on a rotating
PowerCube unit. This unit allows precise rotations around the
Y axis. We take 3D images with the camera every 2 degrees
(0.035 radians) until a full rotation is completed. The camera
is not affected by any translation movement, except rotation.
With the information provided by the PowerCube unit we can
set the alignment error that occurs when each pair of images
are matched. Figure 11 (top) shows the translation error for the
alignment of consecutive images from the experiment. In the
same way, Figure 11 (bottom) shows the angular error commit-
ted. In both cases, our proposal is compared with the results of
vanilla ICP algorithm. Both in position and orientation, most of
the time the error committed by our proposal is smaller than the
error committed by the ICP algorithm. In absolute terms, the
root mean square error (RMS) for the alignment of the position
using ICP algorithm is 0.072m. while our method reduces it to
0.039m. As for the orientation, the ICP algorithm RMS error is
0.030 rad, whereas our approach reduces this error to 0.019 rad.
This experiment demonstrates that our approach outperforms
ICP results. The next examples show our results of automatic
map building in real scenarios. We will also compare the result-
ing map obtained using our approach with the one obtained by
the ICP algorithm.

In Figures 12, 13 and 14 we show an example of 3D map
building using this 6DoF egomotion approach. For this exper-
iment, 100 3D images from a 5 meter range SR4000 camera
have been used. The first figure shows a 3D view of the re-
constructed environment using ICP for 6DoF egomotion recon-
struction. In Figure 13 the same scene is reconstructed by using
the planar patches based egomotion, but without using GNG.
In this figure we can observe that the result is improved, but it
still does not provide good results. Finally, Figure 14 shows the
result using GNG for improving feature extraction. The better
the feature extraction process is, the better reconstruction is ob-
tained. While in the first two experiments the registration of the
sequence was almost impossible, in the last one the reconstruc-
tion was reasonably good.

The ICP algorithm takes an average time of 40s. to find a
registration between two consecutive poses. The first computa-
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Figure 10: Planar patches matching example. For all the three images
patches from the model are painted in dark grey whereas scene paths
are represented in light grey. Top, initial situation. Middle, after ro-
tation registration. Bottom, final result after translation registration is
completed.

tion using the GNG takes almost 100s. To that, we need to add a
mean time of 4s. for calculating the planar patches. And 100ms
for finding the registration between poses. However, using our
adaptive method, in the subsequent poses the GNG adaptation
takes only 1s. Thus, for the first two poses, our method takes
109,2s., but from then on it takes only 10,2s., compared with
the 40s. of the ICP.
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Figure 11: ICP versus Egomotion-GNG error comparison. Top, posi-
tion error. Bottom, angular error.

6. Conclusions and future work

We have presented a new method for computing 3D mod-
els of semi-structured environments from unorganized raw 3D
data. Since our method works with raw 3D point sets, we do
not need to know anything about the kind of sensor used for
obtaining data. The proposed method can be used with most of
the 3D scanner devices. First, we have explained an algorithm
for computing the planar patches that fits with the planar sur-
faces in the 3D scene. This is a low complexity method that can
be used to obtain online 3D models. We have also used a GNG
model in order to increase the level of details for the result-
ing models. Results have been shown for both time-of-flight
cameras and 3D range laser. The usefulness of our models is
demonstrated when applying a 6DoF egomotion algorithm that
uses these models as an input for computations. It has been
proven that the use of GNG improves 6DoF mapping results,
thus making it possible to use this approach with any kind of
3D sensor.

The proposed modification of GNG to represent 3D data se-
quences accelerates the learning algorithm and allows the archi-
tecture to work faster. This is possible because the system does
not restart the map for each frame in the sequence, it only read-
justs the network structure starting from previous map without



Figure 12: 6DoF egomotion results using ICP.

Figure 13: Planar based 6DoF egomotion results using planar patches method without using GNG.

inserting or deleting neurons. results show significant improvements over the classical solu-
The experiments show that the proposed method can be ap- tions. The use of GNG to improve the feature extraction process
plied to the problem of automatic map reconstruction. The  has been a key aspect in improving 6DoF egomotion computa-



Figure 14: Planar based 6DoF egomotion results using planar patches after computing a GNG mesh.

tion.

As future work we plan to improve the accuracy and per-
formance of our method in order to use it in 6D SLAM. We
also plan to study how merging different planar patches could
increase the accuracy and/or time registration.
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