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The present paper addresses the analysis of structural vibration transmission in the presence of struc-
tural joints. The problem is tackled from a numerical point of view, analyzing some scenarios by using
finite element models. The numerical results obtained making use of this process are then compared
with those evaluated using the EN 12354 standard vibration reduction index concept. It is shown that,
even for the simplest cases, the behavior of a structural joint is complex and evidences the frequency
dependence. Comparison with results obtained by empirical formulas reveals that those of the standards
cannot accurately reproduce the expected behavior, and thus indicate that alternative complementary
calculation procedures are required. A simple methodology to estimate the difference between numerical
and standard predictions is here proposed allowing the calculation of an adaptation term that makes
both approaches converge. This term was found to be solution-dependent, and thus should be evaluated
for each structure.
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1. Introduction

Flanking transmission is a well-known issue that
occurs on in-situ measurements of sound insulation,
leading to a lower performance of separating elements
between adjacent spaces. Many solutions have been de-
veloped to minimize this interference, such as the use
of resilient or elastic interlayers under floating floors.
The application of such solutions usually leads to sys-
tems with a more complex structure, whose behavior
cannot be so easily predicted.
Several methods for predicting the influence of

flanking transmissions can be found in the literature.
In the late 1970’s and 1980’s, two reference works
published by Gerretsen (1979, 1986) approached
the problem of flanking transmission from a practi-
cal point of view, introducing engineering procedures
for the calculation of those transmissions when an-
alyzing both the impact and airborne sound insula-
tion. These two works have indeed lead to the de-
velopment of calculation standards (EN ISO, 2000)

in use for current engineering practice. In those stan-
dards, a simplified Statistical Energy Analysis (SEA)
approach is used to predict sound transmission be-
tween two rooms incorporating the effects of the first
order flanking paths by means of the so-called Kij coef-
ficients. However, these standards may not be applied
in a number of situations, and thus they are not com-
pletely generic. An example in airborne sound insula-
tions evaluation (EN 12354-1) are systems incorporat-
ing lightweight partitions since these are not correctly
handled as demonstrated by Mahn (2009) or Brun-
skog et al. (2007). In fact, lightweight elements usu-
ally have higher critical frequencies when compared to
heavyweight solutions, and also exhibit an orthotropic
behavior, both of which are not correctly accounted for
in the models proposed by the standard.
The results provided by EN 12354-1 have been an-

alyzed in multiple works, and several other weaknesses
have been identified. In the works of Pedersen (1995)
and Metzen (1999), comparisons between computed
predictions using the EN 12354-1 proposed method
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and experimental measurements allowed the authors
to conclude that differences of at least 2 dB together
with a frequency dependent difference always occurred.
In a different work, Craik (2001) concluded that in-
corporating first order flanking paths, while ignoring
higher order paths, lead to 5 dB to 10 dB differences.
Galbrun (2008) confirmed this finding experimen-
tally, showing that an overestimation of the sound re-
duction of at least 5 dB occurs when neglecting higher
order paths.
The limitations identified by several researchers, re-

gardless of the accuracy of the predictions provided by
the EN 12354, originated an increasing interest in the
development of new procedures to broaden the appli-
cability of standardized methods while rendering them
more accurately. An example is the case of lightweight
structures, for which research is being developed in the
sense of extending the model and its applicability for
this case, and the definition of accurate input data for
the models, which can greatly influence their final out-
put (Gerretsen, 2008).
The standard limitations originated other strate-

gies to be devised by researchers to handle the pre-
diction of airborne and impact sound insulation in
dwellings. Thus, several attempts have been made to
better study the sound transmission and trying cor-
rectly to understand the phenomenon. Many of them
are experimental approaches, based either on vibration
measurements according to ISO 10848-1 (ISO, 2006),
or near field holography techniques (Maynard et al.,
1985;Brutel–Vuilmet et al., 2006; 2007). In a differ-
ent approach, scale models have been applied to study
experimentally the acoustic behavior of different con-
structive solutions that can be found in the work of
Kling (2008). However, scale models require special
care in the definition of the model properties since the
relevant relations between geometry, stiffness and mass
should be similar to those of the full scale model. Ad-
ditionally, small-sized instruments must be used since
large microphones or accelerometers interfere with the
dynamic behavior of the system.
An alternative is to make use of numerical meth-

ods to perform the analysis. Several types of meth-
ods were applied ranging from the boundary element
method (BEM) to Finite Element Method (FEM)
models and including mixed formulations. Maluski
and Gibbs (2000) used a FEM model to predict
the low frequency sound insulation between adja-
cent rooms and concluded that the sound insulation
is strongly dependent on the modal behavior of the
separated compartments. Santos and Tadeu (2002)
studied the acoustic insulation provided by a single
wall with elastic behavior separating two tunnels. The
model included the complete transmission paths be-
tween both spaces. They concluded that the geome-
try, dynamic behaviour of the tunnels and the flank-
ing vibrations have a very great influence on the

sound insulation provided by the separating wall. In
the works by Clasen and Langer (2007), a FEM
formulation to simulate sound transmission including
the damping mechanisms involved in the transmission
phenomenon was developed. The computational re-
sults presented in that study have shown good agree-
ment with measured results within a large frequency
range.
The present paper aims at further contributing to

this discussion, presenting possible strategies for im-
proving impact sound insulation predictions of usual
constructive solutions and accounting with flanking
transmission. The analyzed cases consist of cross joints
simulating structural configurations where significant
vibration transmission occurs. In addition, the effect
of a floating slab, built over a flexible material, is also
studied. Three-dimensional Finite Element models are
developed to evaluate the vibration reduction index
in such scenarios; the obtained results are then com-
pared with those provided by the EN 12354-2 standard
trying to understand better the possible limitations of
the equations proposed for different typical construc-
tive situations.
The paper is structured as follows: in Sec. 2,

a global view of the background theory is given
presenting the relevant approaches collected in the
EN 12354-2 standard; in Sec. 3, numerical models used
for the computational analysis of the different scenar-
ios are described and an initial comparison between
numerical results and those calculated based on the
standard is presented; in Sec. 4, a discussion of the
result differences is performed and a strategy to quan-
tify them is proposed; finally Sec. 5 describes the main
conclusions of this paper.

2. Background theory

According to EN 12354 the flanking transmission
can be determined making use of the vibrational re-
duction index concept. This standard provides empiri-
cal formulas recognized for some constructive solutions
and a limited set of designs with rigid or elastic el-
ements inserted. The approach proposed in the stan-
dard is based on the knowledge of the so-called Kij

vibrational reduction index, which is related to the vi-
brational power transmission through a junction be-
tween structural elements, normalized in order to make
it scale invariant. It can be determined experimentally
through laboratory tests according to ISO 10848-1.
The experimental evaluation of the vibrational re-

duction index is performed normalizing the joint aver-
aged difference of the velocity levels, (Dv,ij), with the
junction length and the equivalent absorption length
of the connected elements according to the equation:

Kij =
Dv,ij +Dv,ji

2
+ 10 log

lij√
aiaj
[dB], (1)
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Dv,ij is the difference of the velocity levels between the
i and j elements in dB, when the i element is excited,;
lij is the common coupling junction length of the i
and j elements in meters; ai and aj the equivalent
absorption lengths of the i and j elements, respectively,
both in meters. The equivalent absorption length can
be calculated using the following equation:

a =
2.2π2S

coTs

√
fref
f
, (2)

where Ts is the structural reverberation time of the i
or j element in seconds, S is area of the i or j element
in m2, f is the band central frequency in Hz, fref is the
reference frequency of the 1000 Hz value and co is the
air sound velocity in m/s.
As specified in the standard, using Eqs. (1) and (2),

it is possible to obtain the Kij value from the measur-
ing of the difference of the velocity levels in both direc-
tions and the structural reverberation time of both the
elements. To obtain the difference of the velocity levels,
the standard establishes a set of geometric constraints.
Some of the conditions specified are:

• 3 excitation points and 9 transducer positions (3 per
excitation point) must be chosen on each element.

• The positions should be distributed randomly but
not symmetrically.

• The positions of the transducers and excitation
points must meet the following minimum distances:

– 0.5 m between the excitation points and the
limits of the element to be tested,

– 1 m between the excitation points and the as-
sociated transducer positions,

– 0.5 m between each transducer position.

In addition, the determination of the difference of
the velocity levels requires accomplishing the coupling
conditions between the elements forming the union; if
these conditions are not met, the data obtained from
the in situ measurements are not representative of the
energy distribution between these elements a are not
valid for obtaining the vibrational reduction index.
This coupling condition is assessed in the following in-
equality:

Dv,ij ≥ 3− log

(
mifcj
mjfci

)
[dB], (3)

where mi, mj are surface densities of the i and j ele-
ments in kg/m2 and fci, fcj are their respective critical
frequencies in Hertz.
As an alternative, the empirical equations proposed

in the EN 12354 standard allow an easier calculation
of the Kij factors for the analysis of common types of
joints and makes the Kij factors depend on the sur-
face densities of the elements connected to the union.

These expressions can be used only for the case of
unions in which elements on both sides of the junc-
tion are in the same plane and have the same mass.
Thus only two mass ratios can be defined. Figures 1a
and 1b show rigid cross-joints and T-joints, respec-
tively.

a)

b)

Fig. 1. a) Rigid cross-joint, b) rigid T-joint.

In the case of a cross rigid connection, the follow-
ing relations are defined for the vibrational reduction
index:

K13 = 8.7 + 17.1M + 5.7M2 [dB]; 0 dB/octave, (4)

K12 = 8.7 + 5.7M2(= K23) [dB]; 0 dB/octave. (5)

These expressions are given in terms of the magni-
tude M defined as:

M = log (m′
⊥i/m

′
i) , (6)

where m′
i is the superficial density of the i element in

the ij transmission path, and m′
⊥i is the superficial

density of the other element, perpendicular to i, that
forms the union. The calculation of these masses takes
into account only the base material connected to the
adjacent construction elements, so the masses of the
coatings, such as the floating floors or suspended ceil-
ings, must be excluded. The magnitudes given in (4)
and (5) are not frequency dependent. In general, the
standard states that the energy transfer is less fre-
quency dependent in the range from 125 Hz to 2 kHz,
so it is considered to be 0 dB/octave.
The vibrational reduction in the joints can be sig-

nificantly improved with flexible intermediate layers,
as depicted in Fig. 2. For that case, the improvement
referred to a rigid joint, ∆1, occurs beyond a frequency
f1 that depends on the flexible element thickness (t1)
and the elastic modulus (E1).
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a) b)

c)

Fig. 2. T and cross-joints with flexible interlayers.

This correction factor∆1 represents a frequency de-
pendence, that exists why the standard proposes a set
of equations to determine the Kij factors in the pres-
ence of an intermediate flexible layer. These are:

K13 = 5.7 + 14.1M + 5.7M2 + 2∆1 [dB], (7)

K24 = 3.7 + 14.1M + 5.7M2 [dB];

− 4 ≤ K24 ≤ 0 [dB]; 0 dB/octave, (8)

K12 = 5.7 + 5.7M2 +∆1(= K23) [dB], (9)

∆1 = 10 log (f/f1) [dB] when f > f1,

f1 = 125 [Hz] if E1/t1 ≈ 100 MN/m3
. (10)

The estimation given in (10) is a global value for
some typical joints, where E1 is the interlayer Young
elastic modulus and t1 its thickness. The parameters
determining the dynamic stiffness of an elastic band
are the nature of it (in terms of elastic properties) and
its thicknes. Thus, for the same material, the Young’s
modulus remains constant and therefore, when the
thickness increases, the dynamic stiffness decreases,
and a more efficient damping effect occurs. However,
the EN 12354 standard is rather vague concerning the
calculation of f1, which means that it can be conceived
as a function of the shear modulus, the flexible element
thickness and the connected element densities ρ1 and
ρ2. The f1 dependence with respect to those parame-
ters can be written as:

f1 ∝
(

G

t1
√
ρ1ρ2

)1.5

. (11)

Based on theoretical and experimental data, Ped-
ersen (1995) proposed that this crossover frequency
f1 should be written as:

f1 = 2.5 10−6

(√
ρ1ρ2

G
t1
l

w

)−3/2

, (12)

where ρ1 and ρ2 are the volumetric densities of the ele-
ments that compose the union,G is the shear modulus,
t1 the thickness of the elastic layer, l is the common
length of the elements forming the union and w the
common length of the elastic element in the union. It
is also assumed that for frequencies above f1 the im-
provement of the elastic layer increases with frequency,
while at lower frequencies no improvement can be ap-
preciated.
For the frequencies f < f1, vibrational reduction

can be calculated as if there were no intermediate
layer . Above f1 the vibrational reduction increases
by 10 log(f/f1) with an interlayer in the union, and
by 20 log(f/f1) when two interlayers are interposed in
the transmission path (Pedersen, 1995; Schneider,
Fischer, 2005; Crispin et al. 2004).

3. Numerical analysis

3.1. Methodology

As a starting point, consider the vibration reduc-
tion index of a structure given in Eq. (1). Considering
Si and Sj as the areas of the i and j elements, co as
the air sound velocity and Tsi, Tsj the structural re-
verberation times of each element, this equation can
be rewritten as:

Kij = Dv,ij

+ 10 log




lij√[
2.2π2Si

coTsi

√
fref
f

][
2.2π2Sj

coTsj

√
fref
f

]



. (13)

To reduce the number of analyzed variables in our
analysis, a constant area S for all surfaces (S = Si =
Sj) is considered; additionally, the structural reverber-
ation time Ts will be defined as a function of frequency
and loss factor ηtot:

Ts =
2.2

fηtot
, (14)

where ηtot can be obtained using the relationship:

ηtot = ηint +
m′

485
√
f

(15)

with m′ the superficial density, in kg/m2. This formula
applies only ifm′ < 800 kg/m2 according to EN 12354.
Introducing these relations, Eq. (13) can be sim-

plified and the vibrational reduction index Kij rewrit-
ten as:

Kij = Dv,ij + 10 log

(
lijco

π2S
√
ηiηjffref

)
. (16)
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Defining a relational term between loss factors of
the analyzed surfaces, τ = ηi/ηj , Eq. (16) becomes:

Kij = Dv,ij + 10 log

(
lijco

π2S
√
fref

)
− 10 log

(
ηj
√
τf
)
.

(17)
Later in this paper, the third term of Eq. (17) will

be the main focus of our analysis.

3.2. Numerical model description

The numerical experiment carried out follows the
testing methodology specified in the ISO 10848 stan-
dard regarding the placement of excitation sources and
measurement transducers, as well as the models size.
The materials simulated have a density of 2400 kg/m3,
a Young’s modulus of 32 GPa and a Poisson coefficient
of 0.22. The simulated models have thicknesses of 10,
20 and 30 cm and an internal loss factor of 0.01. The
elastic layer has been chosen meeting the condition im-
posed by (10) with a loss factor of 0.2.
A constant force of 1 N is applied in the consid-

ered frequency range. Trying to emulate the standard
conditions, a distance of 1 m has been left between the
applied force points and of 0.5 m between the measure-
ment positions.
From simulations, the velocities at different i and j

positions are obtained. From this data and according
to the standard, the averaged velocity level difference
is calculated.

a)

b)

Fig. 3. Schematic of the finite element model: a) global view
of the cross-joint, b) model details.

The numerical finite element model is built with
the ANSYSr software using about 6000 elements (us-
ing high order 3-D 20-node solid elements that exhibit
a quadratic displacement behavior; there are three de-
grees of freedom per node: translations in the nodal x,
y and z directions). The materials with linear behavior
are modeled and with a constant loss factor. The ele-
ment size is defined so that it is less than a tenth of the
wavelength. Regarding the boundary conditions, the
three translational movements (three degrees of free-
dom) of all nodes located at both ends of the model
are prescribed as null. To account for the complexity of
the model, it suffices to say that 29808 nodes have been
used for the simplest cross-joint model corresponding
to 3× 29808 = 89424 degrees of freedom.
In addition to those models, and in order to com-

pare cross-joint models with the case where a flexible
interlayer is assembled, additional models were imple-
mented for each of the joints under study. Some details
of the mesh employed for these models are shown in
Fig. 4.

Fig. 4. Model of a cross-joint with flexible interlayer.

As shown in the figure above, the flexible inter-
layer is not located as specified in EN 12354; although
this is a more realistic configuration, there are no es-
timated equations for these kinds of joints when the
interlayer does not cover the entire joint and extends
to the whole floor surface (so the pressure reduc-
tion index equations in the Annex C of EN 12354-
2 are obviously not directly applicable when evaluat-
ing Kij).
Since the simulations were performed for several

combinations of thicknesses, the mass and geometry
effect on structural vibration was also compared. Addi-
tionally, as part of our interest was to contrast the nu-
merical results with those of the EN 12354 estimations
and accomplish the measurement conditions specified
in ISO 10848, the simulations were carried out consid-
ering several excitation points.
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3.3. The numerical Kij for rigid cross-joints

A first set of results is shown in Fig. 5 that cor-
responds to those obtained for rigid cross-joints. Hav-
ing calculated velocity level differences as an average
of several source and sensor points and meeting the
relevant restrictions, we have obtained the vibration
reduction index for the flanking transmission and com-
pare them with those obtained following the EN 12354
standards.

a)

b)

Fig. 5. Vibration reduction index Kij for rigid cross-joints:
a) same thickness (M = 0), b) different thickness (M 6= 0).

In Fig. 6, results obtained when evaluating the
same model but considering a floating slab with a flex-
ible interlayer are displayed.
There should be highlighted the fact that, like in

the case of rigid junctions, some of the vibration reduc-
tion index values obtained are lower than the Kij,min

specified in EN 12354 (Eq. (23)) and should be there-
fore neglected.

a)

b)

Fig. 6. Vibration reduction index Kij for rigid cross-joints
with flexible interlayer: a) same thickness (M = 0), b) dif-

ferent thickness (M 6= 0).

4. Discussion

To analyze the differences between the numerical
and simplified results presented before and allow for
a clearer understanding of the involved methodologies,
let us focus firstly on the behavior of rigid unions. For
that case, the results in Fig. 5 have clearly shown that
the simulated behavior, making use of a FEM model,
reveal a very complex behavior even for the simplest
model with strong variations throughout the frequency
domain.
In order to make the simulation results and the em-

pirical equations of EN 12354 converge, an adjustment
of the first of them is proposed. Assuming that the i
and j elements that take part in the junctions evalu-
ated have an equivalent absorption length lij = 4.5 m
and the same surface S = 18 m2, we define a “cou-
pling factor” τ that relates the total loss factors of the
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a) b)

c) d)

Fig. 7. Vibration reduction index Kij for rigid cross-joints with different τ values:
a) τ = 0.4, b) τ = 0.8, c) τ = 2.6 (optimum value), d) τ = 4.0.

i and j elements τ = ηi/ηj. For this case, considering
co = 343 m/s and fref = 1000 Hz, Eq. (17) becomes:

Kij = Dv,ij − 5 log
(
13.25τη2jf

)
. (18)

Evaluating this equation for different values of τ in
a rigid cross-joint transmission flank, for which we as-
sume a value of ηj = 0.01, an inverse relation between
the parameter τ and the resulting Kij can be observed
in Fig. 7.
For this test case, the ascribed τ = 2.6 produces

the best approximation between the numerical and the
simplified approaches. Unlike the case of flexible inter-
layer, the standard EN 12354-2 does not consider any
frequency dependence of the rigid junctions. To allow
a more detailed analysis, an additional frequency de-
pendent term T is added to Eq. (18):

Kij = Dv,ij − 5 log
(
13.25τη2j f

)
− T. (19)

This logarithmic term T can be expressed as a fre-
quency dependent variable γ that multiplies the fre-
quency:

T = 5 log(γf). (20)

By introducing this term in the previous equation,
the final expression is obtained as follows:

Kij = Dv,ij − 5 log
(
13.25γτη2jf

2
)
. (21)

Therefore, replacing the previous τ and ηj values
that allow for the best fit between both the models,
and determining the frequency-dependent γ values, the
convergence of the simplified formulas of the EN 12354
standard and the results computed using the FEM
model can be achieved making use of the curve given
in Fig. 8.
Let us now apply the same methodology to ana-

lyze the case of a cross-joint including a flexible in-
terlayer. Once again, we make use of the average re-
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Fig. 8. Values of the γ parameter that better fits for an
optimal convergence with the Kij given by EN 12354 for

the case of a rigid cross-joint.

sults computed from the FEM model considering sev-
eral impact and measurement points throughout the
frequency spectrum. For this case, the best fit between
the full-band averages applied to the FEM results and
to the curve predicted using EN 12354-2 would occur
for τ = 0.008 and η = 0.01 as shown in Fig. 9.

Fig. 9. Results for a cross-joint with a floating slab
and elastic interlayer. “Best-fit” results are obtained

considering τ = 0.008.

As in the previous scenario, it becomes necessary
to compute the difference between the linear fit of the
FEM results and the normative curve and to find the
corresponding values of γ that allow making the nu-
merical results converging with the simplified curve.
For this case, the computed values of γ that allow for
this optimal fit are given in Fig. 10 as a function of
frequency.
The two examples presented allow to conclude that

the behavior of structural joint is indeed complex and

Fig. 10. Values of the γ parameter that better fits for an
optimal convergence with theKij values given by EN 12354
for the case of a cross-joint with flexible interlayer.

strongly frequency-dependent. This complex behavior
can hardly be represented just by the simple equations
proposed in EN 12354-2, and thus special care must be
taken in its analysis. However, those equations may be
a starting point to predict this behavior but they must
be adapted to incorporate the specificity of each indi-
vidual structural configuration. The curves presented
above, revealing a frequency dependent γ parameter,
may indicate a possible strategy to perform this cor-
rection although they should be interpreted as repre-
sentative only for the cases tested.

5. Final remarks

The present work addressed the issue of structural
vibration transmission in the presence of structural
joints. A numerical study was performed for a num-
ber of typical constructive scenarios, for which FEM
results were compared with those provided by the stan-
dard EN 12354-2. The presented examples allowed to
conclude that the behavior of a structural joint in
terms of vibration transmission is complex and de-
pends strongly on the frequency, and that this is hardly
well represented by the simple expressions proposed
in the standard. A simple methodology to estimate
the difference between numerical and normative pre-
dictions was presented allowing the calculation of an
adaptation term to make the two approaches converge.
This term was found to be solution-dependent and thus
should be evaluated for each structural reality.

Acknowledgment

This work was supported by the Ministry of Science
and Innovation (Spain) under the Project BIA2010-
17723 and by the University of Alicante under the
Project GRE10-29.



J. Ramis et al. – Numerical Evaluation of the Vibration Reduction Index for Structural Joints 197

This paper represents an improvement and expan-
sion of a paper presented at the 42th CONGRESS OF
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