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Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis
and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding
of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways.
HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment
response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene
expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene
polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and
alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted
inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and
signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and
treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC
pathophysiology and uncovering new, promising treatment strategies.

1. Introduction

Carcinogenesis and evolution of the cancer genome are
driven by genomic instability. We review here advances in
our understanding of the pathways that preserve genome
integrity that have improved insight into cancer behaviour,
prediction, prognosis, and personalised therapy. Traditional
anticancer therapy has exploited the inherent genomic insta-
bility of malignancy; however, this mutagenic pressure also
promotes the emergence of treatment resistance, invasion,
and metastasis (Figure 1). Squamous cell carcinoma of the
head and neck (HNSCC) is the sixth most-common cancer
in the developed world [1, 2] and represents a therapeutically-
challenging, behaviourally-heterogenous category of disease.
Genomic instability is a defining characteristic of HNSCC
[3]. Subregional differences in patterns in risk, treatment
response, and prognosis in HNSCC are underpinned by aeti-
ological factors that affect genomic stability in different ways.

In HNSCC, the principal subsites of the upper aerodigestive
tract are oral cavity (including tongue, floor of mouth, and
buccal surface), nasopharynx, oropharynx (including tonsil
and base of tongue), and larynx. An important emergent
epidemiological change in HNSCC has been the increasing
prevalent of human papillomavirus- (HPV-) associated can-
cer.

Chemotherapy regimens in HNSCC are based on plat-
inum compounds, prototypically cisplatin, with or without
5-fluorouracil [4], with greatest effect when given concur-
rently with radiotherapy [5, 6]. The absolute 5-year sur-
vival benefit conferred by concurrent cisplatin/5-fluorouracil
chemotherapy is a modest 4.5% [5, 7] and is associated with
significantly increased treatment morbidity and mortality [8].
Newer chemotherapeutic agents include taxols and epider-
mal growth factor receptor- (EGFR-) inhibitors [9]. Addition
of docetaxel, a mitotic spindle stabilizer, to PF induction
chemotherapy has been shown to confer an additional
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survival benefit [10], although heterogeneity between trial
treatment arms and high loss-to-followup make absolute
benefit difficult to interpret. EGFR inhibitor therapy has
emerged as an effective adjuvant in HNSCC and is discussed
in detail below.

Chromosomal mutation is one of the most readily observ-
able features of cancer and has been known to underpin
malignancy for over a hundred years [11]. The mechanism
behind most common chromosomal lesions is genomic
instability, which is influenced by the interdependent triad of
accumulating DNA damage, defective DNA damage repair,
and replication stress. In HNSCC, DNA damage is increased
by exposure to carcinogens (tobacco, alcohol, and various
regionally specific botanicals). Ineffective repair by a number
of germline variations in the DNA repair pathways, long
recognised in congenital repair syndromes such as Fanconi
anemia, have been increasingly implicated as factors in
HNSCC, particularly in phenotypically silent individuals
with single-nucleotide polymorphisms (SNPs) of DNA repair
genes. The DNA damage response is a highly conserved
pathway, that is, activated on the basis of a “threshold”
of DNA damage events and functions to inhibit cell cycle
progression via checkpoint signalling for either repair or
apoptosis as well as directly in the repair of the lesions. These
pathways are known to be constitutively active in dysplastic
lesions [12-14]. This genetically unstable environment drives
mutagenic stress, with selective pressure for inactivation of
growth restricting/apoptotic processes [13, 15]. Replication
stress drives the accumulation of DNA lesions in HNSCC,
and is promoted by genetic loss of cell-cycle checkpoint
control through mutation and epigenetic loss via oncoviral
coinfection with high-risk human papillomavirus (HPV).

Head and neck squamous-cell carcinoma has a male
predominance and is associated with tobacco, alcohol, and
use of a number of alkaloid-rich regional stimulants (such
as betel nut). A subset of HNSCC is strongly associated with
“high-risk” HPV subtypes 16 and 18 infection [16] that are

present in up to 60-80% of nonoral HNSCC and 30% of
oral cavity SCC in a Western population [17-20]. This group
of disease that affects younger patients is proportionally
associated with number of sexual partners and has a distinctly
improved prognosis and different treatment profile from
HPV-unrelated oropharyngeal HNSCC [21-27] as well as a
distinct pattern of chromosomal mutation [28, 29]. Prog-
nostic significance in oral cavity SCC is less clear (reviewed
in [19]). The association of HPV with oral squamous-cell
carcinoma was observed 30 years ago [30]; however, the
epidemiological changes became more evident over the fol-
lowing decades as decreased tobacco use and increased HPV
prevalence highlighted this subgroup [16]. Viral oncoproteins
E6 and E7 have been implicated as the causative agents
in HPV-associated HNSCC. E6-induced ubiquitin-mediated
proteosomal degradation of tumour suppressor p53 causes
cell-cycle dysregulation and increased replication stress [31-
33]. Oncoprotein E7 binds to and disrupts pRb-mediated
degradation of transcription activator E2F, which promotes
genes responsible for cell-cycle progression [34-36]. Tumour
suppressor protein pl6, a CDK4A inhibitor, is characteristi-
cally elevated in E7-induced pRb suppression, to the extent
that pl6 levels are typically used as a surrogate marker for
HPV-related SCC [37-39]. E7 has also been shown to induce
aberrant centrosome number and mitotic spindle formation
[40, 41]. These proteins function to allow viral replication
in the normally postmitotic upper differentiated epithelial
layers [42]. Whole-exome sequencing has shown that HPV-
related HNSCC is associated with less instability, with a 2-
fold lower mutation rate [43]. Interestingly, while suppression
of the upstream DNA damage response ataxia-telangectasia
mutated protein (ATM) and ataxia-telangectasia and Rad3-
related protein (ATR) is deleterious for HPV episome stability
[44]; cell line studies have shown that the radiosensitivity of
HPV-16 related SCC is attributable in part to a repair defect
with accumulation of unrepaired DNA double strand breaks
and resultant cell-cycle arrest [45]. This study was conducted
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using a limited number of cell lines rather than fresh tissue;
however, the relative contribution of HR and NHE] in HPV-
related SCC has yet to be explored.

While p16 is characteristically elevated in HPV-associated
oropharyngeal cancer, up to 56-63% of OSCC and 59% of
premalignant leukoplakia lesions show specific downregu-
lation of pl6, as expected of the tumour-suppressor role it
has [46-49]. HPV-associated oral cavity SCC shows a lower
incidence of p16 positivity (65% high risk HPV c.f. 44% low-
risk/HPV negative cancers) [50], as does hypopharyngeal
cancer (11% high-risk HPV c.f. 0% low-risk/HPV negative
cancers) [51]. CDK2NA (encoding pl16) is commonly inhib-
ited via promoter hypermethylation, and this is associated
with a worse prognosis [52, 53].

2. Chromosomal Mutations in HNSCC

One of the most morphologically apparent features of neo-
plasia is chromosomal mutations and rearrangements, and
these have been well described in HNSCC. Flow cytometric
analysis of both dysplastic and malignant lesions shows
the expected derangement of chromosomal ploidy. Clini-
cally precancerous lesions show rates of 46% diploidy, 37%
tetraploidy, and 17% aneuploidy, while malignant lesions
show 10% diploidy and 90% aneuploidy [54]. In addition to
deletions and duplications (copy number variation, CNV), a
critical component of carcinogenesis is allelic loss or loss-of-
heterozygosity (LOH).

The first chromosomal aberrations in premalignant
lesions are losses of 3p, 9p, 5p, and 17p [55-57]. Importantly,
CDKN2A encoding pl6 is localised to the most commonly
affected 9p21-22 locus [58, 59], which shows LOH in 46-71%
of premalignant lesions and 72% of carcinoma [59, 60] and is
strongly associated with progression to cancer and metastasis
[60, 61]. Lydiatt et al. have suggested that this deletion is
overrepresented in HNSCC cell lines [62], although this
study found much lower rates of primary tumour deletions.
While germline p16 mutations have been described in familial
HNSCC syndromes, these are rare [63, 64].

Allelic loss of 3p is present in 74-81% HNSCC [56, 65,
66], with PCR and hybrid clone studies suggesting three
discrete areas at 3p13-pl4 3p21.2-p21.3, and 3p25 [65, 67] are
positively associated with tobacco-related disease and nodal
status [68]. The FHIT gene encoding a common epithelial
tumour suppressor is found at locus 3pl4.2. Expression of
FHIT is suppressed in 65% of HNSCC and is associated
with worse overall survival [69]. Locus 3p21.31 contains a
number of tumour-suppressor genes (LIMDI, LTF, CDC25A,
SCOTIN, RASSFla, and CACNA2D?2) of which alterations to
LTF and RASSFIA were associated with significantly worse
outcome in oral cavity disease in an Indian cohort [70].
3p25 contains the gene locus for hOGGI and von Hippel-
Lindau tumour suppressor gene. hOGGI is an important
component of the base excision DNA repair pathway and
shows LOH in 55-61% of HNSCC and is underexpressed
in 49% [71, 72]. As discussed below, this mechanism is
important in the repair of ionizing radiation and common
oxidative and tobacco-related DNA lesions [73]. Unrepaired
tobacco-induced benzo[a]pyrene lesions commonly result in

G:T transversion mutations [74, 75]. Repair of the oxidative
lesion 8-0x0G also relies on this pathway, which can result
in a stable G:C to 80x0G:A missense substitution when
encountered by the DNA polymerase [76]. Together these
substitutions comprise 54% of the most common inactivating
p53 point mutations in HNSCC [77]. This mutation pattern,
which has also been strongly linked to smoking-induced
lung cancer [78], is correlated with smoking exposure-related
HNSCC [43].

Chromosomal aberrations associated with late disease
and metastasis are less well characterised. It has been found
that metastatic deposits mostly retain clonality with their
primary cancers [79]. Gains of 3q, 11q13, 7q11.2, and 1q21-q22
and losses of 8p, 11p14, 10p12, 10q, and 14q were reported in
association with metastasis by Bockmiihl et al. [79, 80], who
also found a high rate of 45% deletions in the 8p23 region
correlated with poor prognosis [81]. This region corresponds
to putative tumour suppressor gene CUB and SUSHU mul-
tiple domain protein 1 (CSMD1) which is associated with a
high risk, although higher-resolution deletion mapping has
shown inconsistent targeting of this gene [82]. Many more
chromosomal mutations have been described in later diseases
[61, 83-89]. These rearrangements occur at common fragile
sites, late-replicating regions which can preferentially stall
replication forks under conditions of replication stress [90].
Inappropriate recovery of these forks can cause double-strand
DNA breaks or inversions [91], and ineffective repair can
lead to translocations and deletions [92, 93]. For more detail
on other chromosomal rearrangements see [94, 95] for a
comprehensive review.

3. The DNA Damage Response

Highly conserved across all domains of life is a robust DNA
damage recognition and repair system. Genomic material,
both DNA and RNA, is under constant degradation from
intrinsic and extrinsic factors. These include oxidative stress,
ultraviolet radiation, ionising radiation, and other chemical
alterations such as alkylation [96, 97]. Cells under active
division, such as deregulated tumour cells, are particu-
larly sensitive. This differential sensitivity is exploited by
chemotherapy and external-beam radiation. There are many
different types of DNA lesions, which are broadly dealt with
via interacting pathways (Figure 2):

(1) mismatch repair (MMR),

(2) nucleotide excision repair (NER),
(3) base excision repair (BER),

(4) single-strand break repair (SSB-R)",
(5) double-strand break repair (DSB-R).

Single-strand break repair is not usually considered a
distinct repair pathway and is integrated into BER, NER,
and DSB-R. The most severe form of DNA damage is the
double-strand break [98]. Base excision repair and nucleotide
excision repair pathways involve single-strand break interme-
diates, which unrepaired become double-strand breaks when
encountered by a replication fork [12]. Double-strand break
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FIGURE 2: Examples of DNA lesions and repair pathway choice.

repair occurs via two pathways nonhomologous end-joining
(NHE]) and homologous recombination (HR). The primary
pathway in nonreplicating mammalian cells is NHE] [12].

ATM is an upstream phosphatidylinositol 3 kinase-like
kinase (PIKK), that is, recruited to double-strand break sites
and coordinates repair. Limited studies in ATM have shown
a strong increased cancer risk with a specific SNP in an
East Asian population [99]. Promoter hypermethylation of
ATM has been linked with early age of onset and poor
prognosis in one mixed subsite study [100]; however, this
has not been reproduced in a large oral cavity cancer series
[101]. The mutation most common in the ataxia-telangectasia
phenotype does not seem to be a significant contributor to
the development of HNSCC [102].

4. Mismatch Repair Pathway

Microsatellite instability is a distinct, measurable form of
genomic damage, that is, linked to the mismatch repair
pathway, principally involving mut-S homologin 2 (MSH2)
and mut-L Homologin 1 (MLH1). The archetypical germline
defect in this pathway is the hereditary nonpolyposis colorec-
tal carcinoma syndrome [103]; however, the involvement of
MSI in HNSCC has been less clearly elucidated. Early studies
showed that direct mutation or deletion of hMLHI/hMSH2

was uncommon [104, 105], and reported frequency of MSI in
HNSCC has ranged from 7% to 100%, varying with marker
choice, tumour site, and patient demographic [104-109]. MSI
has been found to be more prevalent in younger patients
[104], and Ha et al. have shown that it becomes more frequent
as dysplastic lesions progress to malignancy (14% and 55%,
resp.) [110].

The dominant moderator of mismatch repair in HNSCC
is promoter hypermethylation rather than direct mutation
[111]. MLH1 promoter hypermethylation has been found in
76% of one OSCC series, associated with early disease, where
38% of tumours exhibited protein underexpression [112].
There is however wide variation in the reported prevalence of
promoter methylation, from 8% to 69% [113-115], and normal
tissue demonstrates promoter methylation of up to 45% [115].
Most studies show no correlation with tobacco exposure;
however, there may be an association with metachronous
primary cancers [114]. A more recent study of MLHI, MSH2,
and MGMT in mobile tongue SCC showed increased expres-
sion of the mismatch repair proteins (55.1% MSH2, 36.73%
MLH]I), which was associated paradoxically with less muscle
invasion, less perineural invasion but lower overall survival,
higher rates of lymphatic metastasis, and more aggressive
morphology, implying that this may be a reactive rather than
causative finding [116].



International Journal of Genomics

5. Base Excision Repair Pathway

hOGGI and NEILI and 2 are DNA glycosylases that are
involved in the first step of damage recognition. They demon-
strate significant functional cross-over with each other [117]
and show affinity for lesions from 5-fluorouracil (5-FU), UV
damage, and 8-oxoguanine (a highly mutagenic by-product
of ROS). The hOGGI locus commonly undergoes LOH as
discussed above, with up to 49% of HNSCC demonstrating
underexpression [72, 118]. Interestingly, there is some evi-
dence that this defect is present systemically and may be due
to a germline rather than sporadic mutation [119], although
haplotype studies have been inconclusive as shown above.
APEX], a processing enzyme immediately downstream of
hOGGI, has been shown to be overexpressed in HNSCC in
a Pakistani population and is associated with nodal positivity
and later stage [120]. NEIL1/2 form a redundant BER system,
substituting AP endonuclease (APEX1/2) for polynucleotide
kinase (PNK) [121], and the g.4102971CC polymorphism has
been linked to increased risk of HNSCC [122].

XRCC], as discussed above under SNPs, has been exten-
sively investigated for its role in HSNCC. It functions in
DNA single-strand break repair downstream of APEX1/PNK
to scaffold and coordinate nucleotide synthesis [123]. Early
studies of mRNA expression in head and neck cell lines
implied that XRCCl was not a significant contributor to
cancer radiosensitivity [124]; however, a more recent protein
expression series in primary laryngeal cancer looking at
outcomes following definitive radiotherapy has contradicted
this [125]. Overexpression of XRCCI, in a more recent series,
has been linked to poor outcome in chemoradiation-treated
HNSCC but not other modalities [126], and other studies
have reported a predominant pattern of underexpression in
an Indian population [118].

Poly- (ADP-Ribose) polymerase (PARP) 1 and 2 are
DNA repair proteins that have direct affinity to many DNA
lesions and once bound autocatalyze the generation of a
PAR polymer which induces chromatin decondensation and
recruits many other repair molecules, including ATM [127].
Although it has no direct repair role, it is required for efficient
base excision repair, nucleotide excision repair, HR, and
alternative-NHE] [127-131], with the most well-understood
role of single-strand break binding to facilitate polymerisa-
tion and ligation. Of particular importance in malignancy,
PARP-11is required for safe traversal of damaged DNA by the
replication machinery and subsequent HR-mediated repair
[128], which is significantly exacerbated under replication
stress. Importantly, PARP inhibition has been found to be
synthetically lethal in BRCA- (HR-) deficient breast cancer
[132, 133]. As discussed above, EGFR-inhibition induces an
HR and NHE] deficiency in addition to antiproliferative
effects. There is evidence that combined therapy can replicate
an HR “block” in a similar fashion [134] that may be linked to
Nbsl suppression [135, 136]. Indeed, cosuppression of many
proteins involved in HR induces in vitro PARP susceptibility
[137]. Blocking upstream signalling by PI3K also induces HR
defects and PARP-sensitive synthetic lethality in breast cancer
cell lines [138]. There is also limited data in HNSCC demon-
strating a link between PARP1 overexpression and cisplatin

resistance [139], suggesting a possible role for chemoresistant
tumours.

6. Nucleotide Excision Repair Pathway

The nucleotide excision pathway (NER) corrects “bulky”
DNA adducts and lesions such as UV photoproducts, plat-
inum lesions, and tobacco-linked lesions [140]. Germline
defects in this pathway are responsible for the xeroderma
pigmentosum phenotype, for which many key proteins are
eponymous. There are two principal monitoring pathways,
global genomic NER and transcription-coupled NER.

Global genomic NER is initiated by direct recognition
of DNA lesions irrespective of transcription [141, 142], and
polymorphism of several key proteins have been implicated
in HNSCC as shown above. Transcription-coupled NER
differs in that detection and recruitment of repair molecules is
initiated by stalled RNA polymerase II (RNAP II), with repair
mediated by UVSSA-USP7 and BRCALI [143, 144]. The lack
of a clear association with a cancer syndrome, in vitro or de
novo cancers make the transcription-coupled pathway a less
promising factor in cancer genome stability [145, 146].

ERCCI-XPF has been extensively studied in lung cancer,
breast cancer, and HNSCC. High ERCCl expression in
HNSCC has been associated with cisplatin resistance and
poor survival in a betel chewing endemic area [147]. Two
larger retrospective trials showed prognostic benefit of low
ERCCI expression in HNSCC (HR 0.42, Clys,, 0.20-0.90, P
0.03 and HR 0.12, P 0.043) [148, 149]. In vivo ERCCI has
been associated with enhanced cisplatin resistance [150] and
is involved in alternative NHE] [151]. Metastasis has also been
associated with increased expression of XPF [152].

SNPs in all eight major NER genes have been implicated
in increasing background risk of oral leukoplakia [153], and
altered PBL expression of ERCCL, ERCC5, ERCC6/CSB [154],
and ERCC4 [155] have been found to be higher in patients
with oral cancer. Similarly to peripheral blood lymphocyte
assays done in hOGGI (discussed above), there is limited evi-
dence that there may be a systemic NER deficient phenotype
in a small cohort of patients with HNSCC [156]. Some SNPs
have been implicated as protective or hazardous in single
SNP studies (refer Table 1), while multiple (5-7) risk NER
genotypes have been associated with a 2.4-fold increased
relative risk of second primary HNSCC [157].

7. Nonhomologous End Joining Pathway

The Ku heterodimer is comprised of Ku70 and Ku80 func-
tions as a sensor, binding to free dsDNA ends, an end-
processing 5'-dRP/AP lyase, and a recruiter of DNA-PKcs
[158] and telomere protection [159]. Ku80 overexpression has
been linked to poor prognosis, local failure, and recurrence
following radiation [160]. While this study did not include
tongue cancer specimens, the predictive value was greatest
in HPV negative cancers (RR 9, P < 0.01). In contrast, two
similarly-sized mixed studies found Ku70 mRNA levels and
protein overexpression improved recurrence-free survival in
locally advanced HNSCC [161] and tonsillar cancer [162];
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TABLE 1
Reference Subsite Population Study size Gene SNP QOdds ratio (P value)
.. . . 641 (288 cases, 353 Rad51 G135C 2.92 (<0.0001)
L 1 Polish
Sliwinski etal. [240]  Laryngea oS controls) XRCC3 C722T 4.03 (<0.0001)
Romanowicz- Rad51 G135C NS [3.43 (0.073)]
Makowska et al. Laryngeal Polish igg t(rﬁ:’)cases’ 253 XRCC2 G31479A NS [3.81 (0.061)]
[241] XRCC2 C41657T NS [2.14 (0.061)]
XRCC3 C722T
Roamee Lo
Werbrouck et al. All Belgium 169 cases, 352 Lig4 C26T 0' 43 ( 0' o1
[242] & controls Ku70 C1310G ’ NS'
Ku80 ¢.2110-2408 NS
G>A
443 cases (including
Cui et al. [243] North American oesophageal), 912 XPG c.1104 0.47 (<0.05)
controls
XRCC1 Argl94Trp,
dos Reis et al. [244]  Oral cavity Brazil 30&9510)%5“’ 150 Arg399GIn Eg
controts XRCC3 Thr241Met
F;r;l]owska etal Laryngeal Polish igﬁéﬁg cases, 236 hOGGI Ser326Cys 2.96 (0.012)
) XRCC1 Argl94Trp,
Kietthubthew et al. Oral cavity ~ Thai (betel quid endemic) 106 tcasles, lo4 exon 6 NS
controls
[246] XRCC3 Thr241Met 3.3 (0.01)
XRCC3 rs3212057 6.0 (<0.01)
. Rad51
All Polish
Gresner et al. [247] olis 81 cases, 111 controls 55030789 AA 0.33 (<0.05)
Rad51
rs1801321 TT 01(<0.05)
Zhang et al. [248] All North American Zgrél ti?jss, 1196 hOGGI Ser326Cys NS
. . 169 cases, 338 hOGGI Ser326Cys 1.6 (<0.05)
All North A ¥
Elahi et al. [249] orth American controls Cys326Cys 41(<0.05)
fggl‘mder etal All Indian ii?lf:(‘)sl‘zs 150 XRCCI c.194, ¢.399 NS
APEX1
. 4.97" (0.0001)
Mahjabeen et al. Not specified Pakistani 300 cases, 300 13T<GG 11.74* (0.0001)
[120] controls Ser129Arg 512" (0.0001)
Vall31Gly -
XRCCl c.194 3.09 (<0.0001)
Ramachandran et al. Oral cavit Indian 110 cases, 110 ¢.280 NS
5 controls C. .37 (<0.
(250] Y | 399 2.37 (<0.0001)
XPD c.751 2.10 (0.003)
147 cases, 168 XRCCI1 R194W 2.61 (<0.05)
All K
Tae etal. [251] orean controls R280H, R399G NS
XRCCI Arg399GIn
Kumar et al. [118] Not specified North Indian 75 cases, 75 controls XPD Lys 751Gln NS
hOGGI Ser326Cys
XRCCI1 Argl94Trp 0.72 (0.03)
. . 278 cases, 278 Arg280His NS
Not specified North Ind : &
Kumar et al. [228] ot specifie orth indian controls Arg399GIn 0.64 (0.003)
XPD Lys751Gln 1.75 (0.002)
Kowalski et al. [252] All Polish 92 cases, 124 controls XRCCI Argl94Trp NS
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TaBLE 1: Continued.

Reference Subsite Population Study size Gene SNP Odds ratio (P value)
XRCCI Argl94Trp
XRCC2 (5 locus) NS
XRCC3 Thr241Met
Yen et al. [253] Oral cavity Taiwan 103 cases, 98 controls XRCC4 T139G
“pseudo-haplotype” 2-2.45 (0.03)
multiple concurrent 3-5.03 (0.013)
SNPs 4-10.1 (0.036)
XRCC4 c247 2.04 (<0.05)
. . 318 cases, 318 G1394T NS
Oral t T: >
Tseng et al. [254] ral cavity alwan controls? rs28360317 NS
rs1805377 NS
XRCC4 G1394T NS
. . . 318 cases, 318 rs28360071 1.55 (<0.05)
Oral T
Chiu et al. [255] ral cavity aiwan controls® 1528360217 NS
rs1805377 NS
ERCCe6
€399 (A/A) 1.82 gg.os)
. . . 292 cases, 290 ¢.399 (G/G, G/A)
Oral T:
Chiu et al. [256] ral cavity aiwan controls €399 (Any A) 143 %\?SO.OS)
c.1097 NS
c.1413
Ku80 G-1401T 1.603 (<0.05)?
Hsu et al. [257] Oral cavity Taiwan 600 Case(%’ 600 C-319T NS
controls
Intronl9 NS
Ku70 T991C 2.15 (<0.05)
. . 318 cases, 318 G-57C NS
Bau et al. [258] Oral cavity Taiwan controls® A3IG NS
Intron 3 NS
ATM
rs189037 Lol SS'OS)
rs600931
Bau et al. [99] Oral cavity Taiwan 620 cases, 620 rs652311 NS
controls NS
rs228589 NS
1227092 NS
rs227060
XPA A23G NS
XPD C22541A/A 0.74 (<0.05)
XPD A35931C NS
XPD Asp312Asn 1.14 (0.05)
XPD C23047G NS
XPD C23051G NS
XPC PAT NS
Flores-Obando etal. ~ Meta-analysis Multiple XPC Lys939GIn NS
[259] XPC Ala499Val 156 (<0.05)
XPF T2063A NS
ERCCI1 C8092A NS
XRCCl exon 6 T/T 1.69 (<0.05)
XRCCl exon 10 NS
XRCCl exon 9 NS
XRCC3 Thr241Met NS
NEIL1 g.46434077 NS
Zhai et al. [122] All North America fZi tcrislis 1044 NEILI g.46438282 NS
NEIL2 g.4102971CC 1.30 (<0.05)

*Crude odds ratio.
(1) Same group/cohort.
(2) Only in Areca-nut exposed subgroup.



however, these did not stratify for p16 status and had unusual
treatment regimens. In support of these findings are in vitro
studies showing that Ku70 loss improved radioresistance
in late G2/S, possibly by allowing the more error-free HR
[163].

8. Homologous Recombination Pathway

The Fanconi anemia pathway encompasses eleven proteins
involved in the HR-mediated repair of interstrand crosslink
(ICL) lesions [164]. Fanconi anemia homozygous patients
have a much greater rate of head & neck solid tumours
[165], and underexpression of many Fanconi proteins is
common in primary HNSCC [166], particularly in young
patients [167], although the underlying mechanism is unclear.
Tobacco exposure has been shown to selectively suppress
FANCD?2 expression in a respiratory epithelial cell line [168].
Promoter hypermethylation of FANCF has been found in
15% of HNSCC [169], while 42% of OSCC show FANCC
methylation in both malignant and premalignant lesions
in an Indian population [170]. In contrast, another series
demonstrated 31% PHM of FANCB, and found other Fanconi
genes to be rarely methylated [171]. While cisplatin com-
monly induces interstrand crosslinks, specific upregulation
of the Fanconi pathway has not been implicated in cisplatin-
resistant HNSCC cell lines [172].

Hyperphosphorylation of replication protein A (RPA), a
single-strand DNA binding protein, that is, integral to HR,
has been implicated as a mechanism for cisplatin resistance
in HNSCC cell lines [173]. RPA signalling activity is heavily
modulated by phosphorylation status, and this posttrans-
lational resistance mechanism promotes inappropriate cell-
cycle progression.

BRCALI and 2 are essential for efficient HR, and germline
mutation is causally linked to breast and ovarian cancers [174,
175]. Low BRCA expression has been correlated with better
cisplatin response and survival in lung cancer [176]. BRCA-
deficient breast cancers have shown survival benefits with
synthetically lethal PARP inhibition in Phase II trials [177].
An interesting pattern in tongue SCC pathogenesis shows
BRCAIl overexpression in leukoplakia followed by subsequent
underexpression in carcinoma [178]. Sporadic mutation of
BRCA2 is rare [179] as is promoter hypermethylation [169].

9. The Epidermal Growth Factor Receptor in
DNA Repair

Epidermal growth factor receptor (EGFR) is a transmem-
brane signalling protein belonging to the receptor tyrosine
kinase family, which has significant implications in HNSCC.
EGFR is physiologically activated via ligand binding (trans-
forming growth factor-a, TGF-«), and active EGFR promotes
cell proliferation and enhances radioprotective mechanisms
through the mitogen-activated protein kinase (MAPK) path-
way and the extracellular signal-regulated kinases (ERK1/2).
[180, 181]. The strongest effect of EGFR activation on DNA
repair is via upregulation of the phosphoinositol-3 kinase
(PI3K)/AKT signalling pathway (Figure 3). PI3K mutations
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are common in HNSCC and linked with higher genomic
instability [182]. PI3K promotes transcription of the nonho-
mologous end-joining complex DNA-PK [183, 184], mediates
Nbsl binding for DNA damage detection [185], and promotes
effective DNA double strand break repair [186], while AKT1
promotes transcription of the DNA-PKcs subunit [187] and
negatively regulates BRCA1/Rad51 nuclear transport [188].
Particularly relevant to DNA repair, inhibition of the EGFR
receptor induces a NHE] and HR defect. Erlotinib has been
shown to decrease BRCAl-dependent HR by twofold in breast
cancer cell lines [189] and attenuate radiation-induced Rad51
expression (a key HR protein) [190]. Gefitinib delays Nbsl
recruitment to DNA double strand break sites in lung cancer
cell lines and significantly reduces DNA double strand break
repair [136]. Downstream inhibition of PI3K has also been
shown to induce a BRCA1/2 deficiency in breast cancer cell
lines [138]. The functionality of the BRCA/HR pathway is
of particular importance for the utility of PARP inhibitors
(discussed below).

Constitutively-active inhibitor-sensitive EGFR mutants
are an important mechanism in 10% of nonsmall cell lung
cancer (NSCLC) cases, conferring a significant survival bene-
fit when cancer cells dependent on this proliferative signal are
deprived via EGFR-inhibition [191, 192]. Such kinase domain
mutations are rare however in HNSCC, with mutation rates
of 7-16% in Asian and 0-4% in Japanese and Caucasian pop-
ulations and are not present in HPV-positive tumours [193-
197]. This suggests that they do not have a significant role
in oncogenesis and may instead reflect underlying instability.
In striking contrast, an EGFR inhibitor-resistant truncation
mutant EGFRVIII has been found in up to 42% of HNSCC
[198]. This mutant has a deletion of exons 2 to 7, involving the
extracellular binding domain rather than the kinase domain
[199]. This results in a protein, that is, constitutively active,
has altered kinase dynamics that favour PI3K signalling, and
that promotes ligand-independent invasion and migration
(200, 201].

Oncogenic mutations in other components of this path-
way are less common. PI3KCA somatic mutations have been
described in 0-11% of HNSCC tumour samples and are
overrepresented in cell lines [202-204], while PTEN and Aktl
mutations are rare [205].

Overexpression of EGFR is very common in HNSCC,
with protein immunohistochemical studies showing high
expression in 43-68% of HNSCC [197, 206-208] and Areca
quid-associated OSCC demonstrating a lower rate of 23%
[209]. High EGER protein levels are strongly linked to poor
cause-specific survival [207, 208], nodal stage and dedifferen-
tiation [197], and emergence of stem-cell like characteristics
[210]. Altered EGFR copy numbers have been found in 24%
of HNSCC cases in one study (17% increased, 7% decreased)
and both are linked to a reduced cause-specific survival and
disease-free survival [211]. EGFR amplifications have been
demonstrated in 24% (10% deletions) of laryngeal cancers,
although survival significance was only demonstrated when
combined with chromosome 7 copy-number status [212].
There does not appear to be any difference between HPV-
associated and HPV-negative cancers with regard to EGFR
expression [50].
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FIGURE 3: Downstream effects of EGFR on DNA repair proteins.

Cetuximab, an IgGl monoclonal antibody against the
receptor domain of EGFR, has been shown to add an
8% absolute 2-year survival advantage as a monotherapy
adjunct to radiotherapy in HNSCC [213] and has become
incorporated into the standard management of late-stage
HNSCC [214]. The tyrosine kinase inhibitor gefitinib has
also been shown to sensitize HNSCC cells to cisplatin via
destabilization of Rad51 [215]; however, Phase III trials have
shown no advantage as monotherapy in recurrent HNSCC
compared with methotrexate [216]. Cancers with high EGFR
expression demonstrate additional benefit from hyperfrac-
tionated radiotherapy regimens [217].

Radioprotection in EGFR-competent cells is improved
via enhanced immediate DNA repair, protection from
damage-induced apoptosis, and enhanced proliferation of the
EGFR-competent subpopulation during repopulation [218],
providing a selective advantage. Cetuximab resistance has
been linked to EGFR translocation from the cytoplasm to the
nucleus and endogenous ligand production [219]. Transport
dysregulation and HER2-dependent transactivation has also
been found to contribute to resistance in lung cancer cell
lines [220]. Emergent resistance is also very common in
colorectal cancer, where it has been found to be mediated by
endogenous upregulation of K-Ras [221].

10. Single Nucleotide Polymorphisms in
DNA Repair Pathways

While some areas of genomic DNA are highly conserved, the
dynamic variability of large domains encompassing coding
and noncoding areas is becoming increasingly important
to our understanding of individual disease risks. The most
common examples are single nucleotide polymorphisms
(SNPs), of which 3.1 million have been identified encom-
passing most proteins involved in DNA repair [222]. The
two principal types of SNPs are synchronous (or “silent”)

and nonsynchronous, where a base substitution results in a
corresponding protein substitution. The protein product may
be a “functional variant,” or has some degree of impaired
function. Analogous to hereditary DNA repair syndromes,
much attention has been paid to SNP prevalence and the
effect on HNSCC risk. Listed below are a subset of SNP
studies specific for DNA repair proteins involved in the
pathways discussed above.

In addition to the above studies, a series in a Pakistani
population found a remarkably high prevalence of novel
hOGGl polymorphism is association with HNSCC, although
this has not been subsequently validated [223]. Interestingly,
both this and a Japanese study found a statistically significant
link between hOGGI1 Ser326Cys status and tobacco use
[224], complicating statistical analysis. Likewise, HPV-16
positivity may alter the significance of XRCC1 polymorphism
in HNSCC risk, possibly explaining the inconsistent results
between study populations [225, 226], although these find-
ings are in contrast to cervical SCC and HPV-16 status where
no relationship has been found [227]. Complex gene-gene
interactions between XRCC1 and XPD haplotypes have also
been described [228].

Carles et al. [229] examined nine nucleotide excision
repair gene SNPs with regard to response to definitive
radiotherapy. This study found XPA (5'UTR), XPF/ERCCI
C259C, and XPG/ERCC5 G1104C/T46C SNPs resulted in
a significantly worse overall survival following treatment
in a cohort of 104 patients over 10 years. In a Brazilian
population, ERCCI T19007C was not found to affect response
to treatment or overall survival in a modest cohort [230].

11. Discussion

Genomic instability underpins the development of dysplasia,
malignancy, invasion, and metastasis in cancers. Many of
our cancer therapeutic drugs exploit these genetic stability
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pathways by adding extra pressure onto already primed
cancerous cells. The formation of these cancers is also clearly
linked to genetic instability with the high risk factors such
as HPV, tobacco, areca nut, betel quid, and alcohol having
direct mutagenic effects on the cellular genome. There is also
an emerging spectrum of DNA deficient high risk phenotypes
that are improving our understanding of background genetic
risk. These aetiological differences in oncogenesis translate
into distinctly different disease profiles. Profiling of the
DNA repair pathways in established cancer may allow the
development of robust biomarker-based cancer phenotyping
for both improved prognosis and personalized therapeutic
selection. The success of the PARP-1 inhibitor olaparib in
BRCAIl-deficient breast cancer and the early translational
work in HNSCC underpin the importance of future targeted
therapy in exploiting synthetic lethality in DNA repair.

The inherited DNA repair deficient syndromes pro-
vide the prototype for insight into DNA repair in cancer,
highlighting the importance of the double-strand repair
pathways, and in particular homologous recombination.
Ataxia telangiectasia presents with a significant increased
all-cause cancer risk [231] consistent with its critical repair
role and inherited HR protein BRCAI and BRCA2 mutants
strongly predispose toward breast cancer, prostate, and colon
cancer [175]. Homologous recombination is the preferred
repair pathway in cells undergoing active replication and
is constitutively active in cancer. Defective HR is respon-
sible for many chromosomal rearrangements [91, 232], and
emerging evidence shows a robust redundant pathway, that
is, more complex than previously thought. Complementing
our knowledge of this pathway is ongoing discovery of HR-
essential proteins such as hSSB1/2 [233, 234], RNF8 [235],
and Exol [236], which coordinate the more well-understood
core repair complexes such as Rad51 and MRN [237]. Further
exploration of the oncogenic role of these core proteins is
needed.

Head and neck cancer is a diverse category of disease, with
outcomes influenced largely by primary site and pl6 status.
Existing studies on more well-known DNA repair biomarkers
are often difficult to interpret due to conflation of anatomical
subsites or limited p16 control. Focused, well-powered studies
controlled for anatomical subsite are likely to be of greater
clinical benefit. Similarly, the abundance of the literature
on genetic polymorphism and cancer risk is tempered by
conflicting reproducibility, conflation of anatomical sites,
and population differences. Localisation of SNP studies is
important given the significantly unique risk factor profiles
in East Asian and Chinese populations; however, it makes
generalisation of these highly prognostic studies to Western
populations difficult.

Current gaps in the literature of cancer genomic insta-
bility include the nature of interpathway and intrapathway
redundancy. Major protein complexes can be less efficiently
replaced by alternate, multipurpose proteins to otherwise
allow DNA repair [235, 238], an important mechanism to
understand in designing synthetically lethal repair blockade.
SNPs of backup 8oxoG pathways such as PNK/NEILI have
been linked to HNSCC risk [122] and contributes to poor
survival in non-HNSCC cancer [239]; however, the role of
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this pathway in relation to hOGGlI deficiencies has yet to be
determined in HNSCC.

Improved understanding of the nature of genomic insta-
bility in head and neck cancer has helped clarify the inter-
play between mutagenic stresses and DNA repair efficiency.
Future characterization of signature instability patterns will
guide further therapeutic development targeted at the critical
foundation underlying malignancy.
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