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1 Introduction

Let (Z ,Z ,µ) be a measure space such that Z is a Borel space and µ is a σ-finite non-atomic Borel
measure. We set Zµ = {B ∈ Z : µ(B) < ∞}. In what follows, we write N̂ = {N̂(B) : B ∈ Zµ} to
indicate a compensated Poisson measure on (Z ,Z ) with control µ. In other words, N̂ is a collection
of random variables defined on some probability space (Ω,F ,P), indexed by the elements of Zµ
and such that: (i) for every B, C ∈ Zµ such that B ∩ C = ∅, the random variables N̂(B) and N̂(C)

are independent; (ii) for every B ∈ Zµ, N̂(B)
(law)
= N(B)− µ(B), where N(B) is a Poisson random

variable with paremeter µ(B). A random measure verifying property (i) is customarily called
“completely random” or, equivalently, “independently scattered” (see e.g. [25]).

Now fix d ≥ 2, let F = (F1, . . . , Fd) ⊂ L2(σ(N̂),P) be a vector of square-integrable functionals of N̂ ,
and let X = (X1, . . . , Xd) be a centered Gaussian vector. The aim of this paper is to develop several
techniques, allowing to assess quantities of the type

dH (F, X ) = sup
g∈H
|E[g(F)]−E[g(X )]|, (1)

where H is a suitable class of real-valued test functions on Rd . As discussed below, our principal
aim is the derivation of explicit upper bounds in multi-dimensional Central limit theorems (CLTs)
involving vectors of general functionals of N̂ . Our techniques rely on a powerful combination of
Malliavin calculus (in a form close to Nualart and Vives [15]), Stein’s method for multivariate
normal approximations (see e.g. [5, 11, 23] and the references therein), as well as some interpo-
lation techniques reminiscent of Talagrand’s “smart path method” (see [26], and also [4, 10]). As
such, our findings can be seen as substantial extensions of the results and techniques developed
e.g. in [9, 11, 17], where Stein’s method for normal approximation is successfully combined
with infinite-dimensional stochastic analytic procedures (in particular, with infinite-dimensional
integration by parts formulae).

The main findings of the present paper are the following:

(I) We shall use both Stein’s method and interpolation procedures in order to obtain explicit
upper bounds for distances such as (1). Our bounds will involve Malliavin derivatives and
infinite-dimensional Ornstein-Uhlenbeck operators. A careful use of interpolation techniques also
allows to consider Gaussian vectors with a non-positive definite covariance matrix. As seen below,
our estimates are the exact Poisson counterpart of the bounds deduced in a Gaussian framework in
Nourdin, Peccati and Réveillac [11] and Nourdin, Peccati and Reinert [10].

(II) The results at point (I) are applied in order to derive explicit sufficient conditions for multivari-
ate CLTs involving vectors of multiple Wiener-Itô integrals with respect to N̂ . These results extend
to arbitrary orders of integration and arbitrary dimensions the CLTs deduced by Peccati and Taqqu
[18] in the case of single and double Poisson integrals (note that the techniques developed in [18]
are based on decoupling). Moreover, our findings partially generalize to a Poisson framework the
main result by Peccati and Tudor [20], where it is proved that, on a Gaussian Wiener chaos (and
under adequate conditions), componentwise convergence to a Gaussian vector is always equivalent
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to joint convergence. (See also [11].) As demonstrated in Section 6, this property is particularly
useful for applications.

The rest of the paper is organized as follows. In Section 2 we discuss some preliminaries, including
basic notions of stochastic analysis on the Poisson space and Stein’s method for multi-dimensional
normal approximations. In Section 3, we use Malliavin-Stein techniques to deduce explicit upper
bounds for the Gaussian approximation of a vector of functionals of a Poisson measure. In Section
4, we use an interpolation method (close to the one developed in [10]) to deduce some variants
of the inequalities of Section 3. Section 5 is devoted to CLTs for vectors of multiple Wiener-Itô
integrals. Section 6 focuses on examples, involving in particular functionals of Ornstein-Uhlenbeck
Lévy processes. An Appendix (Section 7) provides the precise definitions and main properties of the
Malliavin operators that are used throughout the paper.

2 Preliminaries

2.1 Poisson measures

As in the previous section, (Z ,Z ,µ) is a Borel measure space, and N̂ is a Poisson measure on Z with
control µ.

Remark 2.1. Due to the assumptions on the space (Z ,Z ,µ), we can always set (Ω,F ,P) and N̂ to
be such that

Ω =







ω=
n
∑

j=0

δz j
, n ∈ N∪ {∞}, z j ∈ Z







where δz denotes the Dirac mass at z, and N̂ is the compensated canonical mapping

ω 7→ N̂(B)(ω) =ω(B)−µ(B), B ∈ Zµ, ω ∈ Ω,

(see e.g. [21] for more details). For the rest of the paper, we assume that Ω and N̂ have this form.
Moreover, the σ-field F is supposed to be the P-completion of the σ-field generated by N̂ .

Throughout the paper, the symbol L2(µ) is shorthand for L2(Z ,Z ,µ). For n ≥ 2, we write L2(µn)
and L2

s (µ
n), respectively, to indicate the space of real-valued functions on Zn which are square-

integrable with respect to the product measure µn, and the subspace of L2(µn) composed of sym-
metric functions. Also, we adopt the convention L2(µ) = L2

s (µ) = L2(µ1) = L2
s (µ

1) and use the
following standard notation: for every n≥ 1 and every f , g ∈ L2(µn),

〈 f , g〉L2(µn) =

∫

Zn

f (z1, ..., zn)g(z1, ..., zn)µ
n(dz1, ..., dzn), ‖ f ‖L2(µn) = 〈 f , f 〉1/2

L2(µn)
.

For every f ∈ L2(µn), we denote by ef the canonical symmetrization of f , that is,

ef (x1, . . . , xn) =
1

n!

∑

σ

f (xσ(1), . . . , xσ(n))
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where σ runs over the n! permutations of the set {1, . . . , n}. Note that, e.g. by Jensen’s inequality,

‖ f̃ ‖L2(µn) ≤ ‖ f ‖L2(µn) (2)

For every f ∈ L2(µn), n ≥ 1, and every fixed z ∈ Z , we write f (z, ·) to indicate the function defined
on Zn−1 given by (z1, . . . , zn−1) 7→ f (z, z1, . . . , zn−1). Accordingly, âf (z, ·) stands for the symmetriza-
tion of the function f (z, ·) (in (n−1) variables). Note that, if n= 1, then f (z, ·) = f (z) is a constant.

Definition 2.2. For every deterministic function h ∈ L2(µ), we write I1(h) = N̂(h) =
∫

Z
h(z)N̂(dz)

to indicate the Wiener-Itô integral of h with respect to N̂ . For every n ≥ 2 and every f ∈ L2
s (µ

n),
we denote by In( f ) the multiple Wiener-Itô integral, of order n, of f with respect to N̂ . We also set
In( f ) = In( f̃ ), for every f ∈ L2(µn), and I0(C) = C for every constant C.

The reader is referred e.g. to Peccati and Taqqu [19] or Privault [22] for a complete discussion of
multiple Wiener-Itô integrals and their properties (including the forthcoming Proposition 2.3 and
Proposition 2.4) – see also [15, 25].

Proposition 2.3. The following properties hold for every n, m ≥ 1, every f ∈ L2
s (µ

n) and every g ∈
L2

s (µ
m):

1. E[In( f )] = 0,

2. E[In( f )Im(g)] = n!〈 f , g〉L2(µn)1(n=m) (isometric property).

The Hilbert space composed of the random variables with the form In( f ), where n ≥ 1 and f ∈
L2

s (µ
n), is called the nth Wiener chaos associated with the Poisson measure N̂ . The following well-

known chaotic representation property is essential in this paper.

Proposition 2.4 (Chaotic decomposition). Every random variable F ∈ L2(F ,P) = L2(P) admits a
(unique) chaotic decomposition of the type

F = E[F] +
∞
∑

n≥1

In( fn) (3)

where the series converges in L2(P) and, for each n≥ 1, the kernel fn is an element of L2
s (µ

n).

2.2 Malliavin operators

For the rest of the paper, we shall use definitions and results related to Malliavin-type operators
defined on the space of functionals of the Poisson measure N̂ . Our formalism is analogous to the
one introduced by Nualart and Vives [15]. In particular, we shall denote by D, δ, L and L−1,
respectively, the Malliavin derivative, the divergence operator, the Ornstein-Uhlenbeck generator
and its pseudo-inverse. The domains of D, δ and L are written domD, domδ and domL. The
domain of L−1 is given by the subclass of L2(P) composed of centered random variables, denoted
by L2

0(P).
Albeit these objects are fairly standard, for the convenience of the reader we have collected some
crucial definitions and results in the Appendix (see Section 7). Here, we just recall that, since the
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underlying probability space Ω is assumed to be the collection of discrete measures described in
Remark 2.1, then one can meaningfully define the random variableω 7→ Fz(ω) = F(ω+δz), ω ∈ Ω,
for every given random variable F and every z ∈ Z , where δz is the Dirac mass at z. One can
therefore prove that the following neat representation of D as a difference operator is in order.

Lemma 2.5. For each F ∈ domD,

Dz F = Fz − F, a.e.-µ(dz).

A proof of Lemma 2.5 can be found e.g. in [15, 17]. Also, we will often need the forthcoming
Lemma 2.6, whose proof can be found in [17] (it is a direct consequence of the definitions of the
operators D, δ and L).

Lemma 2.6. One has that F ∈ domL if and only if F ∈ domD and DF ∈ domδ, and in this case

δDF =−LF.

Remark 2.7. For every F ∈ L2
0(P), it holds that L−1F ∈ domL, and consequently

F = LL−1F = δ(−DL−1F) =−δ(DL−1F).

2.3 Products of stochastic integrals and star contractions

In order to give a simple description of the multiplication formulae for multiple Poisson integrals (see
formula (6)), we (formally) define a contraction kernel f ?l

r g on Z p+q−r−l for functions f ∈ L2
s (µ

p)
and g ∈ L2

s (µ
q), where p, q ≥ 1, r = 1, . . . , p ∧ q and l = 1, . . . , r, as follows:

f ?l
r g(γ1, . . . ,γr−l , t1, , . . . , tp−r , s1, , . . . , sq−r) (4)

=

∫

Z l

µl(dz1, ..., dzl) f (z1, , . . . , zl ,γ1, . . . ,γr−l , t1, , . . . , tp−r)

×g(z1, , . . . , zl ,γ1, . . . ,γr−l , s1, , . . . , sq−r).

In other words, the star operator “?l
r ” reduces the number of variables in the tensor product of f

and g from p+q to p+q− r− l: this operation is realized by first identifying r variables in f and g,
and then by integrating out l among them. To deal with the case l = 0 for r = 0, . . . , p ∧ q , we set

f ?0
r g(γ1, . . . ,γr , t1, , . . . , tp−r , s1, , . . . , sq−r)

= f (γ1, . . . ,γr , t1, , . . . , tp−r)g(γ1, . . . ,γr , s1, , . . . , sq−r),

and

f ?0
0 g(t1, , . . . , tp, s1, , . . . , sq) = f ⊗ g(t1, , . . . , tp, s1, , . . . , sq) = f (t1, , . . . , tp)g(s1, , . . . , sq).

By using the Cauchy-Schwarz inequality, one sees immediately that f ?r
r g is square-integrable for

any choice of r = 0, . . . , p ∧ q , and every f ∈ L2
s (µ

p), g ∈ L2
s (µ

q).

As e.g. in [17, Theorem 4.2], we will sometimes need to work under some specific regularity
assumptions for the kernels that are the object of our study.
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Definition 2.8. Let p ≥ 1 and let f ∈ L2
s (µ

p).

1. If p ≥ 1, the kernel f is said to satisfy Assumption A, if ( f ?p−r
p f ) ∈ L2(µr) for every r = 1, ..., p.

Note that ( f ?0
p f ) ∈ L2(µp) if and only if f ∈ L4(µp).

2. The kernel f is said to satisfy Assumption B, if: either p = 1, or p ≥ 2 and every contraction of
the type

(z1, ..., z2p−r−l) 7→ | f | ?l
r | f |(z1, ..., z2p−r−l)

is well-defined and finite for every r = 1, ..., p, every l = 1, ..., r and every (z1, ..., z2p−r−l) ∈
Z2p−r−l .

The following statement will be used in order to deduce the multivariate CLT stated in Theorem
5.8. The proof is left to the reader: it is a consequence of the Cauchy-Schwarz inequality and of the
Fubini theorem (in particular, Assumption A is needed in order to implicitly apply a Fubini argument
– see step (S4) in the proof of Theorem 4.2 in [17] for an analogous use of this assumption).

Lemma 2.9. Fix integers p, q ≥ 1, as well as kernels f ∈ L2
s (µ

p) and g ∈ L2
s (µ

q) satisfying Assumption
A in Definition 2.8. Then, for any integers s, t satisfying 1 ≤ s ≤ t ≤ p ∧ q, one has that f ?s

t g ∈
L2(µp+q−t−s), and moreover

1.
‖ f ?s

t g‖2L2(µp+q−t−s) = 〈 f ?
p−t
p−s f , g ?q−t

q−s g〉L2(µt+s),

(and, in particular,
‖ f ?s

t f ‖L2(µ2p−s−t ) = ‖ f ?p−t
p−s f ‖L2(µt+s) );

2.

‖ f ?s
t g‖2L2(µp+q−t−s) ≤ ‖ f ?p−t

p−s f ‖L2(µt+s)×‖g ?
q−t
q−s g‖L2(µt+s)

= ‖ f ?s
t f ‖L2(µ2p−s−t )×‖g ?s

t g‖L2(µ2q−s−t ).

Remark 2.10. 1. Writing k = p+ q− t − s, the requirement that 1 ≤ s ≤ t ≤ p ∧ q implies that
|q− p| ≤ k ≤ p+ q− 2.

2. One should also note that, for every 1≤ p ≤ q and every r = 1, ..., p,
∫

Z p+q−r

( f ?0
r g)2dµp+q−r =

∫

Z r

( f ?p−r
p f )(g ?q−r

q g)dµr , (5)

for every f ∈ L2
s (µ

p) and every g ∈ L2
s (µ

q), not necessarily verifying Assumption A. Observe
that the integral on the RHS of (5) is well-defined, since f ?p−r

p f ≥ 0 and g ?q−r
q g ≥ 0.

3. Fix p, q ≥ 1, and assume again that f ∈ L2
s (µ

p) and g ∈ L2
s (µ

q) satisfy Assumption A in
Definition 2.8. Then, a consequence of Lemma 2.9 is that, for every r = 0, ..., p ∧ q − 1 and
every l = 0, ..., r, the kernel f (z, ·) ?l

r g(z, ·) is an element of L2(µp+q−t−s−2) for µ(dz)-almost
every z ∈ Z .

To conclude the section, we present an important product formula for Poisson multiple integrals (see
e.g. [7, 24] for a proof).
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Proposition 2.11 (Product formula). Let f ∈ L2
s (µ

p) and g ∈ L2
s (µ

q), p, q ≥ 1, and suppose moreover
that f ?l

r g ∈ L2(µp+q−r−l) for every r = 1, . . . , p ∧ q and l = 1, . . . , r such that l 6= r. Then,

Ip( f )Iq(g) =
p∧q
∑

r=0

r!

�

p
r

��

q
r

� r
∑

l=0

�

r
l

�

Ip+q−r−l

�

âf ?l
r g
�

, (6)

with the tilde ∼ indicating a symmetrization, that is,

âf ?l
r g(x1, . . . , xp+q−r−l) =

1

(p+ q− r − l)!

∑

σ

f ?l
r g(xσ(1), . . . , xσ(p+q−r−l)),

where σ runs over all (p+ q− r − l)! permutations of the set {1, . . . , p+ q− r − l}.

2.4 Stein’s method: measuring the distance between random vectors

We write g ∈ Ck(Rd) if the function g : Rd → R admits continuous partial derivatives up to the
order k.

Definition 2.12. 1. The Hilbert-Schmidt inner product and the Hilbert - Schmidt norm on the
class of d × d real matrices, denoted respectively by 〈·, ·〉H.S. and ‖ · ‖H.S., are defined as follows:
for every pair of matrices A and B, 〈A, B〉H.S. := Tr(ABT ) and ‖A‖H.S. =

p

〈A, A〉H.S., where Tr(·)
indicates the usual trace operator.

2. The operator norm of a d × d real matrix A is given by ‖A‖op := sup‖x‖Rd=1 ‖Ax‖Rd .

3. For every function g : Rd 7→ R, let

‖g‖Lip := sup
x 6=y

|g(x)− g(y)|
‖x − y‖Rd

,

where ‖ · ‖Rd is the usual Euclidian norm on Rd . If g ∈ C1(Rd), we also write

M2(g) := sup
x 6=y

‖∇g(x)−∇g(y)‖Rd

‖x − y‖Rd
,

If g ∈ C2(Rd),

M3(g) := sup
x 6=y

‖Hess g(x)−Hess g(y)‖op

‖x − y‖Rd
,

where Hess g(z) stands for the Hessian matrix of g evaluated at a point z.

4. For a positive integer k and a function g ∈ Ck(Rd) , we set

‖g(k)‖∞ = max
1≤i1≤...≤ik≤d

sup
x∈Rd

�

�

�

�

�

∂ k

∂ x i1 . . .∂ x ik

g(x)

�

�

�

�

�

.
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In particular, by specializing this definition to g(2) = g ′′ and g(3) = g ′′′, we obtain

‖g ′′‖∞ = max
1≤i1≤i2≤d

sup
x∈Rd

�

�

�

�

�

∂ 2

∂ x i1∂ x i2

g(x)

�

�

�

�

�

.

‖g ′′′‖∞ = max
1≤i1≤i2≤i3≤d

sup
x∈Rd

�

�

�

�

�

∂ 3

∂ x i1∂ x i2∂ x i3

g(x)

�

�

�

�

�

.

Remark 2.13. 1. The norm ‖g‖Lip is written M1(g) in [5].

2. If g ∈ C1(Rd), then ‖g‖Lip = sup
x∈Rd
‖∇g(x)‖Rd . If g ∈ C2(Rd), then

M2(g) = sup
x∈Rd
‖Hess g(x)‖op.

Definition 2.14. The distance d2 between the laws of two Rd -valued random vectors X and Y such
that E‖X‖Rd , E‖Y ‖Rd <∞, written d2(X , Y ), is given by

d2(X , Y ) = sup
g∈H
|E[g(X )]−E[g(Y )]|,

whereH indicates the collection of all functions g ∈ C2(Rd) such that ‖g‖Lip ≤ 1 and M2(g)≤ 1.

Definition 2.15. The distance d3 between the laws of two Rd -valued random vectors X and Y such
that E‖X‖2Rd , E‖Y ‖2Rd <∞, written d3(X , Y ), is given by

d3(X , Y ) = sup
g∈H
|E[g(X )]−E[g(Y )]|,

whereH indicates the collection of all functions g ∈ C3(Rd) such that ‖g ′′‖∞ ≤ 1 and ‖g ′′′‖∞ ≤ 1.

Remark 2.16. The distances d2 and d3 are related, respectively, to the estimates of Section 3 and
Section 4. Let j = 2, 3. It is easily seen that, if d j(Fn, F) → 0, where Fn, F are random vectors in
Rd , then necessarily Fn converges in distribution to F . It will also become clear later on that, in the
definition of d2 and d3, the choice of the constant 1 as a bound for ‖g‖Lip, M2(g), ‖g ′′‖∞, ‖g ′′′‖∞
is arbitrary and immaterial for the derivation of our main results (indeed, we defined d2 and d3 in
order to obtain bounds as simple as possible). See the two tables in Section 4.2 for a list of available
bounds involving more general test functions.

The following result is a d-dimensional version of Stein’s Lemma; analogous statements can be
found in [5, 11, 23] – see also Barbour [1] and Götze [6], in connection with the so-called
“generator approach” to Stein’s method. As anticipated, Stein’s Lemma will be used to deduce an
explicit bound on the distance d2 between the law of a vector of functionals of N̂ and the law of
a Gaussian vector. To this end, we need the two estimates (7) (which is proved in [11]) and (8)
(which is new).

From now on, given a d× d nonnegative definite matrix C , we write Nd(0, C) to indicate the law of
a centered d-dimensional Gaussian vector with covariance C .
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Lemma 2.17 (Stein’s Lemma and estimates). Fix an integer d ≥ 2 and let C = {C(i, j) : i, j =
1, . . . , d} be a d × d nonnegative definite symmetric real matrix.

1. Let Y be a random variable with values in Rd . Then Y ∼ Nd(0, C) if and only if, for every twice
differentiable function f : Rd 7→ R such that E|〈C , Hess f (Y )〉H.S.|+ E|〈Y,∇ f (Y )〉Rd | < ∞, it
holds that

E[〈Y,∇ f (Y )〉Rd − 〈C , Hess f (Y )〉H.S.] = 0

2. Assume in addition that C is positive definite and consider a Gaussian random vector X ∼
Nd(0, C). Let g : Rd 7→ R belong to C2(Rd) with first and second bounded derivatives. Then, the
function U0(g) defined by

U0 g(x) :=

∫ 1

0

1

2t
E[g(

p
t x +

p

1− tX )− g(X )]d t

is a solution to the following partial differential equation (with unknown function f ):

g(x)−E[g(X )] = 〈x ,∇ f (x)〉Rd − 〈C ,Hess f (x)〉H.S., x ∈ Rd .

Moreover, one has that

sup
x∈Rd
‖Hess U0 g(x)‖H.S. ≤ ‖C−1‖op ‖C‖1/2op ‖g‖Lip, (7)

and

M3(U0 g)≤
p

2π

4
‖C−1‖3/2op ‖C‖op M2(g). (8)

Proof. We shall only show relation (8), as the proof of the remaining points in the statement can be
found in [11]. Since C is a positive definite matrix, there exists a non-singular symmetric matrix A
such that A2 = C , and A−1X ∼Nd(0, Id). Let U0 g(x) = h(A−1 x), where

h(x) =

∫ 1

0

1

2t
E[gA(

p
t x +

p

1− tA−1X )− gA(A
−1X )]d t

and gA(x) = g(Ax). As A−1X ∼Nd(0, Id), the function h solves the Stein’s equation

〈x ,∇h(x)〉Rd −∆h(x) = gA(x)−E[gA(Y )],

where Y ∼Nd(0, Id) and∆ is the Laplacian. On the one hand, as Hess gA(x) = AHess g(Ax)A (recall
that A is symmetric), we have

M2(gA) = sup
x∈Rd
‖Hess gA(x)‖op = sup

x∈Rd
‖AHess g(Ax)A‖op

= sup
x∈Rd
‖AHess g(x)A‖op ≤ ‖A‖2opM2(g)

= ‖C‖opM2(g),

where the inequality above follows from the well-known relation ‖AB‖op ≤ ‖A‖op‖B‖op. Now write
hA−1(x) = h(A−1 x): it is easily seen that

Hess U0 g(x) = Hess hA−1(x) = A−1Hess h(A−1 x)A−1.
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It follows that

M3(U0 g) = M3(hA−1)

= sup
x 6=y

‖Hess hA−1(x)−Hess hA−1(y)‖op

‖x − y‖

= sup
x 6=y

‖A−1Hess h(A−1 x)A−1− A−1Hess h(A−1 y)A−1‖op

‖x − y‖

≤ ‖A−1‖2op × sup
x 6=y

‖Hess h(A−1 x)−Hess h(A−1 y)‖op

‖x − y‖
×
‖A−1 x − A−1 y‖
‖A−1 x − A−1 y‖

≤ ‖A−1‖2op × sup
x 6=y

‖Hess h(A−1 x)−Hess h(A−1 y)‖op

‖A−1 x − A−1 y‖
× ‖A−1‖op

= ‖C−1‖3/2op M3(h).

Since M3(h)≤
p

2π
4

M2(gA) (according to [5, Lemma 3]), relation (8) follows immediately.

3 Upper bounds obtained by Malliavin-Stein methods

We will now deduce one of the main findings of the present paper, namely Theorem 3.3. This result
allows to estimate the distance between the law of a vector of Poisson functionals and the law of
a Gaussian vector, by combining the multi-dimensional Stein’s Lemma 2.17 with the algebra of the
Malliavin operators. Note that, in this section, all Gaussian vectors are supposed to have a positive
definite covariance matrix.

We start by proving a technical lemma, which is a crucial element in most of our proofs.

Lemma 3.1. Fix d ≥ 1 and consider a vector of random variables F := (F1, . . . , Fd) ⊂ L2(P). Assume
that, for all 1 ≤ i ≤ d, Fi ∈ dom D, and E[Fi] = 0. For all φ ∈ C2(Rd) with bounded derivatives, one
has that

Dzφ(F1, . . . , Fd) =
d
∑

i=1

∂

∂ x i
φ(F)(Dz Fi) +

d
∑

i, j=1

Ri j(Dz Fi , Dz F j), z ∈ Z ,

where the mappings Ri j satisfy

|Ri j(y1, y2)| ≤
1

2
sup
x∈Rd

�

�

∂ 2

∂ x i∂ x j
φ(x)

�

�× |y1 y2| ≤
1

2
‖φ′′‖∞|y1 y2|. (9)

Proof. By the multivariate Taylor theorem and Lemma 2.5,

Dzφ(F1, . . . , Fd) = φ(F1, . . . , Fd)(ω+δz)−φ(F1, . . . , Fd)(ω)

= φ(F1(ω+δz), . . . , Fd(ω+δz))−φ(F1(ω), . . . , Fd(ω))

=
d
∑

i=1

∂

∂ x i
φ(F1(ω), . . . , Fd(ω))(Fi(ω+δz)− Fi(ω)) + R

=
d
∑

i=1

∂

∂ x i
φ(Dz Fi) + R,
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where the term R represents the residue:

R= R(Dz F1, . . . , Dz Fd) =
d
∑

i, j=1

Ri j(Dz Fi , Dz F j),

and the mapping (y1, y2) 7→ Ri j(y1, y2) verifies (9).

Remark 3.2. Lemma 3.1 is the Poisson counterpart of the multi-dimensional “chain rule” verified by
the Malliavin derivative on a Gaussian space (see [9, 11]). Notice that the term R does not appear
in the Gaussian framework.

The following result uses the two Lemmas 2.17 and 3.1, in order to compute explicit bounds on the
distance between the laws of a vector of Poisson functionals and the law of a Gaussian vector.

Theorem 3.3 (Malliavin-Stein inequalities on the Poisson space). Fix d ≥ 2 and let C = {C(i, j) :
i, j = 1, . . . , d} be a d×d positive definite matrix. Suppose that X ∼Nd(0, C) and that F = (F1, . . . , Fd)
is a Rd -valued random vector such that E[Fi] = 0 and Fi ∈ dom D, i = 1, . . . , d. Then,

d2(F, X )≤ ‖C−1‖op‖C‖1/2op

√

√

√

√

d
∑

i, j=1

E[(C(i, j)− 〈DFi ,−DL−1F j〉L2(µ))2] (10)

+

p
2π

8
‖C−1‖3/2op ‖C‖op

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!






. (11)

Proof. If either one of the expectations in (10) and (11) are infinite, there is nothing to prove:
we shall therefore work under the assumption that both expressions (10)–(11) are finite. By the
definition of the distance d2, and by using an interpolation argument (identical to the one used at
the beginning of the proof of Theorem 4 in [5]), we need only show the following inequality:

|E[g(X )]−E[g(F)]|

≤ A‖C−1‖op‖C‖1/2op

√

√

√

√

d
∑

i, j=1

E[(C(i, j)− 〈DFi ,−DL−1F j〉L2(µ))2] (12)

+

p
2π

8
B‖C−1‖3/2op ‖C‖op

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







for any g ∈ C∞(Rd) with first and second bounded derivatives, such that ‖g‖Lip ≤ A and M2(g)≤ B.
To prove (12), we use Point (ii) in Lemma 2.17 to deduce that
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|E[g(X )]−E[g(F)]|
= |E[〈C ,Hess U0 g(F)〉H.S.− 〈F,∇U0 g(F)〉Rd ]|

=

�

�

�

�

�

�

E







d
∑

i, j=1

C(i, j)
∂ 2

∂ x i∂ x j
U0 g(F)−

d
∑

k=1

Fk
∂

∂ xk
U0 g(F)







�

�

�

�

�

�

=

�

�

�

�

�

�

d
∑

i, j=1

E
�

C(i, j)
∂ 2

∂ x i∂ x j
U0 g(F)

�

+
d
∑

k=1

E
�

δ(DL−1Fk)
∂

∂ xk
U0 g(F)

�

�

�

�

�

�

�

=

�

�

�

�

�

�

d
∑

i, j=1

E
�

C(i, j)
∂ 2

∂ x i∂ x j
U0 g(F)

�

−
d
∑

k=1

E





®

D

�

∂

∂ xk
U0 g(F)

�

,−DL−1Fk

¸

L2(µ)





�

�

�

�

�

�

.

We write
∂

∂ xk
U0 g(F) := φk(F1, . . . , Fd) = φk(F). By using Lemma 3.1, we infer

Dzφk(F1, . . . , Fd) =
d
∑

i=1

∂

∂ x i
φk(F)(Dz Fi) + Rk,

with Rk =
d
∑

i, j=1
Ri, j,k(Dz Fi , Dz F j), and

|Ri, j,k(y1, y2)| ≤
1

2
sup
x∈Rd

�

�

�

�

�

∂ 2

∂ x i∂ x j
φk(x)

�

�

�

�

�

× |y1 y2|.

It follows that

|E[g(X )]−E[g(F)]|

=

�

�

�

�

�

�

d
∑

i, j=1

E
�

C(i, j)
∂ 2

∂ x i∂ x j
U0 g(F)

�

−
d
∑

i,k=1

E
�

∂ 2

∂ x i∂ xk
(U0 g(F))〈DFi ,−DL−1Fk〉L2(µ)

�

+
d
∑

i, j,k=1

E
�

〈Ri, j,k(DFi , DF j),−DL−1Fk〉L2(µ)

�

�

�

�

�

�

�

≤
Æ

E[‖Hess U0 g(F)‖2H.S.]×

√

√

√

√

d
∑

i, j=1

E
h

�

C(i, j)− 〈DFi ,−DL−1F j〉L2(µ)

�2
i

+ |R2|,

where

R2 =
d
∑

i, j,k=1

E[〈Ri, j,k(DFi , DF j),−DL−1Fk〉L2(µ)].

1498



Note that (7) implies that ‖Hess U0 g(F)‖H.S. ≤ ‖C−1‖op ‖C‖1/2op ‖g‖Lip. By using (8) and the fact
‖g ′′′‖∞ ≤ M3(g), we have

|Ri, j,k(y1, y2)| ≤
1

2
sup
x∈Rd

�

�

�

�

�

∂ 3

∂ x i∂ x j∂ xk
U0(g(y))

�

�

�

�

�

× |y1 y2|

≤

p
2π

8
M2(g)‖C−1‖3/2op ‖C‖op × |y1 y2| ≤

p
2π

8
B‖C−1‖3/2op ‖C‖op × |y1 y2|,

from which we deduce the desired conclusion.

Now recall that, for a random variable F = N̂(h) = I1(h) in the first Wiener chaos of N̂ , one has
that DF = h and L−1F = −F . By virtue of Remark 2.16, we immediately deduce the following
consequence of Theorem 3.3.

Corollary 3.4. For a fixed d ≥ 2, let X ∼Nd(0, C), with C positive definite, and let

Fn = (Fn,1, ..., Fn,d) = (N̂(hn,1), ..., N̂(hn,d)), n≥ 1,

be a collection of d-dimensional random vectors living in the first Wiener chaos of N̂ . Call Kn the
covariance matrix of Fn, that is: Kn(i, j) = E[N̂(hn,i)N̂(hn, j)] = 〈hn,i , hn, j〉L2(µ). Then,

d2(Fn, X )≤ ‖C−1‖op‖C‖1/2op ‖C − Kn‖H.S.+
d2p2π

8
‖C−1‖3/2op ‖C‖op

d
∑

i=1

∫

Z

|hn,i(z)|3µ(dz).

In particular, if

Kn(i, j)→ C(i, j) and

∫

Z

|hn,i(z)|3µ(dz)→ 0 (13)

(as n→∞ and for every i, j = 1, ..., d), then d2(Fn, X )→ 0 and Fn converges in distribution to X .

Remark 3.5. 1. The conclusion of Corollary 3.4 is by no means trivial. Indeed, apart from the
requirement on the asymptotic behavior of covariances, the statement of Corollary 3.4 does
not contain any assumption on the joint distribution of the components of the random vectors
Fn. We will see in Section 5 that analogous results can be deduced for vectors of multiple in-
tegrals of arbitrary orders. We will also see in Corollary 4.3 that one can relax the assumption
that C is positive definite.

2. The inequality appearing in the statement of Corollary 3.4 should also be compared with the
following result, proved in [11], yielding a bound on the Wasserstein distance between the
laws of two Gaussian vectors of dimension d ≥ 2. Let Y ∼Nd(0, K) and X ∼Nd(0, C), where
K and C are two positive definite covariance matrices. Then, dW (Y, X )≤Q(C , K)×‖C−K‖H.S.,
where

Q(C , K) :=min{‖C−1‖op ‖C‖1/2op ,‖K−1‖op ‖K‖1/2op },

and dW denotes the Wasserstein distance between the laws of random variables with values
in Rd .
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4 Upper bounds obtained by interpolation methods

4.1 Main estimates

In this section, we deduce an alternate upper bound (similar to the ones proved in the previous
section) by adopting an approach based on interpolations. We first prove a result involving Malliavin
operators.

Lemma 4.1. Fix d ≥ 1. Consider d + 1 random variables Fi ∈ L2(P), 0≤ i ≤ d, such that Fi ∈ dom D
and E[Fi] = 0. For all g ∈ C2(Rd) with bounded derivatives,

E[g(F1, . . . , Fd)F0]=E





d
∑

i=1

∂

∂ x i
g(F1, . . . , Fd)〈DFi ,−DL−1F0〉L2(µ)



+E
�

〈R,−DL−1F0〉L2(µ)

�

,

where

|E[〈R,−DL−1F0〉L2(µ)]| (14)

≤
1

2
max

i, j
sup
x∈Rd

�

�

�

�

�

∂ 2

∂ x i∂ x j
g(x)

�

�

�

�

�

×
∫

Z

µ(dz)E







 

d
∑

k=1

|Dz Fk|

!2

|Dz L−1F0|






.

Proof. By applying Lemma 3.1,

E[g(F1, . . . , Fd)F0]

= E[(LL−1F0)g(F1, . . . , Fd)]

= −E[δ(DL−1F0)g(F1, . . . , Fd)]

= E[〈Dg(F1, . . . , Fd),−DL−1F0〉L2(µ)]

= E





d
∑

i=1

∂

∂ x i
g(F1, . . . , Fd)〈DFi ,−DL−1F0〉L2(µ)



+E[〈R,−DL−1F0〉L2(µ)],

and E[〈R,−DL−1F0〉L2(µ)] verifies the inequality (14).

As anticipated, we will now use an interpolation technique inspired by the so-called “smart path
method”, which is sometimes used in the framework of approximation results for spin glasses (see
[26]). Note that the computations developed below are very close to the ones used in the proof of
Theorem 7.2 in [10].

Theorem 4.2. Fix d ≥ 1 and let C = {C(i, j) : i, j = 1, . . . , d} be a d × d covariance matrix (not
necessarily positive definite). Suppose that X = (X1, ..., Xd) ∼ Nd(0, C) and that F = (F1, . . . , Fd) is a
Rd -valued random vector such that E[Fi] = 0 and Fi ∈ dom D, i = 1, . . . , d. Then,

d3(F, X ) ≤
d

2

√

√

√

√

d
∑

i, j=1

E[(C(i, j)− 〈DFi ,−DL−1F j〉L2(µ))2] (15)

+
1

4

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!






. (16)
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Proof. We will work under the assumption that both expectations in (15) and (16) are finite. By the
definition of distance d3, we need only to show the following inequality:

|E[φ(X )]−E[φ(F)]| ≤
1

2
‖φ′′‖∞

d
∑

i, j=1

E[|C(i, j)− 〈DFi ,−DL−1F j〉L2(µ)|]

+
1

4
‖φ′′′‖∞

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







for any φ ∈ C3(Rd) with second and third bounded derivatives. Without loss of generality, we may
assume that F and X are independent. For t ∈ [0,1], we set

Ψ(t) = E[φ(
p

1− t(F1, . . . , Fd) +
p

tX )]

We have immediately
|Ψ(1)−Ψ(0)| ≤ sup

t∈(0,1)
|Ψ′(t)|.

Indeed, due to the assumptions on φ, the function t 7→ Ψ(t) is differentiable on (0,1), and one has
also

Ψ′(t) =
d
∑

i=1

E
�

∂

∂ x i
φ
�p

1− t(F1, . . . , Fd) +
p

tX
�

�

1

2
p

t
X i −

1

2
p

1− t
Fi

��

:=
1

2
p

t
A−

1

2
p

1− t
B.

On the one hand, we have

A =
d
∑

i=1

E
�

∂

∂ x i
φ(
p

1− t(F1, . . . , Fd) +
p

tX )X i

�

=
d
∑

i=1

E



E
�

∂

∂ x i
φ(
p

1− ta+
p

tX )X i

�

|a=(F1,...,Fd )





=
p

t
d
∑

i, j=1

C(i, j)E



E
�

∂ 2

∂ x i∂ x j
φ(
p

1− ta+
p

tX )

�

|a=(F1,...,Fd )





=
p

t
d
∑

i, j=1

C(i, j)E
�

∂ 2

∂ x i∂ x j
φ(
p

1− t(F1, . . . , Fd) +
p

tX )

�

.

On the other hand,

B =
d
∑

i=1

E
�

∂

∂ x i
φ(
p

1− t(F1, . . . , Fd) +
p

tX )Fi

�

=
d
∑

i=1

E



E
�

∂

∂ x i
φ(
p

1− t(F1, . . . , Fd) +
p

t b)Fi

�

|b=X



 .

1501



We now write φ t,b
i (·) to indicate the function on Rd defined by

φ t,b
i (F1, . . . , Fd) =

∂

∂ x i
φ(
p

1− t(F1, . . . , Fd) +
p

t b)

By using Lemma 4.1, we deduce that

E[φ t,b
i (F1, . . . , Fd)Fi]

= E







d
∑

j=1

∂

∂ x j
φ t,b

i (F1, . . . , Fd)〈DF j ,−DL−1Fi〉L2(µ)






+E

�

〈Ri
b,−DL−1Fi〉L2(µ)

�

,

where Ri
b is a residue verifying

|E[〈Ri
b,−DL−1Fi〉L2(µ)]| (17)

≤
1

2

�

max
k,l

sup
x∈Rd

�

�

�

�

∂

∂ xk∂ x l
φ t,b

i (x)

�

�

�

�

�
∫

Z

µ(dz)E















d
∑

j=1

|Dz F j|







2

|Dz L−1Fi|









.

Thus,

B =
p

1− t
d
∑

i, j=1

E



E
�

∂ 2

∂ x i∂ x j
φ(
p

1− t(F1, . . . , Fd) +
p

t b)〈DFi ,−DL−1F j〉L2(µ)

�

|b=X





+
d
∑

i=1

E
h

E
�

〈Ri
b,−DL−1Fi〉L2(µ)

�

|b=X

i

=
p

1− t
d
∑

i, j=1

E
�

∂ 2

∂ x i∂ x j
φ(
p

1− t(F1, . . . , Fd) +
p

tX )〈DFi ,−DL−1F j〉L2(µ)

�

+
d
∑

i=1

E
h

E
�

〈Ri
b,−DL−1Fi〉L2(µ)

�

|b=X

i

.

Putting the estimates on A and B together, we infer

Ψ′(t) =
1

2

d
∑

i, j=1

E
�

∂ 2

∂ x i∂ x j
φ(
p

1− t(F1, . . . , Fd) +
p

tX )(C(i, j)− 〈DFi ,−DL−1F j〉L2(µ))

�

−
1

2
p

1− t

d
∑

i=1

E
h

E
�

〈Ri
b,−DL−1Fi〉L2(µ)

�

|b=X

i

.

We notice that
�

�

�

�

�

∂ 2

∂ x i∂ x j
φ(
p

1− t(F1, . . . , Fd) +
p

t b)

�

�

�

�

�

≤ ‖φ′′‖∞,
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and also
�

�

�

�

�

∂ 2

∂ xk∂ x l
φ t,b

i (F1, . . . , Fd)

�

�

�

�

�

= (1− t)×

�

�

�

�

�

∂ 3

∂ x i∂ xk∂ x l
φ(
p

1− t(F1, . . . , Fd) +
p

t b)

�

�

�

�

�

≤ (1− t)‖φ′′′‖∞.

To conclude, we can apply inequality (17) as well as Cauchy-Schwartz inequality and deduce the
estimates

|E[φ(X )]−E[φ(F)]|
≤ sup

t∈(0,1)
|Ψ′(t)|

≤
1

2
‖φ′′‖∞

d
∑

i, j=1

E[|C(i, j)− 〈DFi ,−DL−1F j〉L2(µ)|]

+
1− t

4
p

1− t
‖φ′′′‖∞

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







≤
d

2
‖φ′′‖∞

√

√

√

√

d
∑

i, j=1

E[(C(i, j)− 〈DFi ,−DL−1F j〉L2(µ))2]

+
1

4
‖φ′′′‖∞

∫

z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!






,

thus concluding the proof.

The following statement is a direct consequence of Theorem 4.2, as well as a natural generalization
of Corollary 3.4.

Corollary 4.3. For a fixed d ≥ 2, let X ∼Nd(0, C), with C a generic covariance matrix. Let

Fn = (Fn,1, ..., Fn,d) = (N̂(hn,1), ..., N̂(hn,d)), n≥ 1,

be a collection of d-dimensional random vectors in the first Wiener chaos of N̂ , and denote by Kn the
covariance matrix of Fn. Then,

d3(Fn, X )≤
d

2
‖C − Kn‖H.S.+

d2

4

d
∑

i=1

∫

Z

|hn,i(z)|3µ(dz).

In particular, if relation (13) is verified for every i, j = 1, ..., d (as n→∞), then d3(Fn, X )→ 0 and Fn
converges in distribution to X .
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Table 1: Estimates proved by means of Malliavin-Stein techniques
Regularity of Upper bound

the test function h

‖h‖Lip is finite |E[h(G)]−E[h(X )]| ≤
‖h‖Lip

p

E[(1− 〈DG,−DL−1G〉H)2]

‖h‖Lip is finite |E[h(G1, . . . , Gd)]−E[h(XC)]| ≤

‖h‖Lip‖C−1‖op‖C‖1/2op

q

∑d
i, j=1E[(C(i, j)− 〈DGi ,−DL−1G j〉H)2]

‖h‖Lip is finite |E[h(F)]−E[h(X )]| ≤
‖h‖Lip(

p

E[(1− 〈DF,−DL−1F〉L2(µ))2]
+
∫

Z
µ(dz)E[|Dz F |2|Dz L−1F |])

h ∈ C2(Rd) |E[h(F1, . . . , Fd)]−E[h(XC)]| ≤

‖h‖Lip is finite ‖h‖Lip‖C−1‖op‖C‖1/2op

q

∑d
i, j=1E[(C(i, j)− 〈DFi ,−DL−1F j〉L2(µ))2]

M2(h) is finite +M2(h)

p
2π

8
‖C−1‖3/2op ‖C‖op

∫

Z
µ(dz)E





�

d
∑

i=1
|Dz Fi|

�2� d
∑

i=1
|Dz L−1Fi|

�





4.2 Stein’s method versus smart paths: two tables

In the two tables below, we compare the estimations obtained by the Malliavin-Stein method with
those deduced by interpolation techniques, both in a Gaussian and Poisson setting. Note that
the test functions considered below have (partial) derivatives that are not necessarily bounded
by 1 (as it is indeed the case in the definition of the distances d2 and d3) so that the L∞ norms
of various derivatives appear in the estimates. In both tables, d ≥ 2 is a given positive integer.
We write (G, G1, . . . , Gd) to indicate a vector of centered Malliavin differentiable functionals of
an isonormal Gaussian process over some separable real Hilbert space H (see [12] for defini-
tions). We write (F, F1, ..., Fd) to indicate a vector of centered functionals of N̂ , each belonging
to domD. The symbols D and L−1 stand for the Malliavin derivative and the inverse of the
Ornstein-Uhlenbeck generator: plainly, both are to be regarded as defined either on a Gaussian
space or on a Poisson space, according to the framework. We also consider the following Gaussian
random elements: X ∼ N (0, 1), XC ∼ Nd(0, C) and XM ∼ Nd(0, M), where C is a d × d posi-
tive definite covariance matrix and M is a d×d covariance matrix (not necessarily positive definite).

In Table 1, we present all estimates on distances involving Malliavin differentiable random variables
(in both cases of an underlying Gaussian and Poisson space), that have been obtained by means of
Malliavin-Stein techniques. These results are taken from: [9] (Line 1), [11] (Line 2), [17] (Line 3)
and Theorem 3.3 and its proof (Line 4).

In Table 2, we list the parallel results obtained by interpolation methods. The bounds involving
functionals of a Gaussian process come from [10], whereas those for Poisson functionals are taken
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Table 2: Estimates proved by means of interpolations
Regularity of Upper bound

the test function φ

φ ∈ C2(R) |E[φ(G)]−E[φ(X )]| ≤
‖φ′′‖∞ is finite 1

2
‖φ′′‖∞

p

E[(1− 〈DG,−DL−1G〉H)2]

φ ∈ C2(Rd) |E[φ(G1, . . . , Gd)]−E[φ(XM )]| ≤

‖φ′′‖∞ is finite d
2
‖φ′′‖∞

q

∑d
i, j=1E[(M(i, j)− 〈DGi ,−DL−1G j〉H)2]

φ ∈ C3(R) |E[φ(F)]−E[φ(X )]| ≤
‖φ′′‖∞ is finite 1

2
‖φ′′‖∞

p

E[(1− 〈DF,−DL−1F〉L2(µ))2]
‖φ′′′‖∞ is finite +1

4
‖φ′′′‖∞

∫

Z
µ(dz)E[|Dz F |2(|Dz L−1F |)]

φ ∈ C3(Rd) |E[φ(F1, . . . , Fd)]−E[φ(XM )]| ≤

‖φ′′‖∞ is finite d
2
‖φ′′‖∞

q

∑d
i, j=1E[(M(i, j)− 〈DFi ,−DL−1F j〉L2(µ))2]

‖φ′′′‖∞ is finite +1
4
‖φ′′′‖∞

∫

Z
µ(dz)E





�

d
∑

i=1
|Dz Fi|

�2� d
∑

i=1
|Dz L−1Fi|

�





from Theorem 4.2 and its proof.

Observe that:

• in contrast to the Malliavin-Stein method, the covariance matrix M is not required to be
positive definite when using the interpolation technique,

• in general, the interpolation technique requires more regularity on test functions than the
Malliavin-Stein method.

5 CLTs for Poisson multiple integrals

In this section, we study the Gaussian approximation of vectors of Poisson multiple stochastic inte-
grals by an application of Theorem 3.3 and Theorem 4.2. To this end, we shall explicitly evaluate
the quantities appearing in formulae (10)–(11) and (15)–(16).

Remark 5.1 (Regularity conventions). From now on, every kernel f ∈ L2
s (µ

p) is supposed to verify
both Assumptions A and B of Definition 2.8. As before, given f ∈ L2

s (µ
p), and for a fixed z ∈ Z ,

we write f (z, ·) to indicate the function defined on Z p−1 as (z1, . . . , zp−1) 7→ f (z, z1, . . . , zp−1). The
following convention will be also in order: given a vector of kernels ( f1, ..., fd) such that fi ∈ L2

s (µ
pi ),

i = 1, ..., d, we will implicitly set
fi(z, ·)≡ 0, i = 1, ..., d,
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for every z ∈ Z belonging to the exceptional set (of µ measure 0) such that

fi(z, ·) ?l
r f j(z, ·) ∈/ L2(µpi+p j−r−l−2)

for at least one pair (i, j) and some r = 0, ..., pi ∧ p j −1 and l = 0, ..., r. See Point 3 of Remark 2.10.

5.1 The operators Gp,q
k and ÔGp,q

k

Fix integers p, q ≥ 0 and |q− p| ≤ k ≤ p+ q, consider two kernels f ∈ L2
s (µ

p) and g ∈ L2
s (µ

q), and
recall the multiplication formula (6). We will now introduce an operator Gp,q

k , transforming the func-
tion f , of p variables, and the function g, of q variables, into a “hybrid” function Gp,q

k ( f , g), of k vari-
ables. More precisely, for p, q, k as above, we define the function (z1, . . . , zk) 7→ Gp,q

k ( f , g)(z1, . . . , zk),
from Zk into R, as follows:

Gp,q
k ( f , g)(z1, . . . , zk) =

p∧q
∑

r=0

r
∑

l=0

1(p+q−r−l=k)r!

�

p
r

��

q
r

��

r
l

�

âf ?l
r g, (18)

where the tilde ∼ means symmetrization, and the star contractions are defined in formula (4) and
the subsequent discussion. Observe the following three special cases: (i) when p = q = k = 0,
then f and g are both real constants, and G0,0

0 ( f , g) = f × g, (ii) when p = q ≥ 1 and k = 0,
then Gp,p

0 ( f , g) = p!〈 f , g〉L2(µp), (iii) when p = k = 0 and q > 0 (then, f is a constant),

G0,p
0 ( f , g)(z1, ..., zq) = f × g(z1, ..., zq). By using this notation, (6) becomes

Ip( f )Iq(g) =
p+q
∑

k=|q−p|

Ik(G
p,q
k ( f , g)). (19)

The advantage of representation (19) (as opposed to (6)) is that the RHS of (19) is an orthogonal
sum, a feature that will greatly simplify our forthcoming computations.

For two functions f ∈ L2
s (µ

p) and g ∈ L2
s (µ

q), we define the function (z1, . . . , zk) 7→
ÔGp,q

k ( f , g)(z1, . . . , zk), from Zk into R, as follows:

ÔGp,q
k ( f , g)(·) =

∫

Z

µ(dz)Gp−1,q−1
k ( f (z, ·), g(z, ·)),

or, more precisely,

ÔGp,q
k ( f , g)(z1, . . . , zk)

=

∫

Z

µ(dz)
p∧q−1
∑

r=0

r
∑

l=0

1(p+q−r−l−2=k)r!

×
�

p− 1
r

��

q− 1
r

��

r
l

�

åf (z, ·) ?l
r g(z, ·)(z1, . . . , zk)

=
p∧q
∑

t=1

t
∑

s=1

1(p+q−t−s=k)(t − 1)!

�

p− 1
t − 1

��

q− 1
t − 1

��

t − 1
s− 1

�

áf ?s
t g(z1, . . . , zk). (20)
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Note that the implicit use of a Fubini theorem in the equality (20) is justified by Assumption B – see
again Point 3 of Remark 2.10.

The following technical lemma will be applied in the next subsection.

Lemma 5.2. Consider three positive integers p, q, k such that p, q ≥ 1 and |q− p| ∨ 1≤ k ≤ p+ q− 2
(note that this excludes the case p = q = 1). For any two kernels f ∈ L2

s (µ
p) and g ∈ L2

s (µ
q), both

verifying Assumptions A and B, we have
∫

Zk

dµk(ÔGp,q
k ( f , g)(z1, . . . , zk))

2 ≤ C
p∧q
∑

t=1

11≤s(t,k)≤t‖
åf ?s(t,k)

t g‖2
L2(µk)

(21)

where s(t, k) = p+ q− k− t for t = 1, . . . , p ∧ q. Also, C is the constant given by

C =
p∧q
∑

t=1

�

(t − 1)!

�

p− 1
t − 1

��

q− 1
t − 1

��

t − 1
s(t, k)− 1

��2

.

Proof. We rewrite the sum in (20) as

ÔGp,q
k ( f , g)(z1, . . . , zk) =

p∧q
∑

t=1

at11≤s(t,k)≤t
åf ?s(t,k)

t g(z1, . . . , zk), (22)

with at = (t − 1)!

�

p− 1
t − 1

��

q− 1
t − 1

��

t − 1
s(t, k)− 1

�

, 1≤ t ≤ p ∧ q. Thus,

∫

Zk

dµk(ÔGp,q
k ( f , g)(z1, . . . , zk))

2

=

∫

Zk

dµk

 

p∧q
∑

t=1

at11≤s(t,k)≤t
åf ?s(t,k)

t g(z1, . . . , zk)

!2

≤

 

p∧q
∑

t=1

a2
t

!

∫

Zk

dµk

 

p∧q
∑

t=1

(11≤s(t,k)≤t
åf ?s(t,k)

t g(z1, . . . , zk))
2

!

= C
p∧q
∑

t=1

∫

Zk

dµk11≤s(t,k)≤t(
åf ?s(t,k)

t g(z1, . . . , zk))
2

= C
p∧q
∑

t=1

11≤s(t,k)≤t‖
åf ?s(t,k)

t g‖2
L2(µk)

,

with

C =
p∧q
∑

t=1

a2
t =

p∧q
∑

t=1

�

(t − 1)!

�

p− 1
t − 1

��

q− 1
t − 1

��

t − 1
s(t, k)− 1

��2

Note that the Cauchy-Schwarz inequality
 

n
∑

i=1

ai x i

!2

≤

 

n
∑

i=1

a2
i

! 

n
∑

i=1

x2
i

!

has been used in the above deduction.
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5.2 Some technical estimates

As anticipated, in order to prove the multivariate CLTs of the forthcoming Section 5.3, we need to
establish explicit bounds on the quantities appearing in (10)–(11) and (15)–(16), in the special
case of chaotic random variables.

Definition 5.3. The kernels f ∈ L2
s (µ

p), g ∈ L2
s (µ

q) are said to satisfy Assumption C if either p =
q = 1, or max(p, q)> 1 and, for every k = |q− p| ∨ 1, . . . , p+ q− 2,

∫

Z





È

∫

Zk

(Gp−1,q−1
k ( f (z, ·), g(z, ·)))2dµk



µ(dz)<∞. (23)

Remark 5.4. By using (18), one sees that (23) is implied by the following stronger condition: for
every k = |q− p| ∨ 1, . . . , p+ q− 2, and every (r, l) satisfying p+ q− 2− r − l = k, one has

∫

Z





È

∫

Zk

( f (z, ·) ?l
r g(z, ·))2dµk



µ(dz)<∞. (24)

One can easily write down sufficient conditions, on f and g, ensuring that (24) is satisfied. For
instance, in the examples of Section 6, we will use repeatedly the following fact: if both f and g
verify Assumption A, and if their supports are contained in some rectangle of the type B × . . .× B,
with µ(B)<∞, then (24) is automatically satisfied.

Proposition 5.5. Denote by L−1 the pseudo-inverse of the Ornstein-Uhlenbeck generator (see the Ap-
pendix in Section 7), and, for p, q ≥ 1, let F = Ip( f ) and G = Iq(g) be such that the kernels f ∈ L2

s (µ
p)

and g ∈ L2
s (µ

q) verify Assumptions A, B and C. If p 6= q, then

E[(a− 〈DF,−DL−1G〉L2(µ))
2]

≤ a2+ p2
p+q−2
∑

k=|q−p|

k!

∫

Zk

dµk(ÔGp,q
k ( f , g))2

≤ a2+ C p2
p+q−2
∑

k=|q−p|

k!
p∧q
∑

t=1

11≤s(t,k)≤t‖
åf ?s(t,k)

t g‖2
L2(µk)

≤ a2+
1

2
C p2

p+q−2
∑

k=|q−p|

k!
p∧q
∑

t=1

11≤s(t,k)≤t(‖ f ?p−t
p−s(t,k) f ‖L2(µt+s(t,k))×‖g ?

q−t
q−s(t,k) g‖L2(µt+s(t,k)))
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If p = q ≥ 2, then

E[(a− 〈DF,−DL−1G〉L2(µ))
2]

≤ (p!〈 f , g〉L2(µp)− a)2+ p2
2p−2
∑

k=1

k!

∫

Zk

dµk(ÔGp,q
k ( f , g))2

≤ (p!〈 f , g〉L2(µp)− a)2+ C p2
2p−2
∑

k=1

k!
p∧q
∑

t=1

11≤s(t,k)≤t‖
åf ?s(t,k)

t g‖2
L2(µk)

≤ (p!〈 f , g〉L2(µp)− a)2

+
1

2
C p2

2p−2
∑

k=1

k!
p∧q
∑

t=1

11≤s(t,k)≤t(‖ f ?p−t
p−s(t,k) f ‖L2(µt+s(t,k))×‖g ?

q−t
q−s(t,k) g‖L2(µt+s(t,k)))

where s(t, k) = p+ q− k− t for t = 1, . . . , p ∧ q, and the constant C is given by

C =
p∧q
∑

t=1

�

(t − 1)!

�

p− 1
t − 1

��

q− 1
t − 1

��

t − 1
s(t, k)− 1

��2

.

If p = q = 1, then
(a− 〈DF,−DL−1G〉L2(µ))

2 = (a− 〈 f , g〉L2(µ))
2.

Proof. The case p = q = 1 is trivial, so that we can assume that either p or q is strictly greater than
1. We select two versions of the derivatives Dz F = pIp−1( f (z, ·)) and DzG = qIq−1(g(z, ·)), in such
a way that the conventions pointed out in Remark 5.1 are satisfied. By using the definition of L−1

and (19), we have

〈DF,−DL−1G〉L2(µ) = 〈DIp( f ), q−1DIq(g)〉L2(µ)

= p

∫

Z

µ(dz)Ip−1( f (z, ·))Iq−1(g(z, ·))

= p

∫

Z

µ(dz)
p+q−2
∑

k=|q−p|

Ik(G
p−1,q−1
k ( f (z, ·), g(z, ·)))

Notice that for i 6= j, the two random variables
∫

Z

µ(dz)Ii(G
p−1,q−1
i ( f (z, ·), g(z, ·)) and

∫

Z

µ(dz)I j(G
p−1,q−1
j ( f (z, ·), g(z, ·)))

are orthogonal in L2(P). It follows that

E[(a− 〈DF,−DL−1G〉L2(µ))
2] (25)

= a2+ p2
p+q−2
∑

k=|q−p|

E





�
∫

Z

µ(dz)Ik(G
p−1,q−1
k ( f (z, ·), g(z, ·)))

�2




1509



for p 6= q, and, for p = q,

E[(a− 〈DF,−DL−1G〉L2(µ))
2] (26)

= (p!〈 f , g〉L2(µp)− a)2+ p2
2p−2
∑

k=1

E





�
∫

Z

µ(dz)Ik(G
p−1,q−1
k ( f (z, ·), g(z, ·)))

�2


 .

We shall now assess the expectations appearing on the RHS of (25) and (26). To do this, fix an
integer k and use the Cauchy-Schwartz inequality together with (23) to deduce that

∫

Z

µ(dz)

∫

Z

µ(dz′)E
��

�

�Ik(G
p−1,q−1
k ( f (z, ·), g(z, ·)))Ik(G

p−1,q−1
k ( f (z′, ·), g(z′, ·)))

�

�

�

�

≤
∫

Z

µ(dz)

∫

Z

µ(dz′)
q

E[I2
k (G

p−1,q−1
k ( f (z, ·), g(z, ·)))]

q

E[I2
k (G

p−1,q−1
k ( f (z′, ·), g(z′, ·)))]

= k!





∫

Z

µ(dz)

È

∫

Zk

dµk(Gp−1,q−1
k ( f (z, ·), g(z, ·)))2





×





∫

Z

µ(dz′)

È

∫

Zk

dµk(Gp−1,q−1
k ( f (z′, ·), g(z′, ·)))2





= k!





∫

Z

µ(dz)

È

∫

Zk

dµk(Gp−1,q−1
k ( f (z, ·), g(z, ·)))2





2

<∞. (27)

Relation (27) justifies the use of a Fubini theorem, and we can consequently infer that

E





�
∫

Z

µ(dz)Ik(G
p−1,q−1
k ( f (z, ·), g(z, ·)))

�2




=

∫

Z

µ(dz)

∫

Z

µ(dz′)E[Ik(G
p−1,q−1
k ( f (z, ·), g(z, ·)))Ik(G

p−1,q−1
k ( f (z′, ·), g(z′, ·)))]

= k!

∫

Z

µ(dz)

∫

Z

µ(dz′)

�
∫

Zk

dµkGp−1,q−1
k ( f (z, ·), g(z, ·))Gp−1,q−1

k ( f (z′, ·), g(z′, ·))
�

= k!

∫

Zk

dµk

�
∫

Z

µ(dz)Gp−1,q−1
k ( f (z, ·), g(z, ·))

�2

= k!

∫

Zk

dµk(ÔGp,q
k ( f , g))2.

The remaining estimates in the statement follow (in order) from Lemma 5.2 and Lemma 2.9, as well
as from the fact that ‖ef ‖L2(µn) ≤ ‖ f ‖L2(µn), for all n≥ 2.

The next statement will be used in the subsequent section.

Proposition 5.6. Let F = (F1, . . . , Fd) := (Iq1
( f1), . . . , Iqd

( fd)) be a vector of Poisson functionals, such
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that the kernels f j verify Assumptions A and B. Then, writing q∗ :=min{q1, ..., qd},

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







≤
d2

q∗

d
∑

i=1

�

q3
i

q

(qi − 1)!‖ f ‖2
L2(µqi )

×
qi
∑

b=1

b−1
∑

a=0

11≤a+b≤2qi−1(a+ b− 1)!1/2(qi − a− 1)!

×
�

qi − 1
qi − 1− a

�2�
qi − 1− a

qi − b

�

‖ f ?a
b f ‖L2(µ2qi−a−b)

�

.

Remark 5.7. When q = 1, one has that

q3
q

(q− 1)!‖ f ‖2
L2(µq)

×
q
∑

b=1

b−1
∑

a=0

11≤a+b≤2q−1(a+ b− 1)!1/2(q− a− 1)!

×
�

q− 1
q− 1− a

�2�
q− 1− a

q− b

�

‖ f ?a
b f ‖L2(µ2q−a−b)

= ‖ f ‖L2(µ)×‖ f ‖2L4(µ).

Proof of Proposition 5.6. One has that

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







=

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

1

qi
|Dz Fi|

!







≤
1

q∗

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!3






≤
d2

q∗

d
∑

i=1

∫

Z

µ(dz)E[|Dz Fi|3].

To conclude, use the inequality
∫

Z

µ(dz)E[|Dz Iq( f )|3]

≤ q3
q

(q− 1)!‖ f ‖2
L2(µq)

×
q
∑

b=1

b−1
∑

a=0

11≤a+b≤2q−1(a+ b− 1)!1/2(q− a− 1)!

×
�

q− 1
q− 1− a

�2�
q− 1− a

q− b

�

‖ f ?a
b f ‖L2(µ2q−a−b)

which is proved in [17, Theorem 4.2] for the case q ≥ 2 (see in particular formulae (4.13) and
(4.18) therein), and follows from the Cauchy-Schwarz inequality when q = 1.
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5.3 Central limit theorems with contraction conditions

We will now deduce the announced CLTs for sequences of vectors of the type

F (n) = (F (n)1 , . . . , F (n)d ) := (Iq1
( f (n)1 ), . . . , Iqd

( f (n)d )), n≥ 1. (28)

As already discussed, our results should be compared with other central limit results for multiple
stochastic integrals in a Gaussian or Poisson setting – see e.g. [9, 11, 13, 14, 18, 20]. The following
statement, which is a genuine multi-dimensional generalization of Theorem 5.1 in [17], is indeed
one of the main achievements of the present article.

Theorem 5.8 (CLT for chaotic vectors). Fix d ≥ 2, let X ∼N (0, C), with

C = {C(i, j) : i, j = 1, . . . , d}

a d × d nonnegative definite matrix, and fix integers q1, . . . , qd ≥ 1. For any n≥ 1 and i = 1, . . . , d, let
f (n)i belong to L2

s (µ
qi ). Define the sequence {F (n) : n≥ 1}, according to (28) and suppose that

lim
n→∞
E[F (n)i F (n)j ] = 1(q j=qi)q j!× lim

n→∞
〈 f (n)i , f (n)j 〉L2(µqi ) = C(i, j), 1≤ i, j ≤ d. (29)

Assume moreover that the following Conditions 1–4 hold for every k = 1, ..., d:

1. For every n, the kernel f (n)k satisfies Assumptions A and B.

2. For every l = 1, ..., d and every n, the kernels f (n)k and f (n)l satisfy Assumption C.

3. For every r = 1, . . . , qk and every l = 1, . . . , r ∧ (qk − 1), one has that

‖ f (n)k ?l
r f (n)k ‖L2(µ2qk−r−l )→ 0,

as n→∞.

4. As n→∞,
∫

Zqk
dµqk

�

f (n)k

�4
→ 0.

Then, F (n) converges to X in distribution as n → ∞. The speed of convergence can be assessed by
combining the estimates of Proposition 5.5 and Proposition 5.6 either with Theorem 3.3 (when C is
positive definite) or with Theorem 4.2 (when C is merely nonnegative definite).

Remark 5.9. 1. For every f ∈ L2
s (µ

q), q ≥ 1, one has that

‖ f ?0
q f ‖2L2(µq) =

∫

Zq

dµq f 4.

2. When qi 6= q j , then F (n)i and F (n)j are not in the same chaos, yielding that C(i, j) = 0 in

formula (29). In particular, if Conditions 1-4 of Theorem 5.8 are verified, then F (n)i and F (n)j
are asymptotically independent.
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3. When specializing Theorem 5.8 to the case q1 = ... = qd = 1, one obtains a set of con-
ditions that are different from the ones implied by Corollary 4.3. First observe that, if
q1 = ... = qd = 1, then Condition 3 in the statement of Theorem 5.8 is immaterial. As
a consequence, one deduces that F (n) converges in distribution to X , provided that (29) is
verified and ‖ f (n)‖L4(µ) → 0. The L4 norms of the functions f (n) appear due to the use of
Cauchy-Schwarz inequality in the proof of Proposition 5.6.

Proof of Theorem 5.8. By Theorem 4.2,

d3(F
(n), X )≤

d

2

√

√

√

√

d
∑

i, j=1

E[(C(i, j)− 〈DF (n)i ,−DL−1F (n)j 〉L2(µ))2] (30)

+
1

4

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz F (n)i |

!2 d
∑

i=1

|Dz L−1F (n)i |

!






, (31)

so that we need only show that, under the assumptions in the statement, both (30) and (31) tend
to 0 as n→∞.

On the one hand, we take a = C(i, j) in Proposition 5.5. In particular, we take a = 0 when qi 6= q j .
Admitting Condition 3 , 4 and (29), line (30) tends to 0 is a direct consequence of Proposition 5.5.

On the other hand, under Condition 3 and 4, Proposition 5.6 shows that (31) converges to 0. This
concludes the proof and the above inequality gives the speed of convergence.

If the matrix C is positive definite, then one could alternatively use Theorem 3.3 instead of Theorem
4.2 while the deduction remains the same.

Remark 5.10. Apart from the asymptotic behavior of the covariances (29) and the presence of
Assumption C, the statement of Theorem 5.8 does not contain any requirements on the joint distri-
bution of the components of F (n). Besides the technical requirements in Condition 1 and Condition
2, the joint convergence of the random vectors F (n) only relies on the ‘one-dimensional’ Conditions
3 and 4, which are the same as condition (II) and (III) in the statement of Theorem 5.1 in [17]. See
also Remark 3.5.

6 Examples

In what follows, we provide several explicit applications of the main estimates proved in the paper.
In particular:

• Section 6.1 focuses on vectors of single and double integrals.

• Section 6.2 deals with three examples of continuous-time functionals of Ornstein-Uhlenbeck
Lévy processes.
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6.1 Vectors of single and double integrals

The following statement corresponds to Theorem 3.3, in the special case

F = (F1, . . . , Fd) = (I1(g1), . . . , I1(gm), I2(h1), . . . , I2(hn)). (32)

The proof, which is based on a direct computation of the general bounds proved in Theorem 3.3,
serves as a further illustration (in a simpler setting) of the techniques used throughout the paper.
Some of its applications will be illustrated in Section 6.2.

Proposition 6.1. Fix integers n, m≥ 1, let d = n+m, and let C be a d×d nonnegative definite matrix.
Let X ∼Nd(0, C). Assume that the vector in (32) is such that

1. the function gi belongs to L2(µ)∩ L3(µ), for every 1≤ i ≤ m,

2. the kernel hi ∈ L2
s (µ

2) (1 ≤ i ≤ n) is such that: (a) hi1 ?
1
2 hi2 ∈ L2(µ1), for 1 ≤ i1, i2 ≤ n,

(b) hi ∈ L4(µ2) and (c) the functions |hi1 | ?
1
2 |hi2 |, |hi1 | ?

0
2 |hi2 | and |hi1 | ?

0
1 |hi2 | are well defined

and finite for every value of their arguments and for every 1 ≤ i1, i2 ≤ n, (d) every pair (hi , h j)
verifies Assumption C, that in this case is equivalent to requiring that

∫

Z

È

∫

Z

µ(da)h2
i (z, a)h2

j (z, a)µ(dz)<∞.

Then,

d3(F, X ) ≤
1

2

p

S1+ S2+ S3+ S4

≤
1

2

p

S1+ S5+ S6+ S4

where

S1 =
m
∑

i1,i2=1

(C(i1, i2)− 〈gi1 , gi2〉L2(µ))
2

S2 =
n
∑

j1, j2=1

(C(m+ j1, m+ j2)− 2〈h j1 , h j2〉L2(µ2))
2+ 4‖h j1 ?

1
2 h j2‖

2
L2(µ)+ 8‖h j1 ?

1
1 h j2‖

2
L2(µ2)

S3 =
m
∑

i=1

n
∑

j=1

2C(i, m+ j)2+ 5‖gi ?
1
1 h j‖2L2(µ)

S4 = m2
m
∑

i=1

‖gi‖3L3(µ)+ 8n2
n
∑

j=1

‖h j‖L2(µ2)(‖h j‖2L4(µ2)+
p

2‖h j1 ?
0
1 h j1‖L2(µ3))

S5 =
n
∑

j1, j2=1

(C(m+ j1, m+ j2)− 2〈h j1 , h j2〉L2(µ2))
2+ 4‖h j1 ?

0
1 h j1‖L2(µ3)×‖h j2 ?

0
1 h j2‖L2(µ3)

+8‖h j1 ?
1
1 h j1‖L2(µ2)×‖h j2 ?

1
1 h j2‖L2(µ2)

S6 =
m
∑

i=1

n
∑

j=1

2C(i, m+ j)2+ 5‖gi‖2L2(µ)×‖h j ?
1
1 h j‖L2(µ2)
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Proof. Assumptions 1 and 2 in the statement ensure that each integral appearing in the proof is
well-defined, and that the use of Fubini arguments is justified. In view of Theorem 4.2, our strategy
is to study the quantities in line (15) and line (16) separately. On the one hand, we know that: for
1≤ i ≤ m, 1≤ j ≤ n,

Dz I1(gi(·)) = gi(z), −Dz L−1 I1(gi(·)) = gi(z)

Dz I2(h j(·, ·)) = 2I1(h j(z, ·)), −Dz L−1 I2(h j(·, ·)) = I1(h j(z, ·))

Then, for any given constant a, we have:

– for 1≤ i ≤ m, 1≤ j ≤ n,

E[(a− 〈Dz I1(gi1),−Dz L−1 I1(gi2)〉)
2] = (a− 〈gi1 , gi2〉L2(µ))

2;

– for 1≤ j1, j2 ≤ n,

E[(a− 〈Dz I2(h j1),−Dz L−1 I2(h j2)〉)
2]

= (a− 2〈h j1 , h j2〉L2(µ2))
2+ 4‖h j1 ?

1
2 h j2‖

2
L2(µ)+ 8‖h j1 ?

1
1 h j2‖

2
L2(µ2);

– for 1≤ i ≤ m, 1≤ j ≤ n,

E[(a− 〈Dz I2(h j),−Dz L−1 I1(gi)〉)2] = a2+ 4‖gi ?
1
1 h j‖2L2(µ)

E[(a− 〈Dz I1(gi),−Dz L−1 I2(h j)〉)2] = a2+ ‖gi ?
1
1 h j‖2L2(µ).

So

(15) =
1

2

p

S1+ S2+ S3

where S1, S2, S3 are defined as in the statement of proposition.

On the other hand,

 

2
∑

i=1

|Dz Fi|

!2

=







m
∑

i=1

|gi(z)|+ 2
n
∑

j=1

|I1(h j(z, ·))|







2

,

d
∑

i=1

|Dz L−1Fi|=
m
∑

i=1

|gi(z)|+
n
∑

j=1

|I1(h j(z, ·))|.

As the following inequality holds for all positive reals a, b:

(a+ 2b)2(a+ b)≤ (a+ 2b)3 ≤ 4a3+ 32b3,
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we have,

E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







= E















m
∑

i=1

|gi(z)|+ 2
n
∑

j=1

|I1(h j(z, ·))|







2





m
∑

i=1

|gi(z)|+
n
∑

j=1

|I1(h j(z, ·))|















≤ E









4

 

m
∑

i=1

|gi(z)|

!3

+ 32







n
∑

j=1

|I1(h j(z, ·))|







3








≤ E[4m2
m
∑

i=1

|gi(z)|3+ 32n2
n
∑

j=1

|I1(h j(z, ·))|3].

By applying the Cauchy-Schwarz inequality, one infers that

∫

Z

µ(dz)E[|I1(h(z, ·))|3]≤

s

E
�
∫

Z

µ(dz)|I1(h(z, ·))|4
�

×‖h‖L2(µ2).

Notice that

E
�
∫

Z

µ(dz)|I1(h(z, ·))|4
�

= 2‖h ?1
2 h‖2L2(µ)+ ‖h‖

4
L4(µ2)

We have

(16) =
1

4
m2‖C−1‖3/2op ‖C‖op

∫

Z

µ(dz)E







 

d
∑

i=1

|Dz Fi|

!2 d
∑

i=1

|Dz L−1Fi|

!







≤ ‖C−1‖3/2op ‖C‖op

�

m2
m
∑

i=1

‖gi‖3L3(µ)

+8n2
n
∑

j=1

‖h j‖L2(µ2)(‖h j‖2L4(µ2)+
p

2‖h j ?
1
2 h j‖L2(µ))

�

= ‖C−1‖3/2op ‖C‖opS4

We will now apply Lemma 2.9 to further assess some of the summands appearing the definition of
S2,S3. Indeed,

– for 1≤ j1, j2 ≤ n,
‖h j1 ?

1
2 h j2‖

2
L2(µ) ≤ ‖h j1 ?

0
1 h j1‖L2(µ3)×‖h j2 ?

0
1 h j2‖L2(µ3)

‖h j1 ?
1
1 h j2‖

2
L2(µ2) ≤ ‖h j1 ?

1
1 h j1‖L2(µ2)×‖h j2 ?

1
1 h j2‖L2(µ2);
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– for 1≤ i ≤ m, 1≤ j ≤ n,

‖gi ?
1
1 h j‖2L2(µ) ≤ ‖gi‖2L2(µ)×‖h j ?

1
1 h j‖L2(µ2)

by using the equality ‖g(k)i ?0
0 g(k)i ‖

2
L2(µ2)

= ‖g(k)i ‖
4
L2(µ)

.

Consequently,

S2 ≤
n
∑

j1, j2=1

(C(m+ j1, m+ j2)− 2〈h j1 , h j2〉L2(µ2))
2+ 4‖h j1 ?

0
1 h j1‖L2(µ3)×‖h j2 ?

0
1 h j2‖L2(µ3)

+8‖h j1 ?
1
1 h j1‖L2(µ2)×‖h j2 ?

1
1 h j2‖L2(µ2)

= S5,

S3 ≤
m
∑

i=1

n
∑

j=1

2C(i, m+ j)2+ 5‖gi‖2L2(µ)×‖h j ?
1
1 h j‖L2(µ2)

= S6

Remark 6.2. If the matrix C is positive definite, then we have

d2(F, X ) ≤ ‖C−1‖op‖C‖1/2op

p

S1+ S2+ S3+

p
2π

2
‖C−1‖3/2op ‖C‖opS4

≤ ‖C−1‖op‖C‖1/2op

p

S1+ S5+ S6+

p
2π

2
‖C−1‖3/2op ‖C‖opS4

by using Theorem 3.3.

The following result can be proved by means of Proposition 6.1.

Corollary 6.3. Let d = m + n, with m, n ≥ 1 two integers . Let XC ∼ Nd(0, C) be a centered d-
dimensional Gaussian vector, where C = {C(s, t) : s, t = 1, . . . , d} is a d × d nonnegative definite
matrix such that

C(i, j+m) = 0, ∀1≤ i ≤ m, 1≤ j ≤ n.

Assume that

F (k) = (F (k)1 , . . . , F (k)d ) := (I1(g
(k)
1 ), . . . , I1(g

(k)
m ), I2(h

(k)
1 ), . . . , I2(h

(k)
n ))

where for all k, the kernels g(k)1 , . . . , g(k)m and h(k)1 , . . . , h(k)n satisfy respectively the technical Conditions
1 and 2 in Proposition 6.1 . Assume moreover that the following conditions hold for each k ≥ 1:

1.
lim

k→∞
E[F (k)s F (k)t ] = C(s, t), 1≤ s, t ≤ d.

or equivalently
lim

k→∞
〈g(k)i1

, g(k)i2
〉L2(µ) = C(i1, i2), 1≤ i1, i2 ≤ m,

lim
k→∞

2〈h(k)j1
, h(k)j2
〉L2(µ2) = C(m+ j1, m+ j2), 1≤ j1, j2 ≤ n.
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2. For every i = 1, . . . , m and every j = 1, . . . , n, one has the following conditions are satisfied as
k→∞:
(a) ‖g(k)i ‖

3
L3(µ)

→ 0; (b) ‖h(k)j ‖
2
L4(µ2)

→ 0;

(c) ‖h(k)j ?1
2 h(k)j ‖L2(µ) = ‖h

(k)
j ?0

1 h(k)j ‖L2(µ3)→ 0;

(d) ‖h(k)j ?1
1 h(k)j ‖

2
L2(µ2)

→ 0.

Then F (k) → X in law, as k →∞. An explicit bound on the speed of convergence in the distance d3 is
provided by Proposition 6.1.

6.2 Vector of functionals of Ornstein-Uhlenbeck processes

In this section, we study CLTs for some functionals of Ornstein-Uhlenbeck Lévy process. These
processes have been intensively studied in recent years, and applied to various domains such as e.g.
mathematical finance (see [2]) and non-parametric Bayesian survival analysis (see e.g. [3, 16]).
Our results are multi-dimensional generalizations of the content of [17, Section 7] and [18, Section
4].

We denote by N̂ a centered Poisson measure over R×R, with control measure given by ν(du), where
ν(·) is positive, non-atomic and σ-finite. For all positive real number λ, we define the stationary
Ornstein-Uhlenbeck Lévy process with parameter λ as

Y λt = I1( f
λ
t ) =

p

2λ

∫ t

−∞

∫

R
u exp(−λ(t − x))N̂(du, d x), t ≥ 0

where f λt (u, x) =
p

2λ1(−∞,t](x)u exp(−λ(t − x)). We make the following technical assumptions
on the measure ν:

∫

R u jν(du) < ∞ for j = 2, 3,4, 6, and
∫

R u2ν(du) = 1, to ensure among other
things that Y λt is well-defined. These assumptions yield in particular that

Var(Y λt ) = E[(Y
λ
t )

2] = 2λ

∫ t

−∞

∫

R
u2 exp(−2λ(t − x))ν(du)d x = 1

We shall obtain Central Limit Theorems for three kind of functionals of Ornstein-Uhlenbeck Lévy
processes. In particular, each of the forthcoming examples corresponds to a “realized empirical
moment” (in continuous time) associated with Y λ, namely: Example 1 corresponds to an asymptotic
study of the mean, Example 2 concerns second moments, whereas Example 3 focuses on joint
second moments of shifted processes.

Observe that all kernels considered in the rest of this section automatically satisfy our Assumptions
A, B and C.

Example 1 (Empirical means)
We first recall the definition of Wasserstein distance.

Definition 6.4. The Wasserstein distance between the laws of two Rd -valued random vectors X and
Y with E‖X‖Rd ,E‖Y ‖Rd <∞, written dw(X , Y ), is given by

dw(X , Y ) = sup
g∈H
|E[g(X )]−E[g(Y )]|,
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whereH indicates the collection of all functions g ∈ C1(Rd) such that ‖g‖Lip ≤ 1.

We define the functional A(T,λ) by A(T,λ) =
1
p

T

∫ T

0
Y λt d t. We recall the following limit theorem

for A(T,λ) , taken from Example 3.6 in [17].

Theorem 6.5. As T →∞,

A(T,λ)
p

2/λ
=

1
p

2T/λ

∫ T

0

Y λt d t
(law)
−→ X ∼N (0,1),

and there exists a constant 0< α(λ)<∞, independent of T and such that

dw





A(T,λ)
p

2/λ
, X



≤
α(λ)
p

T
.

Here, we present a multi-dimensional generalization of the above result.

Theorem 6.6. For λ1, . . . ,λd > 0, as T →∞,

Ā(T ) = (A(T,λ1), . . . , A(T,λd))
(law)
−→ XB, (33)

where XB is a centered d-dimensional Gaussian vector with covariance matrix B = (Bi j)d×d , with
Bi j = 2/

p

λiλ j , 1 ≤ i, j ≤ d. Moreover, there exists a constant 0 < α = α(λ̄) = α(λ1, . . . ,λd) <∞,
independent of T and such that

d3(Ā(T ), XB)≤
α(λ̄)
p

T
.

Proof. By applying Fubini theorem on A(T,λ), we have

1
p

T

∫ T

0

Y λt d t = I1(gλ,T )

where

gλ,T = 1(−∞,T](x)u

r

2λ

T

∫ T

x∨0

exp(−λ(t − x))d t

E[A(T,λi)A(T,λ j)]

=

∫

R
u2ν(du)

�

∫ 0

−∞
d x

2

T
p

λiλ j

exp
�

(λi +λ j)x
�

×
�

1− exp(−λi T )
�

×
�

1− exp(−λ j T )
�

+

∫ T

0

d x
2

T
p

λiλ j

exp
�

(λi +λ j)x
�

×
�

exp(−λi x)− exp(−λi T )
�

×
�

exp(−λ j x)− exp(−λ j T )
�

�

=
2

T
p

λiλ j

� 1

λi +λ j
×
�

1− exp(−λi T )
�

×
�

1− exp(−λ j T )
�

+ T −
1

λi
× (1− exp(−λi T ))

−
1

λ j

�

1− exp(−λ j T )
�

+
1

λi +λ j

�

1− exp(−(λi +λ j)T )
�

�

=
2

p

λiλ j

+O

�

1

T

�

as T →∞.
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And we may verify that ‖gλ,T‖3L3(dνd x)
∼

1
p

T
. for all λ ∈ R. (See [17] and [18] for details.) Finally,

we deduce the conclusion by using Corollary 4.3.

Example 2 (Empirical second moments)
We are interested in the quadratic functional Q(T,λ) given by:

Q(T,λ) :=
p

T

 

1

T

∫ T

0

(Y λt )
2d t − 1

!

, T > 0,λ > 0

In [17] and [18], the authors have proved the following limit theorem for Q(T,λ). (See Theorem
7.1 in [17] and Proposition 7 in [18])

Theorem 6.7. For every λ > 0, as T →∞,

Q(T,λ) :=
p

T

 

1

T

∫ T

0

(Y λt )
2d t − 1

!

(law)
−→

È

2

λ
+ c2

ν × X

where X ∼ N (0, 1) is a standard Gaussian random variable and c2
ν =

∫

R u4ν(du) is a constant. And
there exists a constant 0< β(λ)<∞, independent of T and such that

dw







Q(T,λ)
Æ

2
λ
+ c2

ν

, X






≤
β(λ)
p

T

We introduce here a multi-dimensional generalization of the above result.

Theorem 6.8. Given an integer d ≥ 2. For λ1, . . . ,λd > 0, as T →∞,

Q̄(T ) = (Q(T,λ1), . . . ,Q(T,λd))
(law)
−→ XC , (34)

where XC is a centered d-dimensional Gaussian vector with covariance matrix C = (Ci j)d×d , defined by

Ci j =
4

λi +λ j
+ c2

ν , 1≤ i, j ≤ d,

and c2
ν =

∫

R u4ν(du). And there exists a constant 0 < β(λ̄) = β(λ1, . . . ,λd) <∞, independent of T
and such that

d3(Q̄(T ), XC)≤
β(λ̄)
p

T

Proof. For every T > 0 and λ > 0, we introduce the notations

Hλ,T (u, x; u′, x ′) = (u× u′)
1(−∞,T )2(x , x ′)

T

�

exp
�

λ(x + x ′)
�

×
�

1− exp(−2λT )
�

× 1(x∨x ′≤0)

+exp
�

λ(x + x ′)
�

×
�

exp(−2λ(x ∨ x ′))− exp(−2λT )
�

× 1(x∨x ′>0)

�
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H?λ,T (u, x) = u2
1(−∞,T )(x)

T

�

exp(2λx)×
�

1− exp(−2λT )
�

× 1(x≤0)

+exp(2λx)×
�

exp(−2λx)− exp(−2λT )
�

× 1(x>0)

�

By applying the multiplication formula (6) and a Fubini argument, we deduce that

Q(T,λ) = I1(
p

T H?λ,T ) + I2(
p

T Hλ,T ),

which is the sum of a single and a double Wiener-Itô integral. Instead of deducing the convergence
for (Q(T,λ1), . . . ,Q(T,λd)), we prove the stronger result:

(I1(
p

T H?λ1,T ), . . . , I1(
p

T H?λd ,T ), I2(
p

T Hλ1,T ), . . . , I2(
p

T Hλd ,T ))
(law)
−→ XD (35)

as T →∞. Here, XD is a centered 2d-dimensional Gaussian vector with covariance matrix D defined
as:

D(i, j) =











c2
ν , if 1≤ i, j ≤ d

4

λi +λ j
, if d + 1≤ i, j ≤ 2d

0, otherwise.

We prove (35) in two steps (by using Corollary 6.3). Firstly, we aim at verifying

lim
T→∞
E[F (T )i F (T )j ] = D(i, j), 1≤ i, j ≤ 2d,

for

F (T )k =

¨

I1(
p

T H?λk ,T ), if 1≤ k ≤ d
I2(
p

T Hλk ,T ), if d + 1≤ k ≤ 2d

Indeed, by standard calculations, we have

T

∫

R×R
H?λi ,T

(u, x)H?λ j ,T
(u, x)ν(du)d x

=
1

T
c2
ν

� 1

2(λi +λ j)
×
�

1− exp(−2λi T )
�

×
�

1− exp(−2λ j T )
�

+ T −
1

2λi
×
�

1− exp(−2λi T )
�

−
1

2λ j
×
�

1− exp(−2λ j T )
�

+
1

2(λi +λ j)
×
�

1− exp(−2(λi +λ j)T )
�

�

= c2
ν +O

�

1

T

�

, as T →∞,

and

2T

∫

R4

Hλi ,T (u, x; u′, x ′)Hλ j ,T (u, x; u′, x ′)ν(du)ν(du′)d xd x ′

=
2

T

�(1− exp(−2λi T ))× (1− exp(−2λ j T ))

(λi +λ j)2
+

2

λi +λ j
×
�

T −
1

2λi

�

1− exp(−2λi T )
�

−
1

2λ j
×
�

1− exp(−2λ j T )
�

+
1

2(λi +λ j)
×
�

1− exp(−2(λi +λ j)T )
��

�

=
4

λi +λ j
+O

�

1

T

�

, as T →∞.
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Secondly, we use the fact that for λ= λ1, . . . ,λd , the following asymptotic relations holds as T →∞:

(a) ‖
p

T H?λ,T‖
3
L3(dνd x)

∼
1
p

T
;

(b) ‖
p

T Hλ,T‖2L4((dνd x)2)
∼

1
p

T
;

(c) ‖(
p

T Hλ,T ) ?1
2 (
p

T Hλ,T )‖L2(dνd x) = ‖(
p

T Hλ,T ) ?0
1 (
p

T Hλ,T )‖L2((dνd x)3) ∼
1
p

T
;

(d) ‖(
p

T Hλ,T ) ?1
1 (
p

T Hλ,T )‖L2((dνd x)2) ∼
1
p

T
;

(e) ‖(
p

T H?λ,T ) ?
1
1 (
p

T Hλ,T )‖L2(dνd x) ∼
1
p

T
.

The reader is referred to [17, Section 7] and [18, Section 4] for a proof of the above asymptotic
relations.

Example 3 (Empirical joint moments of shifted processes)
We are now able to study a generalization of Example 2. We define

Qh(T,λ) :=
p

T

 

1

T

∫ T

0

Y λt Y λt+hd t − exp(−λh)

!

, h> 0, T > 0,λ > 0.

The theorem below is a multi-dimensional CLT for Qh(T,λ).

Theorem 6.9. For λ1, . . . ,λd > 0 and h≥ 0, as T →∞,

Q̄h(T ) = (Qh(T,λ1), . . . ,Qh(T,λd))
(law)
−→ XE , (36)

where XE is a centered d-dimensional Gaussian vector with covariance matrix E = (Ei j)d×d , with

Ei j =
4

λi +λ j
+ c2

ν exp
�

− (λi +λ j)h
�

, 1≤ i, j ≤ d

and c2
ν =

∫

R u4ν(du). Moreover, there exists a constant 0 < γ(h, λ̄) = γ(h,λ1, . . . ,λd) <∞, indepen-
dent of T and such that

d3(Q̄h(T ), XE)≤
γ(h, λ̄)
p

T

Proof. We have

∫ T

0

Y λt Y λt+hd t =

∫ T

0

I1( f
λ
t )I1( f

λ
t+h)d t

=

∫ T

0

�

I2( f
λ
t ?

0
0 f λt+h) + I1( f

λ
t ?

0
1 f λt+h) + f λt ?

1
1 f λt+h

�

d t

=

∫ T

0

�

I2(ĥ
λ
t,h) + I1(ĥ

∗,λ
t,h ) + exp(−λh)

�

d t

= I2(T Hh
λ,T ) + I1(T H∗,h

λ,T ) + exp(−λh)T
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and
Qh(T,λ) = I2(

p
T Hh

λ,T ) + I1(
p

T H∗,h
λ,T )

by using multiplication formula (6) and Fubini theorem. By simple calculations, we obtain that

ĥλt,h(u, x; u′, x ′) = 2λ1(−∞,t]×(−∞,t+h](x , x ′)× uu′ exp(−λ(2t + h− x − x ′))

ĥ∗,λt,h (u, x) = 2λ1(−∞,t](x)× u2 exp(−λ(2t + h− 2x))

as well as

H∗,h
λ,T (u, x) =

1

T

∫ T

0

ĥ∗,λt,h (u, x)d t

= u2
1(−∞,T](x)

T
× exp(λ(2x − h))×

�

1(x>0)× (exp(−2λx)− exp(−2λT ))

+1(x≤0)× (1− exp(−2λT ))
�

Hh
λ,T (u, x; u′, x ′) =

1

T

∫ T

0

ĥλt,h(u, x; u′, x ′)d t

= uu′
1(−∞,T](x)1(−∞,T+h](x ′)

T
× exp(λ(x + x ′− h))

×
�

1(x∨(x ′−h)>0)×
�

exp(−2λ(x ∨ (x ′− h)))− exp(−2λT )
�

+1(x∨(x ′−h)≤0)× (1− exp(−2λT ))
�

Similar to the procedures in the precedent example, we prove the stronger result:

(I1(
p

T H?,h
λ1,T ), . . . , I1(

p
T H?,h

λd ,T ), I2(
p

T Hh
λ1,T ), . . . , I2(

p
T Hh

λd ,T ))
(law)
−→ XDh (37)

as T → ∞. Here, XDh is a centered 2d-dimensional Gaussian vector with covariance matrix Dh

defined as:

Dh(i, j) =











c2
ν exp(−(λi +λ j)h), if 1≤ i, j ≤ d

4

λi +λ j
, if d + 1≤ i, j ≤ 2d

0, otherwise.

We have

T

∫

R×R
H∗,h
λ,T (u, x)H∗,h

λ,T (u, x)ν(du)d x

=
1

T
c2
ν

�

∫ 0

−∞
d x exp

�

(λi +λ j)(2x − h)
�

×
�

1− exp(−2λi T )
�

×
�

1− exp(−2λ j T )
�

+

∫ T

0

d x exp
�

(λi +λ j)(2x − h)
�

×
�

exp(−2λi x)− exp(−2λi T )
�

×
�

exp(−2λ j x)− exp(−2λ j T )
�

�

= c2
ν exp(−(λi +λ j)h) +O

�

1

T

�

. as T →∞,

1523



We notice that
Hh
λ,T (u, x; u′, x ′) = Hλ,T (u, x; u′, x ′− h)

Then, as shown in the proof of Theorem 6.8, we have

2T

∫

R×R
Hh
λ,T (u, x)Hh

λ,T (u, x)ν(du)d x =
4

λi +λ j
+O

�

1

T

�

. as T →∞.

Just as the precedent example, we may verify that for λ = λ1, . . . ,λd and h ≥ 0, the following
asymptotic relations holds as T →∞:

(a) ‖
p

T H∗,h
λ,T‖

3
L3(dνd x)

∼
1
p

T
;

(b) ‖
p

T Hh
λ,T‖

2
L4((dνd x)2)

∼
1
p

T
;

(c) ‖(
p

T Hh
λ,T ) ?

1
2 (
p

T Hh
λ,T‖L2(dνd x) = ‖(

p
T Hλ,T ) ?0

1 (
p

T Hh
λ,T )‖L2((dνd x)3) ∼

1
p

T
;

(d) ‖(
p

T Hh
λ,T ) ?

1
1 (
p

T Hh
λ,T )‖L2((dνd x)2) ∼

1
p

T
;

(e) ‖(
p

T H∗,h
λ,T ) ?

1
1 (
p

T Hh
λ,T )‖L2(dνd x) ∼

1
p

T
.

We conclude the proof by analogous arguments as in the proof of (34).

The calculations above enable us to derive immediately the following new one-dimensional result,
which is a direct generalization of Theorem 5.1 in [17].

Corollary 6.10. For every λ > 0, as T →∞,

Qh(T,λ)
(law)
−→

È

2

λ
+ c2

ν exp(−2λh)× X

where X ∼ N (0, 1) is a standard Gaussian random variable. Moreover, there exists a constant 0 <
γ(h,λ)<∞, independent of T and such that

dw





Qh(T,λ)
p

2/λ+ c2
ν exp(−2λh)

, X



≤
γ(h,λ)
p

T
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7 Appendix: Malliavin operators on the Poisson space

We now define some Malliavin-type operators associated with a Poisson measure N̂ , on the Borel
space (Z ,Z ), with non-atomic control measure µ. We follow the work by Nualart and Vives [15],
which is in turn based on the classic definition of Malliavin operators on the Gaussian space (see
e.g. [8, 12]).

(I) The derivative operator D.
For every F ∈ L2(P), the derivative of F , DF is defined as an element of L2(P; L2(µ)), that is, of the
space of the jointly measurable random functions u : Ω× Z 7→ R such that E

�∫

Z
u2

zµ(dz)
�

<∞.

Definition 7.1. 1. The domain of the derivative operator D, written domD, is the set of all random
variables F ∈ L2(P) admitting a chaotic decomposition (1) such that

∑

k≥1

kk!‖ fk‖2L2(µk)
<∞,

2. For any F ∈ domD, the random function z 7→ Dz F is defined by

Dz F =
∞
∑

k≥1

kIk−1( fk(z, ·)).

(II) The divergence operator δ.
Thanks to the chaotic representation property of N̂ , every random function u ∈ L2(P, L2(µ)) admits
a unique representation of the type

uz =
∞
∑

k≥0

Ik( fk(z, ·)), z ∈ Z , (38)
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where the kernel fk is a function of k + 1 variables, and fk(z, ·) is an element of L2
s (µ

k). The
divergence operator δ(u) maps a random function u in its domain to an element of L2(P).

Definition 7.2. 1. The domain of the divergence operator, denoted by domδ, is the collection of all
u ∈ L2(P, L2(µ)) having the above chaotic expansion (38) satisfied the condition:

∑

k≥0

(k+ 1)!‖ fk‖2L2(µ(k+1))
<∞.

2. For u ∈ domδ, the random variable δ(u) is given by

δ(u) =
∑

k≥0

Ik+1( f̃k),

where f̃k is the canonical symmetrization of the k+ 1 variables function fk.

As made clear in the following statement, the operator δ is indeed the adjoint operator of D.

Lemma 7.3 (Integration by parts). For every G ∈ domD and u ∈ domδ, one has that

E[Gδ(u)] = E[〈DG, u〉L2(µ)].

The proof of Lemma 7.3 is detailed e.g. in [15].

(III) The Ornstein-Uhlenbeck generator L.

Definition 7.4. 1. The domain of the Ornstein-Uhlenbeck generator, denoted by domL, is the col-
lection of all F ∈ L2(P) whose chaotic representation verifies the condition:

∑

k≥1

k2k!‖ fk‖2L2(µk)
<∞

2. The Ornstein-Uhlenbeck generator L acts on random variable F ∈ domL as follows:

LF =−
∑

k≥1

kIk( fk).

(IV) The pseudo-inverse of L.

Definition 7.5. 1. The domain of the pseudo-inverse of the Ornstein-Uhlenbeck generator, denoted
by L−1, is the space L2

0(P) of centered random variables in L2(P).

2. For F =
∑

k≥1
Ik( fk) ∈ L2

0(P) , we set

L−1F =−
∑

k≥1

1

k
Ik( fk).
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