
A parallel hybrid evolutionary algorithm for the optimization
of broker virtual machines subletting in cloud systems

Santiago Iturriaga, Sergio Nesmachnow

Universidad de la República, Uruguay
{siturria,sergion}@fing.edu.uy

Bernabé Dorronsoro, El-Ghazali Talbi

University of Lille, France
{bernabe.dorronsoro diaz,El-ghazali.Talbi}@inria.fr

Pascal Bouvry

University of Luxembourg
pascal.bouvry@uni.lu

Abstract—This article presents a new parallel hybrid evo-
lutionary algorithm to solve the problem of virtual machines
subletting in cloud systems. The problem deals with the efficient
allocation of a set of virtual machine requests from customers
into available pre-booked resources from a cloud broker, in
order to maximize the broker profit. The proposed parallel
algorithm uses a distributed subpopulations model, and a
Simulated Annealing operator. The experimental evaluation
analyzes the profit and makespan results of the proposed
methods over a set of problem instances that account for
realistic workloads and scenarios using real data from cloud
providers. A comparison with greedy heuristics indicates that
the proposed method is able to compute solutions with up to
133.8% improvement in the profit values, while accounting for
accurate makespan results.

Keywords-parallel evolutionary algorithms; scheduling;
cloud computing;

I. INTRODUCTION

Nowadays, cloud computing [1], [2] has emerged as one

of the main existing computing paradigms, mainly due to

its very interesting features, as elasticity, flexibility, or large

computational power, among many others.

Many public and private clouds have appeared in the last

years [3]. They all have distinct features, making difficult for

users to find the best choice among the existing offers. The

cloud broker [4] arises as an intermediary between cloud

providers and users to help the latter ones in that process.

Brokers can simply find the best deals among a set of clouds

for the user requirements or even define the best possible

design to deploy the user’s application in the cloud [4].

This paper focuses on a business model in which the

broker sublets on-demand cloud resources to his customers

at low prices. The broker owns a set of reserved VMs

with different features, and probably from distinct cloud

providers, which are offered on-demand to the customers

at cheaper prices than those the customer would get from a

cloud provider [5]. When the broker does not have enough

VMs for executing a customer request without violating the

contracted service level agreement, he will buy on-demand

VMs in the cloud to satisfy the demand, and the profit of

the broker will be reduced (because he will pay the cloud

provider more than what he charges to the customer for that

VM).

From now, we will refer the reserved VMs of the broker

as reserved instances (RI) to differentiate from the VMs the

customers demand.

The problem of efficiently allocating the customers VM

requests into the available RIs arises for the broker. All

VMs should be allocated into RIs that are offering at least

the same performance requested by the customer, and some

quality of service (QoS) levels must be achieved by the so-

lution. This is a resource allocation problem with additional

constraints making it more complex. Underutilization of the

available RIs must be avoided, as well as the overbooking,

which might force the broker reserving on-demand VMs to

the cloud provider in order to offer the promised service,

despite the money loss. The resource allocation problem

itself is NP-hard [6].

The main contributions of this work are: i) the design and

implementation of an efficient parallel hybrid evolutionary

algorithm to solve the recently proposed virtual machine

subletting problem [16], and ii) the evaluation of the pro-

posed method using realistic benchmark instances.

The paper is structured as follows. Next section presents

the formulation of the optimization problem tackled. A

review of related work on cloud brokering is presented in

Section III. Evolutionary computation is briefly introduced

in Section IV, just before presenting the hybrid EA in

Section V. The experimental evaluation over a set of realistic

workloads and scenarios using real data from actual cloud

providers is reported in Section VI. Finally, the conclusions

and main lines for future work are formulated in Section VII.

II. THE VIRTUAL MACHINE MAPPING PROBLEM

The Virtual Machine Mapping Problem (VMMP) in cloud

infrastructures considers a set of VMs requested by cloud

users to the broker to be executed in the cloud. Each VM

is booked on-demand to the broker for a given time and

it should start before a specific deadline. Virtual machines

have specific hardware demands, that the broker has to

fulfill using his own pre-booked VMs, and minimizing the

economic cost, thus maximizing his own profit. In case the

request of some user(s) cannot be handled with the available

RIs, the broker would have to book on-demand VMs in the

cloud for them, with the consequent profit reduction.

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.103

603

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.103

594

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.103

594

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18585486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The VMMP is formalized next. Given the following

elements:

• A set of virtual machine requests VM = {v1, . . . , vn},

each one demanded to execute for a given time T (vi).
• Each VM has specific hardware demands, including

processor speed P (vi), memory M(vi), storage S(vi),
and number of cores nc(vi).

• Virtual machine requests arrive in batches (i.e., hourly,

diary). Each VM has an arrival time Ai, according

to a stochastic homogeneous Poisson process with

parameter (rate) λ.

• The execution of any VM must start before its deadline

D(vi).
• A set of cloud resource instances pre-booked by the

broker B = {b1, . . . , bm}, m � n, with specific fea-

tures including processor speed P (bj), memory M(bj),
and storage S(bj), according to a predefined list of

instance types t(bj) ∈ {t1, . . . , tk}.

• A cost function C for pre-booked cloud resource

instances, and a cost function COD for on-demand

instances, with C(bj) � COD(bj). The cost of both

functions is given in an hourly basis.

• A pricing function p(bj) that defines the price the

broker charges to the customers per hour for the RI

type of bj . In order to attract customers, the broker

should charge for a VM type bj a lower cost than the

on-demand pricing for that kind of VM, i.e., p(bj) <
COD(bj). Moreover, if the cheapest offered RI that can

allocate the VM vi requested by the user, for instance

bk, is not available, the broker can assign it to another

RI of higher capacity, but charging the same amount

as for bk (defined with the best fit function: BF (vi)).
This will suppose the revenue to be decreased, but it

will prevent the broker from buying (more expensive)

on-demand instances, and the customer will be, at the

same time, pleased thanks to the better performance

offered.

The VMMP in cloud consists in finding a mapping

function f : VM → B for the VM requests {v1, . . . , vn}
in the available RIs {b1, . . . , bm} that maximizes the total

broker revenue R, according to the following optimization

problem (ST (vi) states for the starting time of the request

vi, according to the schedule):

max

j=m∑
j=1

⎛
⎝ ∑

i:f(vi)=bj

(p(BF (vi))− C(bj))× T (vi)

⎞
⎠+

∑
h:ST (vh)>D(vh)

(p(BF (vh))− COD(BF (vh)))× T (vh)

subject to M(vi) ≤M(bj), P (vi) ≤ P (bj)

S(vi) ≤ S(bj), nc(vi) ≤ nc(bj)

where the BF (vk) function gives the less expensive

instance capable of executing the request vk

In the problem model, deadlines are considered as hard

constraints. In case the broker cannot accommodate the

VM request to start execution by the specified deadline, he

must either use a larger RI offering more resources than

those requested (but charging the customer the cost of the

requested one) or buy an on-demand instance to fulfill the

request. Both solutions obviously accounting for a negative

impact in the total cost of the schedule.

The first summation in the revenue objective function

accounts for the total profit of the broker thanks to the RIs

booked by the customers. The second summation accounts

for the additional cost that supposes avoiding the violation

of the deadline constraints.

Data transmission for the VMs requests are not considered

in the objective function. The model assumes that transmis-

sion costs are directly transferred to the user thus the broker

cannot take an economic profit from data transmission.

A. Scheduling approach

The problem is tackled using a dynamic approach based

on rescheduling. The scheduling algorithm executes at in-

tervals of a given reschedule time, or when a pre-booked

instance is available for a new assignment.

The rescheduling strategy consists in finding a new sched-

ule for executing the incoming requests (in each new batch)

and also those requests already submitted that have not

finalized yet. Figure 1 graphically describes the process: in

time TR a reschedule is performed, and the new optimization

problem considers the new requests arrived plus all the

requests that have not yet started at that time, regarding

the previously computed schedule. In the new scheduling

problem, the calculation of the cost metric must consider the

remaining time of those VM requests already in execution

at time TR in each pre-booked instance. To model this

situation, at time TR each pre-booked instance has an

available start time AS(bi).

Figure 1. Rescheduling in a dynamic scenario.

604595595

III. LITERATURE REVIEW

Cloud brokering typically deals [4] with the problems of

finding the cloud providers whose offer better suits to the

customer needs (both technically and in terms of cost) [7],

[8], or providing the customer with the best possible way to

deploy his/her application in the cloud [9], [10].

There are in the literature a number of methods for

scheduling applications in private resources using cloud

bursting technique [11]. These works enhance the local

schedulers with the capability of using VMs from the public

cloud when additional resources are required. This is a

similar concept to the one addressed in this paper, since in

the case all reserved VMs are used and a number of users

requests cannot start before their deadline, then the broker

will buy on-demand instances from the cloud to execute

them. However, in our work we do not address the resource

provisioning problem, since the broker always work with

VMs (either reserved or on-demand) from the public cloud.

Closer to the problem we consider, Wu et al. [12]

proposed a mechanism to encourage customers to provide

realistic likelihood that they will purchase a given resource,

at the reward of price reductions. This mechanism allows

the provider to efficiently forecast the required resources,

minimizing this way the underutilization and/or overbooking

of the available resources, and it will benefit the customer

too, who will have the service at a low price. This mech-

anism was adopted in [5] for the case of a cloud broker

subletting reserved VMs to his customers. Then, the broker

will use the information given by the customers to decide

whether to invest in buying more resources or not, and what

kind of resources should be bought. This technique is shown

to provide up to 44% increase in the profit of the broker.

We investigate in this paper how the broker can optimally

manage his VMs for the optimum profit and maximum QoS,

allowing the use of on-demand instances to satisfy the needs

of users that cannot be satisfied with the current resources,

despite the money loss.

IV. EVOLUTIONARY COMPUTATION

This section introduces evolutionary algorithms (EAs) and

the parallel hybrid EA proposed in this work.

A. Evolutionary algorithms

EAs are non-deterministic methods that emulate the evo-

lution of species in nature, which have been successfully

applied for solving optimization problems underlying many

complex real-life applications in the last twenty years [13].

An EA is an iterative technique that applies stochastic

operators on a population of individuals, which encode

tentative solutions of the problem, in order to improve their

fitness. An evaluation function associates a fitness value to

every individual, indicating its suitability to the problem.

The initial population is generated at random or by using a

specific heuristic for the problem. Iteratively, the probabilis-

tic application of recombinations of individuals or random

changes (mutations) in their contents, using a selection-of-

the-best technique, guides the EA to better solutions.
The stopping criterion usually involves a fixed number

of generations or execution time, a quality threshold on the

best fitness value, or the detection of a stagnation situation.

Specific policies are used for the selection of individuals to

recombine and to determine which new individuals replace
the older ones in each new generation. The EA returns the

best solution found, regarding the fitness function values.

B. Hybrid EAs
In its broadest sense, hybridization refers to the inclu-

sion of problem-dependent knowledge in a general search

algorithm [13]. One possibility is to construct strong hybrid

algorithms, where problem knowledge is included as a

problem-dependent representation and/or special operators.

The other possibility is to combine two or more methods

to solve the same problem, constructing weak hybrids and

trying to take advantage of their salient features to improve

the efficiency or accuracy of the new algorithm. The hybrid

algorithm defines a new search pattern which determines

when each algorithm is executed, and how the internal

states of each algorithm report the results so that the other

algorithm can continue. Usually, by exchanging a small set

of partial solutions or some statistical values, it is possible

to combine algorithms in a (hopefully) efficient manner.
In this work, a weak hybrid algorithm (EA+SA) is de-

signed by combining EA and Simulated Annealing (SA).

The EA uses the SA as an evolutionary operator: while the

EA provides a good exploration pattern to locate “good”

regions of the search space, the SA allows exploitation in

the neighborhood of those promising regions.

C. Parallel evolutionary algorithms
Parallel implementations became popular in the last

decade as an effort to improve the efficiency of EAs. By

splitting the population into several processing elements,

parallel evolutionary algorithms (PEAs) allow reaching high

quality results in a reasonable execution time even for hard-

to-solve optimization problems [14].
The PEAs proposed in this work are categorized within

the distributed subpopulations model [15]: the population is

divided into several subpopulations (demes) separated from

each other. Each deme runs a serial EA, and individuals are

only able to interact with other individuals in the deme. An

additional operator called migration is defined: occasionally

some selected individuals are exchanged among demes,

introducing a new source of diversity in the EA.

V. A PARALLEL HYBRID EA FOR THE VMPP

This section introduces the proposed EA+SA algorithm

for tackling the VMPP.

605596596

A. Algorithm design and parallel model

EA+SA is a parallel hybrid EA which uses SA as an

operator for exploiting promising search space regions.

General description: The schema of EA+SA is pre-

sented in Algorithm 1. EA+SA starts by generating an

initial population (line 1) by using a randomized Cheapest

Instance (rCI) [16] heuristic, which randomly assigns the

VM requests to the cheapest RI which is able to fulfill the

request requirements. The EA+SA follows the well-known

(μ + λ) evolution strategy [17] (lines 4–8), hybridizing

a SA operator in order to improve the offspring of the

mating operator (line 7). After the population of the deme is

evolved, the migration criterion is evaluated. If the migration
criterion evaluates true, a set of individuals ν are selected

from the current deme population and sent to the next

adjacent deme (lines 11–12). In return, a set of solutions ω
are received from the previous adjacent deme and combined

to the current population (lines 13–14). The evolutionary

cycle is executed until the stopping criterion is met.

Problem encoding: A fixed-size VM-oriented encoding

is used to represent VMMP solutions, allowing an efficient

implementation of the evolutionary operators.

Crossover: A special two-point crossover is used. The

set of VM requests is randomly split by two cuts producing

three subsets. The RI assigned to each request in each of

those subsets is exchanged between the two mated parents,

scheduling the request in the new RI at the latter feasible

time at which it satisfies the request deadline.

Mutation: The mutation operator works as follows.

Each VM request (v ∈ VM) in the solution is randomly

mutated with a given low probability (p ≤ 0.1). If v is

chosen to be mutated it is rescheduled to be executed by a

randomly selected RI (b ∈ B). If the selected RI b fulfills

the hardware requirements of the VM request v, a relative

position in the scheduling queue of b is randomly selected.

If the rescheduled starting time of v satisfies its deadline

requirement, then the request is rescheduled. Otherwise, the

mutation is discarded.

SA operator: First, the VM request with the worst

profit vworst is selected from a subset of randomly chosen

VM requests. Then, vworst is rescheduled to execute by

an on-demand VM if that improves the profit. Otherwise,

a randomly selected subset of RI is explored (B′ ⊆ B). The

bbest ∈ B′ RI which improves the most the profit of vworst

is selected, and vworst is rescheduled to bbest at the latter

feasible time at which it satisfies the deadline of vworst.

Parallel model: The parallel model applied in EA+SA

arranges the distributed subpopulations using a virtual

directed-ring topology. Each subpopulation pi collaborates

with its adjacent neighbors {pi−1, pi+1}: subpopulation pi
receives candidate solutions from subpopulation pi−1, and

sends candidate solutions to subpopulation pi+1.

Algorithm 1 Schema of the distributed EA+SA algorithm.

1: P ← generate initial population
2: while not stopping criterion do
3: {individual deme evolution}
4: μ← select parent solutions from P
5: λ← mate selected parents in μ
6: λ̃← mutate children in λ
7: λ̂← improve λ̃ using SA algorithm
8: P ← select new population from

{
μ ∪ λ̂

}
9: {collaboration between demes}

10: if migration criterion then
11: ν ← select solutions to be migrated from P
12: send ν to next adjacent deme
13: ω ← receive solutions from previous deme
14: P ← select new population from {P ∪ ω}
15: end if
16: end while
17: return best solution ever found

Figure 2. Diagram of the parallel hybrid EA+SA algorithm.

B. Implementation details

The proposed EA+SA algorithm is implemented in C++

using the MALLBA framework [18]. The migration operator

is implemented using the MPICH-2 library, a well-known

implementation of MPI [19].

VI. EXPERIMENTAL ANALYSIS

This section presents the experimental evaluation of the

proposed EA+SA over a realistic set of VMMP intances.

A. Problem instances

We built a set of VMMP instances by following a specific

methodology and using real data gathered from public

reports, webpages, and nowadays real cloud infrastructures.

The problem instances are defined by: i) a workload file
with the information about VM requests, including: memory,

storage, processor speed, and number of cores requested; and

ii) a scenario file, with the relevant data for the set of RIs

from the broker, including: available memory and storage,

processor speed, number of cores, and the cost (both pre-

booked and on-demand) and pricing values.

A total number of 100 problem instances are solved

in the experimental analysis, by combining workloads and

scenarios with diverse characteristics.

606597597

Regarding the workloads, we consider batches of 50, 100,

200, and 400 VM requests arriving according to a Poisson

process per each scheduling period, each of them with a dif-

ferent duration (from 10 to 200 time units). The considered

scenarios built a pre-booked cloud computing infrastructure

with 10, 20, and 50 RIs for the broker, by combining VMs

from both Amazon and Azure cloud computing services.

For the pricing function, we consider in this work that it

is 20% cheaper than the cost on-demand price (i.e. p(bj) =
0.8 × COD(bj)). This is a reasonable value for attracting

users to the service, while obtaining reasonable profit values.

The VMMP instances are available to download from

http://www.fing.edu.uy/inco/grupos/cecal/hpc/VMMP.

B. Development and execution platform

The experimental analysis was performed on a 24-Core

AMD Opteron Processor 6172 at 2.1GHz, with 24 GB RAM,

from Cluster FING (http://www.fing.edu.uy/cluster).

C. Parameter setting

A fixed stopping criterion of 90 seconds of execution

time is used for the EA+SA algorithm evaluation, which

is an efficient execution time for on-line cloud planning.

50 independent executions were performed on each VMMP

instance, each one using 24 distributed subpopulations.

A configuration analysis was performed using a medium-

sized instance in order to find the best values for the

crossover (pc), mutation (pm), and SA operator (psa) prob-

abilities. The studied candidate values for each parameter

were: pc ∈ {0.5, 0.7, 0.9}, pm ∈ {0.5, 0.7, 0.9}, psa ∈
{0.1, 0.2, 0.3}. A total of 30 independent executions were

performed for each of the 27 combination of parameters.

Finally, the Friedman Rank Sum (FRS) test was applied on

the computed results. A post-hoc analysis of the FRS results

showed the most accurate schedules were computed when

using pc = 0.7, pm = 0.5, and psa = 0.3. Figure 3 presents

the average profit computed by the EA+SA algorithm when

using each of the evaluated parameter settings for pc and

pm.

0.5

0.7

0.9

87

87.5

88

88.5

89

89.5

0.5
0.7

0.9

Pm

Pr
of

it

Pc

Figure 3. Summary of profit results for pc and pm setting analysis.

D. Results and discussion

This subsection summarizes and analyzes the main results

of the experimental evaluation of the proposed hybrid EA.

The results of the EA+SA algorithm are compared against

two different profit-greedy list-scheduling heuristics for the

VMMP: Shortest Resource Cheapest Instance (SRCI) and

Cheapest Instance (CI) [16].

Table I reports the best and average profit improvement

over the results computed by the best known list-scheduling

heuristic for the VMMP. Row #1 indicates how many times

the EA+SA performed the best (i.e., it is the number one)

regarding the profit value. The gap in the makespan value is

computed with respect to each heuristic. The makespan met-

ric is defined as the timespan from when the first VM request

begins its execution until the last VM request finishes its ex-

ecution. The makespan gap metric for the EA+SA algorithm

is defined as the relative additional makespan time required

by the schedules computed by EA+SA when comparing to

the makespan of the schedules computed by the CI and

SCRI heuristics
(
gapea+sa = makespanea+sa−makespanh

makespanh

)
.

Finally, the average relative number of requests violations

is reported.

Table I
EA+SA PROFIT IMPROVEMENT AND MAKESPAN GAP OVER THE BEST

HEURISTIC, AND AVG. RATIO OF VM REQUEST VIOLATIONS.

dimension profit improvement makespan gap violations
best avg. #1 CI SRCI avg.

50×10 133.8% 43.3% 25/25 16.3% 17.7% 2.7%

100×20 47.7% 17.8% 25/25 14.1% 10.0% 2.5%

200×20 46.2% 28.7% 25/25 8.7% 5.4% 9.7%

400×50 63.7% 26.3% 25/25 9.0% 4.5% 5.5%

The results in Table I indicate that EA+SA found the

best profit results for all problem instances. In average, the

EA+SA algorithm is able to improve the profit computed

by the best heuristic in all of the evaluated instances: with

average values ranging from 17.8% up to 43.3%. In the

best case, the improvement over the best heuristic reached

133.8% for the smallest instances. Aside that problem

dimension, the second best result is obtained for the largest

problem instances (namely, 400×50). These extremely good

profit values are obtained thanks to the low number of

deadline violations in the solutions reported by the algorithm

(between 2.7% and 9.7% versus the values reported by

the heuristics, ranging from 4.4% to 32.9%). A deadline

violation means that the request cannot be performed in any

of the RIs owned by the broker on time, implying that he has

to buy an on-demand VM to the cloud provider to perform

it within the stipulated deadline.

In terms of makespan, we can see in Table I that EA+SA

provides slightly worse results than the heuristics (between

4.5% and 17.7%); the lowest values are obtained or the

largest instances. The reason is that the EA+SA algorithm

607598598

has more requests to schedule in the available RIs, because

the percentage of violated requests is lower. This issue

obviously directly impacts on the makespan.
We also investigated the benefits of the parallel model to

compute more accurate solutions when additional computing

resources are available. Table II presents the average profit

improvement (with respect to the best compared heuristic in

every case) computed by the EA+SA algorithm when using

1, 8, and 24 distributed demes.

Table II
AVERAGE PROFIT IMPROVEMENT OF EA+SA OVER THE BEST

HEURISTIC VARYING THE AMOUNT OF DISTRIBUTED DEMES.

dimension average profit improvement
1 deme 8 demes 24 demes

50×10 42.89±0.39% 43.20±0.16% 43.29±0.09%

100×20 17.09±0.52% 17.60±0.31% 17.80±0.20%

200×20 24.83±1.36% 27.57±0.91% 28.71±0.75%

400×50 21.34±2.04% 24.57±1.44% 26.30±1.23%

The experimental analysis shows that increasing the num-

ber of demes of the EA+SA algorithms, and therefore the

number of evaluations performed, allows to improve the

accuracy of the algorithm, enhancing the average profit.

This accuracy improvement increases with the dimension of

the problem instances. The improvement for the 24 demes

algorithm with respect to the one using 1 deme ranges

from 0.93% for the smallest instances to 23.24% for the

largest ones. Results also show that the greater the number of

demes, the more robust the EA+SA algorithm is, presenting

a lower standard deviation of the computed profit.

VII. CONCLUSIONS AND FUTURE WORK

This article presents a novel parallel hybrid EA to solve

the problem of virtual machines mapping, which arises

for the cloud broker that sublets reserved instances as on-

demand ones to his customers at lower prices than those

offered by public cloud providers (we consider 20% cheaper

prices in this work). The problem was recently modeled

in [16].
The new proposed algorithm is shown to clearly out-

perform the best existing results in the literature [16] in

an affordable amount of time. The profit of the broker

is increased by up to 133.8% when using the proposed

technique, which only requires 90 seconds of execution

time. Additional scalability tests showed that the profit

improves when increasing the computational effort (by using

more cores in parallel), particularly for the biggest problem

instances.
The main lines for future work include to further analyze

the behavior and dynamics of the new technique, as well as

to investigate on other more accurate methods. Designing an

accurate forecasting technique to predict the resources the

broker will need in the future is another important line of

future research.

REFERENCES

[1] R. Buyya, J. Broberg, and A. M. Goscinski, Cloud Comput-
ing: Principles and Paradigms. Wiley, 2011.

[2] I. Foster, Y. Zhao, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Envi-
ronments Workshop, 2008.

[3] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey
of cloud computing systems,” in Fifth International Joint
Conference on INC, IMS and IDC (NCM), 2009, pp. 44–51.

[4] N. Grozev and R. Buyya, “Inter-cloud architectures and appli-
cation brokering: Taxonomy and survey,” Software: Practice
and Experience, pp. 1–22, online first, 2012.

[5] O. Rogers and D. Cliff, “A financial brokerage model for
cloud computing,” Journal of Cloud Computing: Advances,
Systems and Applications, vol. 1, no. 2, pp. 1–12, 2012.

[6] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A
scalable application placement controller for enterprise data
centers,” in Proc. of the 16th international conference on
World Wide Web. ACM, 2007, pp. 331–340.

[7] R. Buyya, R. Ranjan, and R. Calheiros, “Intercloud: Utility-
oriented federation of cloud computing environments for
scaling of application services,” in Proc. of the 10th In-
ternational Conference on Algorithms and Architectures for
Parallel Processing. Springer-Verlag, 2010, pp. 13–31.

[8] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and
I. M. Llorente, “Cloud brokering mechanisms for optimized
placement of virtual machines across multiple providers,”
Future Generation Computer Systems, vol. 28, no. 2, 2012.

[9] U. Lampe, “Optimizing the distribution of software services
in infrastructure clouds,” in IEEE World Congress on Ser-
vices, 2011, pp. 69–72.

[10] F. Legillon, N. Melab, D. Renard, and E.-G. Talbi, “Cost
minimization of service deployment in a multi-cloud envi-
ronment,” in IEEE International Conference on Evolutionary
Computation, 2013, p. to appear.

[11] R. Calheiros and R. Buyya, “Cost-effective provisioning and
scheduling of deadline-constrained applications in hybrid
clouds,” in Proc. of the 13th International Conference on Web
Information System Engineering, 2012, pp. 28–30.

[12] F. Wu, L. Zhang, and B. Huberman, “Truth-telling reserva-
tions,” Algorithmica, vol. 52, no. 1, pp. 65–79, 2008.

[13] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of
evolutionary computation. Oxford University Press, 1997.

[14] E. Alba, Parallel Metaheuristics: A New Class of Algorithms.
Wiley-Interscience, 2005.

[15] E. Alba and M. Tomassini, “Parallelism and evolutionary
algorithms,” IEEE Trans. Evol. Comput., vol. 6, no. 5, pp.
443–462, 2002.

[16] S. Nesmachnow, S. Iturriaga, B. Dorronsoro, E.-G. Talbi, and
P. Bouvry, “List scheduling heuristics for virtual machine
mapping in cloud systems,” in VI High Performance Comput-
ing Latin America Symposium, Mendoza, Argentina, 2013.

[17] S. Sivanandam and S. Deepa, Introduction to Genetic Algo-
rithms, 1st ed. Springer-Verlag, 2007.

[18] E. Alba, G. Luque, J. Garcia-Nieto, and G. Ordonez,
“MALLBA: a software library to design efficient optimisation
algorithms,” International Journal of Innovative Computing
and Applications, vol. 1, no. 1, pp. 74–85, 2007.

[19] W. Gropp, “MPICH2: A new start for MPI implementations,”
in Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Springer, 2002, pp. 7–7.

608599599

