
On the Relationship between I-O Logic and Connectionism

Guido Boella

University of Torino
guido@di.unito.it

Silvano Colombo Tosatto

University of Torino
colombotosatto.silvano@gmail.com

Artur S. d’Avila Garcez

City University London
aag@soi.city.ac.uk

Valerio Genovese

University of Luxembourg
and University of Torino
valerio.click@gmail.com

Abstract

In this paper we present an embedding of (a fragment of)
Input/Output logic into feed forward Neural Networks. We
make use of the neural-symbolic methodology in order to al-
low neural networks to reason about normative systems. By
doing so we are able to exploit normative reasoning within
the neural networks setting. We aim at showing how neural
networks can be used to represent a knowledge base of In-
put/Ouput logic rules and to reason about dilemma and con-
trary to duty problems.

1. Introduction

In this paper we study how to relate a symbolic representa-
tion of normative systems in Input/Output logic (I/O) with
the computational model of Neural Networks (NN).

We employ the Neural-Symbolic paradigm that combines
two different reasoning approaches: the symbolic and the
connectionist. In particular, we rely on the methodology pre-
sented in (d’Avila Garcez, Lamb, and Gabbay 2002) which
permits us to tackle some significant limitations of I/O logic.

I/O logic is a powerful tool to specify normative systems
but lacks of important features such as learning capacity and
scalability. These properties are pivotal for modeling com-
plex, dynamic and distributed entities such as normative sys-
tems.

The symbolic nature of I/O logic presents certain limits
regarding the learning capacity, like the knowledge acqui-
sition bottleneck discussed in (Lavrac and Dzeroski 1994).
Such limits are related to the expert systems which consist in
the problem relative to the formalization of the knowledge
base and the new rules that result from machine learning
due to the symbolic knowledge representation. Moreover,
the reasoning mechanism designed for I/O lacks of scalabil-
ity w.r.t the number of rules that represent a normative code.

The integration of I/O logic with neural networks using
a Neural-Symbolic paradigm (d’Avila Garcez, Lamb, and
Gabbay 2002) can overcome the current limits of I/O logic
by introducing a massive parallel computational model and
an efficient mechanism to learn from instances. I/O logic
presents a strong (and natural) similarity with NNs: both
have a separate specification of inputs and outputs.

Copyright c� 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The standard semantics used for I/O based on classical
logic closure (Makinson and van der Torre 2003) is purely
theoretical and does not have a computational counterpart
like, for instance, fixed point semantics for logical programs.

In order to define a mapping between semantics of I/O
logic and neural computation, we have identified a fragment
of I/O that permits a natural translation from an I/O knowl-
edge base into a neural network.

We will show that the identified fragment can be reduced
to extended logic programs (Brewka 1996). This approach
will enable us to employ the algorithms that maps definite
logical programs with NNs presented in (d’Avila Garcez,
Lamb, and Gabbay 2002).

We will then study how problems related to normative
reasoning such as the dilemma (Goble 2004) and contrary
to duty (Wyner 2006) can be represented within the neural-
symbolic paradigm.

In Sections 2 and 3 we present the Neural-Symbolic ap-
proach and introduce the I/O logic, respectively. Section 4
introduces the fragment of I/O that can be mapped into defi-
nite programs and present the translation from I/O rules into
neural networks. Section 5 shows how to represent and rea-
son about dilemma and contrary to duty problems with NNs.

2. Neural-Symbolic approach

In order to translate an I/O program into a NN capable to
compute the same semantics, we use a Neural-Symbolic ap-
proach to obtain a sound translation. By sound we mean
that given a set of input, the NN returns exactly the same
output as the semantics of the definite fragment of I/O does.
As explained in (d’Avila Garcez, Lamb, and Gabbay 2002),
a Neural-Symbolic approach allows a correct and complete
translation of the symbolic program because the resulting
network is able to compute all and only the output of the I/O
program given the input.

A Neural-Symbolic system aims to integrate two differ-
ent reasoning approaches: the connectionist and the sym-
bolic methodologies. Neural-symbolic systems have been
applied to knowledge acquisition tasks in bioinformatics
and fault diagnosis, outperforming state-of-the-art symbolic
and purely connectionist systems as discussed in (d’Avila
Garcez, Lamb, and Gabbay 2002). By combining the sym-
bolic and connectionist approaches, neural-symbolic sys-
tems may also help integrate existing (legacy) systems with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/18585414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


new technology in either of these areas. More generally, they
provide a principled way of combining reasoning and robust
learning in a unified computer science model.

In a Neural-Symbolic approach both approaches are ex-
ploited so that the deficiencies of both can be compensated
by their advantages. In this way it is possible to take advan-
tage of the symbolic representation of the knowledge and
use NNs massive parallelism that allows a better scalability
along with their robustness and learning capacity. (Thrun et
al. 1991) describes how the learning mechanisms of NNs
can outperform symbolic learning and are more tolerant to
noisy data.

As described in (Hilario 1995), there are two categories
of Neural-Symbolic approaches, Hybrid Systems which are
composed by interacting connectionist and symbolic sys-
tems and Unification Systems consisting in performing a
symbolic computation with connectionst systems. Even if
NNs are believed to be black box systems, (Kurfess 1997)
discusses how they can be employed for the representation
of symbolic knowledge; in (d’Avila Garcez, Lamb, and Gab-
bay 2002) is described how symbolic knowledge can be em-
bedded within a NN and later, after having enhanced the
network exploiting their learning capacity, how it is possi-
ble to extract the symbolic knowledge from the weights and
thresholds inside the network.

3. Input/Output Logic

The I/O logic, is a branch of the deontic logic which for-
malizes obligation and permissions. Also I/O logic captures
normative concepts and provides a formal mechanism for
reasoning about obligations and permissions.

In I/O logic norms are represented as ordered pairs of for-
mulas like (α,β), meaning: if α is present in the current
situation then β should be the case.

These two formulae are also named correspondingly input
and output, to make clear the fact that the input of the norm
is the current situation and what is desirable for this situation
is the output.

If we consider the I/O rules as norms that specify what
should be done in a specific situation1, we could then con-
sider a normative code as built by a set of I/O rules. We
can call G our normative code and considering a set of in-
puts X composed by a collection of atoms χ1, χ2, ..., χn as
an hypothetical situation, then we could try to process the
situation supplied from X with our normative code G.

In this view we can define different kinds of relations be-
tween X and G. For instance, simple minded output is the
output given from the processing of G on Cn(X) (the classi-
cal closure of X) in this case for each χn into X the norma-
tive code will check its norms (α,β) and produce an output
β if it finds a correspondence between χn and the input α of
the norm. The output obtained is then G(Cn(X)), but we
can also apply to this the classical closure so we obtain what
is represented as: out1(G, X) = Cn(G(Cn(X))).

1Unlike deontic logic, which tries to apply truth value to the
norms

Simple minded output

The simple minded output is a relevant mechanism of the
I/O logic which can be extended to obtain more complex
inference mechanisms.

We introduce now the three rules that characterize the sim-
ple minded output.

1. Strengthening Input (SI): From (α, χ) to (β, χ) whenever
α ∈ Cn(β)

2. Conjoining Output (AND): From (α, χ), (α, γ) to (α, χ
∧ γ)

3. Weakening Output (WO): From (α, χ) to (α, γ) when-
ever γ ∈ Cn(χ)

Besides those rules there is another important feature of the
simple minded output that we should consider: the feature
of not carrying the input into the output (unless a rule ex-
plicitly dictates so). The principle of carrying the input into
the output is called identity principle but, in this context, it
assumes the name of throughput.

Further outputs

Although the simple minded output is an interesting seman-
tics for I/O rules, it lacks of some properties that could
be useful in particular circumstances. One of this circum-
stances could be the following example: if χ ∈ out1(G, α)
and χ ∈ out1(G, β) then χ ∈ out1(G, α ∨ β). It is im-
possible to understand if χ is derived from α or β without
using the input disjunction. The simple minded output that
employs the input disjunction is called basic output.

Disjoining Input (OR): From (α, χ), (β, χ) to (α ∨ β, χ)

Another plausible property highlighted in (Makinson and
van der Torre 2003), is the reusability, that allows the out-
put to be carried in the input pool and be reused. The rule
that permits the reusability takes the name of Cumulative
Transitivity and the mechanism that implements it is called
reusable output.

Cumulative Transitivity (CT): From (α, χ), (α ∧ χ, γ) to
(α, γ)

Then, if we merge the two rules introduced above, we
can obtain the reusable basic output containing both input
disjunction and reusability. We can formally define it as
out4(G, A) = ∩ {Cn(G(V)): A ⊆ V ⊇ G(V), V com-
plete}.

Each of the four mechanisms introduced, can be further
enhanced by adding the throughput, which can be explained
considering the simple minded output, with G consisting of
a single rule (α,β) and the input set X composed by only
α. In the case we do not allow the throughput, we will have
as output only β; however, if we allow the throughput, then
the output will consist of the union of the generated output
and the already existing input, in this case by both α and β.

The throughput is usually called Identity in other systems
and must be said that this property runs against the I/O logic
principle of keeping the input and the output separated.



4. From I/O logic to Neural Networks

Before taking into consideration the translation algorithm
for I/O logic, we need to discuss the assumptions made to
make the translation possible. In the previous section, we
defined out1(G, X) and other I/O mechanisms, where the
I/O logic makes use of the classical closure. This raises a
problem, because NNs do not compute the classical closure.
To solve this, we simplified the input/output rules to logic
programming, avoiding the classical closure and because the
logic programming semantics is better suited to be computed
by a NN.

In order to simplify the I/O logic rules to logic programs,
we will make a few assumptions so that we can make use
of the translation algorithm developed by d’Avila Garcez,
Broda and Gabbay in (d’Avila Garcez, Lamb, and Gabbay
2002).

First, we have to define what is a Extended Logic Pro-
gram:

Definition 1 An Extended Logic Program is a finite set of
clauses of the form L0 ← L1, ..., Ln, where Li(0 ≤ i ≤
n) is a literal (an atom or a classical negation of an atom,
denoted by ¬).

In order to use the algorithms to translate I/O logic
rules into NNs, we have to make them comply with Ex-
tended Logic Programs clauses. Considering an ordered pair
(α,β), where α and β are both conjunctions of literals, we
can see it in a clause shape like this: β ← α. What we want
to obtain are clauses like the following: L0 ← L1∧ ...∧Ln,
where the head is composed by a single literal and the body
by a conjunction of literals.

Considering the input as the clause body is automatic be-
cause both are composed by conjunctions of literals so we
do not have to make any other assumption. However when
it is time to map the output into the head of the rule, we have
to constrain th output to be composed by a single literal.

As reported in (d’Avila Garcez, Lamb, and Gabbay 2002),
the literal in the head of a clause must be positive in order
to be translated into a neural network using the Connection-
ist Inductive Learning and Logic Programming System algo-
rithm. To overcome this problem, we have decided to always
consider the literals in the output of the rule (the head for the
clause) as positive. Considering the example (α ∧ γ,¬β):
this cannot be translated. Instead, if we start to consider ¬β
not as the negation of β but as a new positive atom that we
can call β�, with the same mean as ¬β, then the new I/O rule
resulting from this translation (α ∧ γ,β�) is compliant with
the algorithm requests and can be translated.

In this way we are not using the negation by failure, where
an atom is considered false if it is not explicitly declared as
true. Then because we are not considering an unknown fact
as a negated one, we have to use the explicit negation for the
cases where a negative output is useful, like for a norm that
in a certain situation forbids to do something.

An obvious question that can be raised after making the
I/O rules viable for translation is the following: what is go-
ing to happen if two separate I/O rules give opposite outputs
like β and ¬β?
With this I/O logic simplification, we have the advantage to

introduce the explicit negation needed for the translation and
useful for normative reasoning. In this way we also intro-
duce dilemmas(outputs containing contradictions like β and
¬β) that must be handled in order to maintain the system
consistent as we are going to discuss in section 5.

After making this assumptions, we can consider a set of
I/O logic rules as an Extended Logic Program. Consider-
ing G a normative code, a set of I/O rules like (α1,β1), ...,
(αn,βn), where αi = { li1 ∧ ... ∧ lim }, a conjunction of
literals and βi = li0 , a single literal. So to resume (α,β) =
(li1 ∧ ... ∧ lim , li0).

We are going to define what is the input of a normative
code as I(G) = { a11 ; ...; aij ; ...; anm} where (1 ≤ i ≤ n)
and (1 ≤ j ≤ m) as the conjunction of the atoms belonging
to the literals in the Inputs of the rules.

The output of a normative code is defined as O(G) =
{l10 ; ...; li0 ; ...; ln0} where (1 ≤ i ≤ n) as the set of liter-
als in the output of the rules.

Before redefining the properties of I/O logic we need to
explain that in: (lI1∧...∧lIm , lO1∧...∧lOn) we mean that by
activating the the input layer neurons of the network like the
literals in the input part of the rule, what we obtain as a result
of the computation is what is shown in the Output part of the
rule. Otherwise in the case we have disjunctions in the Input
parts (lI1 ∨ ... ∨ lIm , lOi) means that by activating at least
on neuron in the input layer of the network corresponding
to one of literals shown in the Input part, the result that is
computed is what is shown in the Output part.

We have redefined the I/O logic properties to be translated
into neural networks.

• Strengthening Input: From (α, χ) to (β, χ) whenever α ∈
Cn(β): (α,χ)

(β1∧...∧α∧...∧βn,χ)
with β1, ...,βn ⊆ I(G)

• Conjoining Output: From (α, χ), (α, γ) to (α, χ ∧ γ):
(α,χ)(α,γ)
(α,χ∧γ)

• Weakening Output: From (α, χ) to (α, γ) whenever γ ∈
Cn(χ): (α,γ1∧...∧χ∧...∧γn)

(α,χ) with γ1, ..., γn ⊆ O(G)

• Disjoining Input: From (α, χ), (β, χ) to (α ∨ β, χ):
(α,χ)(β,χ)
(α∨β,χ)

• Cumulative Transitivity: From (α, χ), (α ∧ χ, γ) to (α,
γ): (α,χ)(α∧χ,γ)

(α,γ)

Translation algorithms

Having shown the assumptions made on the I/O rules and
how we redefined I/O properties, we can now introduce an
outline of the translation algorithms that we are going to use
to build NNs from the I/O rules, the Connectionist Inductive
Learning and Logic Programming System and the Metalevel
Priorities algorithms described in (d’Avila Garcez, Lamb,
and Gabbay 2002).

Connectionist Inductive Learning and Logic Program-

ming System algorithm

For each rule Ri = (α1 ∧ ... ∧ αn,β) in a normative code
G do:



Figure 1: Translation example of a generic rule (li1 ∧ ... ∧
lim, li0).

1. For each atom αj(1 ≤ j ≤ n) in the input of the rule:
If there is no input neuron labeled αj in the input level,
then add a neuron labeled αj in the input level.

2. Add a neuron labeled Ni in the hidden level.
3. If there is no input neuron labeled β in the output level,

then add a neuron labeled β in the output level.
4. For each atom αj(1 ≤ j ≤ n) in the input of the rule:

Connect the respective input neuron with the neuron
labeled Ni in the hidden level with a positive (negative)
weighted arc if αj is positive (negative).

5. Connect the neuron labeled Ni with the neuron in the
output level labeled β with a positive weighted arc2.

In Figure 1 is shown the neural network translation of a
generic rule (li1 ∧ ... ∧ lim, li0).

Metalevel Priorities Algorithm This algorithm is used to
embed priority-based ordering within NNs. We will use
this algorithm to translate two types of ordering, one for the
Dilemma where the outputs of the rules are in contradiction,
for instance (α,χ) and (β,¬χ). The other case is relative
to Contrary to Duty problem where the output of one rule
is in contradiction with one of the inputs of the other, such
as (α,χ) and (¬χ, γ). Both cases are treated equally by the
algorithm so we are going to consider some general rules as
Rg = (αg, γ) and Rh = (βh, µ)3.
For each ordering rule Rg � Rh in a normative code G do:
1. Connect the hidden neuron labeled Hg with the output

neuron labeled µ using a negative weighted arc.
The Metalevel Priorities algorithm function is to add

those negative weighted arcs between the hidden level and
the output level of the network, which act by inhibiting the
output neurons of the lower priority rule if the higher one is
activated.

Using the Connectionist Inductive Learning and Logic
Programming System and the Metalevel Priorities algo-
rithms, we are able to build NNs that behave like the nor-
mative codes from which they are translated by interpreting

2Note that due to our previous assumptions β is always consid-
ered a positive atom so the arc between a hidden neuron represent-
ing the rule and the output neuron representing its output will be
always positively weighted.

3In a Dilemma case we have γ = ¬µ. Instead in a Contrary to
Duty case we have γ = ¬β where β ∈ βh

Figure 2: Strengthening Input translated into a neural net-
work.

Figure 3: Conjoining Output translated into a neural net-
work.

a rule like (li1 ∧ ... ∧ lim, li0) as: if the input layer neurons
corresponding to the Input part are activated, then the neural
network will compute the output corresponding to the output
shown in the output of the rule. This is proven in (d’Avila
Garcez, Lamb, and Gabbay 2002).

Neural Networks for the Input/Output rules

In this section we will show the NNs that compute the six
I/O rules introduced earlier.

For the sake of simplicity we will discuss only the archi-
tecture of the network, omitting the weights and activation
thresholds.

Strengthening Input

Definition 2
(α,χ)

(β1∧...∧α∧...∧βn,χ)
with β1, ...,βn ⊆ I(G)

We translated the antecedent with the algorithm displayed
in the previous section and verified if the consequent is com-
puted in the constructed network.

In Figure 2 we can see how the consequent is verified
by the network because if we consider another input neu-
ron β as any of the other possible inputs of the network
β1, ...,βn ⊆ I(G), that does not interfere with the norm
in the antecedent, then it is obvious that α ∧ β is equivalent
to have only α.

Conjoining Output

Definition 3
(α,χ)(α,γ)
(α,χ∧γ)

Figure 3 shows how α, contained in both rules as the in-
put, can alone generate the output χ∧γ. We obtain (α,χ∧γ)
by the natural composition of the network.



Figure 4: Weakening Output translated into a neural net-
work.

Figure 5: Disjoining Input translated into a neural network.

Weakening Output

Definition 4
(α,γ1∧...∧χ∧...∧γn)

(α,χ) with γ1, ..., γn ⊆ O(G)

In Figure 4 we have the resulting neural network of the
translation. The network is similar to the one built from the
conjoining output. The difference with the network in fig-
ure 3 lies in the hidden level of the two networks, in the one
referenced to the weakening output there is only one neuron
associated to the rule (α,χ ∧ γ), instead in the network rel-
ative to the Conjoining Output there are two neurons in the
hidden level, because of the two rules that compose the NN.

Disjoining Input

Definition 5
(α,χ)(β,χ)
(α∨β,χ)

In Figure 5 is shown the network resulting from the trans-
lation of the two rules (α, χ) and (β, χ), it is obvious that
this network can compute successfully the rule (α ∨ β, χ),
because only one of the two possible input is necessary to
produce χ in the output level. However the true task of the
rule is to help us to understand which of the two inputs is
generating the output. This is obtainable by considering the
two initial rules in two separated steps, in this way we can
say which one is the cause of the presence of the positive
output.

For each of the four NNs introduced before, the compu-
tation is clamped after the first run and not allowing the net
to stabilize. This because the networks must behave like the
I/O mechanisms, that process the input only once and pro-
ducing the output.

Transitivity

Definition 6
(α,χ)(α∧χ,γ)

(α,γ)

Figure 6 shows how we translated the Cumulative Transi-
tivity into a NN. What we obtain from the translation is the

Figure 6: Cumulative Transitivity translated into a neural
network.

Figure 7: Throughput rule translated into a neural network.

Transitivity because the combination of the cumulative tran-
sitivity and the Strengthening Input results in the transitivity
that is stronger and implies the Cumulative Transitivity. This
happens because in the simple minded output and the other
mechanism, the Strengthening Input rule is present.

For this translation a simple application of the algorithm
to the I/O rules is not enough because, in this case, we have
to bring back the output to be reused as input for the net-
work. Figure 5 highlights the connection that brings back
the output to the input because, in this case, we will not
clamp the computation and let the network to stabilize.

Throughput Besides the rules described, we should also
consider the throughput and how to translate it into a NN.
This property, usually called identity, can be translated into
a network by adding to the normative code a rule for each
input atom present as an input in the rules, with that atom
both as input and output. In this way, after the translation,
every input will be carried on as an output.

Figure 7 shows how a rule (α,α) built to allow the
Throughput is translated.

5. Deontic logic problems

Because of his origins in the deontic logic, the I/O logic is
affected by the same problems. Here we are going to discuss
some of this problems and, in particular, the dilemma and the
contrary to duty.

Dilemma problem

We have already mentioned the dilemma problem earlier,
while discussing the assumptions adopted to allow the I/O
rules to be considered logic programs. A dilemma occurs



Figure 8: Soldier’s dilemma rules translated into a neural
network.

when a system produces a contradictory output, for exam-
ple β and ¬β. We must assume that this contradiction is
not caused by a faulty system or because of some wrong
rules as in this case we must not consider the contradiction a
dilemma but a system error to be solved. A classic dilemma
example is Sartre’s soldier, that has the duty to kill and the
moral obligation not to kill. In this case, we can see the two
obligations as rules that produce both k and ¬k, the soldier
dilemma that has to choose if to kill or not to kill.

R1: (T,¬k)
R2: (s, k)

The rules R1 and R2 represent the soldier’s dilemma.
A way to solve this dilemma is to prioritize one rule over
another using a priority-based ordering, we can say that
R2 � R1 because we have decided to favor the most spe-
cific of the two. Other dilemmas can be solved by using a
different way to choose the preferred rule, it is a user choice.

In Figure 8 is represented how the algorithm handles the
ordering between the rules. The dotted arrow created from
the preference ordering R2 � R1, has a negative weight and
blocks the activation of the output ¬k if R2 is activated.

Contrary to duty problem

We can describe a contrary to duty as the circumstance in
which we have to deal with an exceptional situation but that
could be still considered legal. What follows is an exam-
ple of a contrary to duty problem: we introduce an exam-
ple similar to the one made by Marek Sergot from (Prakken
and Sergot 1996) and used by D. Mackinson and L. van der
Torre, in which he considers whether a cottage should have a
fence or not. This can be described by means of two simple
i/o rules:

1. (T,¬f), in this rule we have a tautology in input, so it
always gives the output ¬f and states: A cottage should
not have a fence.

2. (f, w), this rule states: If a cottage has a fence, then it
must be white.

Those rules are enough to build a contrary to duty prob-
lem. The first rule is the one that should be applied in an op-
timal situation. Rule number 2 is the one which effectively
tells what to do in a suboptimal situation.

A contrary to duty problem turns out when a i/o rule states
that α must be true (or false) whilst another rule considers

Figure 9: Neural network of the contrary to duty example.

what to do in the case α is false (or true). The two follow-
ing rules are what is necessary to form a contrary to duty
problem.

1. (T,α)

2. (¬α,β)
After having explained what a contrary to duty problem

is, we will now discuss how to treat it. As already described
in (van der Torre and Tan 1999), we can solve the contrary to
duty problem using a preference ordering of the rules. Con-
sidering the cottage example, in a situation where we have
a fence, we want to consider the situation acceptable if the
fence is white, even if the first rule violated. In order to do
so and solve the contrary to duty problem, if the second rule
(f, w) is complied, then we should consider the situation ac-
ceptable even if the first rule is violated. Formally we added
a priority-based ordering in the example: (f, w) � (T,¬f).

Therefore, in order to allow this bypassing of rules, we
can introduce a preference ordering where the contrary to
duty rule inhibits the rule that should be applied in the op-
timal situation, so that the system can be kept safe from
any contradiction. Note that as in the Dilemma problem,
priority-based orderings are supplied to the system by the
user.

Contrary to duty problem translation into a Neural Net-

work We will now show this example translated into a
NN. These are the example’s rules:

R1: (T,¬f)
R2: (f, w)

R2 � R1

Figure 9 shows the resulting network for the contrary to
duty example after the translation. In the picture we omit-
ted weights and thresholds because they are not too relevant
for this example; we have instead highlighted the connection
showed as a dotted line because it was built from the priority
rule R2 � R1 allowing the network to handle the contrary to
duty. So in the case that the neuron N2 is activated, the neg-
ative weight on the red connection, inhibits the activation of
the output of the neuron ¬f , the one that should be activated
by N1 that is built from the rule (T,¬f), exactly what we
want from R2 � R1.

Adding violation nodes In the way just described we can
keep the network consistent in presence of contrary to duty
rules but we lose any data about which rules are violated. In



Figure 10: Neural network of the contrary to duty example
extended with violation rules.

order to maintain this information we can provide the nor-
mative code with some factitious rules that can keep track
of occurred violations. These violation rules are built in this
way:

1. For each rule r1, ..., rn in the Normative Code G where
ri = (αi,βi) and 1 ≤ i ≤ n :

- Build a new rule rn+i = (αi ∧ ¬βi, Vi)

After the new rules to the normative code have been
added, we can translate it with the algorithms presented.

In Figure 10, we added violation rules to the contrary to
duty example and translated the resulting set of rules:

R1: (T,¬f)
R2: (f, w)

R3: (f, V1)

R4: (f ∧ ¬w, V2)

R2 � R1

In the network an activation of an output neuron Vi means
a violation of the rule i.

6. Conclusions and Future Work

We described in this paper how a fragment of I/O logic that
can be reduced to Extended Logic Programs, can be trans-
lated into Neural Networks with the algorithms described.
We have also discussed how to handle the problems related
to the Normative reasoning: the Dilemma and the Contrary
to duty problem, by means of a preference-based ordering
and describing the effects that our solutions have on the
translated networks.

For the Contrary to duty problem translation, we added
the violation nodes in order to recognise the violations that
occur in a system, despite the legal situation due to contrary
to duty rules.

This is a first attempt to relate the two fields of I/O logic
and NNs to the best of our knowledge. This is important
because for now we only got initial results, a lot remains to
do in the area. However, the prospects on this regards are
very promising, due to the natural relationships between the
two approaches as input-output systems, the robust learning
and effective parallel computation capabilities of NNs, and
the importance of deontic logic in a range of application do-
mains such as law, multi-agent systems and others.

As future work we plan to study how the learning capabil-
ity of NNs can be exploited in learning new normative rules.
For instance, in (d’Avila Garcez, Lamb, and Gabbay 2002)

it has been shown how the standard backpropagation algo-
rithm can be used to improve the knowledge that resides in
the network. Moreover, when in normative systems a situa-
tion that violates the norms occurs but it is judged legal, the
precedent created actually changes the normative system. In
this case, the NNs capacity to learn from instances can be
exploited to evolve normative systems.

Further work can be done by translating more complex
normative systems and verifying to what extent a Neural-
Symbolic approach can improve the efficiency of compli-
ance and norm violation checking.

Acknowledgments Valerio Genovese is supported by the
National Research Fund, Luxembourg.

References

Brewka, G. 1996. Well-founded semantics for extended
logic programs with dynamic preferences. Journal of Arti-
ficial Intelligence Research 4.
d’Avila Garcez, A. S.; Lamb, L. C.; and Gabbay, D. M.
2002. Neural-Symbolic Learning Systems. Perspectives in
Neural Computing Series. Springer, LLC.
Goble, L. 2004. A proposal for dealing with deontic dilem-
mas. In Deontic Logic. Springer Berlin / Heidelberg.
Hilario, M. 1995. An overview of strategies for neurosym-
bolic integration. In Workshop on Connectionist-Symbolic
Integration: From Unified to Hybrid Approaches. IJCAI
95.
Kurfess, F. J. 1997. Neural Networks and Structured
Knowledge. In C. Logos-Verlag, Berlin.
Lavrac, N., and Dzeroski, S. 1994. Inductive Logic Pro-
gramming: Techniques and Applications. Ellis Horwood,
New York.
Makinson, D., and van der Torre, L. 2003. What is in-
put/output logic? Foundations of the Formal Sciences II:
Application of Mathematical Logic in Philosophy and Lin-
guistics.
Prakken, H., and Sergot, M. J. 1996. Contrary-to-duty
obligations. Studia Logica 57(1):91–115.
Thrun, S. B.; Bala, J.; Bloedorn, E.; Bratko, I.; Cestnik, B.;
Cheng, J.; Keller, S.; Kononenko, I.; Kreuziger, J.; Michal-
ski, R. S.; Mitchell, T.; Pachowicz, P.; Reich, Y.; Vafaie,
H.; de Welde, K. V.; Wenzel, W.; Wnek, J.; and Zhang, J.
1991. The monk’s problems: A performance comparison
of different learning algorithms. cmu-cs-91-197. Technical
report, Carnegie Mellon University.
van der Torre, L., and Tan, Y.-H. 1999. Contrary-to-duty
reasoning with preference-based dyadig obligations. An-
nals of Mathematics and Artificial Intelligence 0.
Wyner, A. 2006. Sequences, obligations, and the contrary-
to-duty paradox. 255–271.


