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Exclusive production of ρ0 mesons was studied at the COMPASS experiment by scattering 160 GeV/c
muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries
were measured as a function of Q 2, xB j , or p2

T . The sinφS asymmetry is found to be −0.019 ±
0.008(stat.) ± 0.003(syst.). All other asymmetries are also found to be of small magnitude and consistent
with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree
well with the present results. The data is interpreted as evidence for the existence of chiral-odd,
transverse generalized parton distributions.
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1. Introduction

The spin structure of the nucleon is a key issue in experimental
and theoretical research since a few decades. The most general in-
formation on the partonic structure of hadrons is contained in the
generalised parton correlation functions (GPCFs) [1,2], which pa-
rameterise the fully unintegrated, off-diagonal parton–parton cor-
relators for a given hadron. These GPCFs are ‘mother distributions’
of the generalised parton distributions (GPDs) and the transverse
momentum dependent parton distributions (TMDs), which can be
considered as different projections or limiting cases of GPCFs.
While GPDs appear in the QCD-description of hard exclusive pro-
cesses such as deeply virtual Compton scattering (DVCS) and hard
exclusive meson production (HEMP), TMDs can be measured in
reactions like semi-inclusive deep inelastic scattering (SIDIS) or
Drell–Yan processes. The GPDs and TMDs provide complemen-
tary 3-dimensional pictures of the nucleon. In particular, when
Fourier-transformed to impact parameter space and for the case of
vanishing longitudinal momentum transfer, GPDs provide a three
dimensional description of the nucleon in a mixed momentum-
coordinate space, also known as ‘nucleon tomography’ [3,4]. More-
over, GPDs and TMDs contain information on the orbital motion of
partons inside the nucleon.

The process amplitude for hard exclusive meson production by
longitudinal virtual photons was proven rigorously to factorise into
a hard-scattering part and a soft part [5,6]. The hard part is cal-
culable in perturbative QCD (pQCD). The soft part contains GPDs
to describe the structure of the probed nucleon and a distribu-
tion amplitude (DA) to describe the one of the produced meson.
This collinear factorisation holds in the generalised Bjorken limit
of large photon virtuality Q 2 and large total energy in the virtual-
photon nucleon system, W , but fixed xB j , and for |t|/Q 2 � 1.
Here t is the four-momentum transfer to the proton and xB j =
Q 2/2Mpν , where ν is the energy of the virtual photon in the lab
frame and Mp the proton mass.

For hard exclusive meson production by transverse virtual pho-
tons, no proof of collinear factorisation exists. In phenomenological
pQCD-inspired models k⊥ factorisation is used, where k⊥ denotes
the parton transverse momentum. In the model of Refs. [7–9], elec-
troproduction of a light vector meson V at small xB j is analysed in
the ‘handbag’ approach, in which the amplitude of the process is a
convolution of GPDs with amplitudes for the partonic subprocesses
γ ∗q → V q and γ ∗ g → V g . Here, q and g denote quarks and glu-
ons, respectively. The partonic subprocess amplitudes, which com-
prise corresponding hard scattering kernels and meson DAs, are
calculated in the modified perturbative approach where the trans-
verse momenta of quark and antiquark forming the vector meson
are retained and Sudakov suppressions are taken into account. The
partons are still emitted and reabsorbed from the nucleon collinear
to the nucleon momentum. In such models, cross sections and also
spin-density matrix elements for HEMP by both longitudinal and
transverse virtual photons can be well described simultaneously
[7,10].

At leading twist, the chiral-even GPDs H f and E f , where f de-
notes a quark of a given flavor or a gluon, are sufficient to describe
exclusive vector meson production on a spin 1/2 target. These
GPDs are of special interest as they are related to the total an-
gular momentum carried by partons in the nucleon [11]. A variety
of GPD fits using all existing DVCS proton data has shown that the
GPDs H f are well constrained over the presently limited accessible
xB j range, by the very low xB j data of the HERA collider and by the
high xB j data of HERMES and JLab [12–15]. There exist constraints
on GPDs E f for valence quarks from fits to nucleon form factor
data [16], HERMES transverse proton data [17] and JLab neutron
data [18]. A parameterisation of chiral-even GPDs [9], which is
consistent with the HEMP data of HERMES [19] and COMPASS [20],
was recently demonstrated to successfully describe almost all ex-
isting DVCS data [21]. This is clear evidence for the consistency
of the contemporary phenomenological GPD-based description of
both DVCS and HEMP.

There exist also chiral-odd – often called transverse – GPDs,
from which in particular H f

T and E f
T were shown to be re-

quired [22,23] for the description of exclusive π+ electroproduc-
tion on a transversely polarised proton target [24]. It was recently
shown [25] that the data analysed in this Letter are also sensitive
to these GPDs.

This Letter describes the measurement of exclusive ρ0 muopro-
duction on transversely polarised protons with the COMPASS appa-
ratus. Size and kinematic dependences of azimuthal modulations
of the cross section with respect to beam and target polarisation
are determined and discussed, in particular in terms of the above
introduced chiral-odd GPDs.

2. Formalism

The cross section for exclusive ρ0 muoproduction, μN →
μ′ρ0N ′ , on a transversely polarised target reads20 [26]21:

dσ

dxB j dQ 2 dt dφ dφS

=
[
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. (1)

Here, ST is the target spin component perpendicular to the direc-
tion of the virtual photon. The beam polarisation is denoted by
P
 . The azimuthal angle between the lepton scattering plane and
the production plane spanned by virtual photon and produced me-
son is denoted by φ, whereas φS is the azimuthal angle of the
target spin vector about the virtual-photon direction relative to
the lepton scattering plane (see Fig. 1). The ST dependent part
of Eq. (1) contains eight different azimuthal modulations: five sine
modulations for the case of an unpolarised beam and three cosine
modulations for the case of a longitudinally polarised beam. Ne-
glecting terms depending on m2

μ/Q 2, where mμ denotes the mass
of the incoming lepton, the virtual-photon polarisation parameter
ε describes the ratio of longitudinal and transverse photon fluxes
and is given by:

20 For convenience in this chapter natural units h̄ = c = 1 are used.
21 Note that the t-dependence of the cross section is indicated explicitly here and

the definition of σνλ
μσ given by Eq. (3) slightly differs from that in Ref. [26].
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Fig. 1. Definition of the angles φ and φs . Here k, k′ , q and v represent three-
momentum vectors of the incident and the scattered muon, the virtual photon and
the meson respectively. The symbol ST denotes the component of the target spin
vector perpendicular to the virtual-photon direction.

ε = 1 − y − 1
4 y2γ 2

1 − y + 1
2 y2 + 1

4 y2γ 2
, γ = 2MpxB j

Q
, (2)

where y is the fractional energy of the virtual photon. The symbols
σνλ

μσ in Eq. (1) stand for polarised photoabsorption cross sections
or interference terms, which are given as products of helicity am-
plitudes M:

σνλ
μσ =

∑
M∗

μ′ν ′,μνMμ′ν ′,σλ, (3)

where the sum runs over μ′ = 0,±1 and ν ′ = ±1/2. The helic-
ity amplitude labels appear in the following order: vector meson
(μ′), final-state proton (ν ′), photon (μ or σ ), initial-state proton
(ν or λ). For brevity, the helicities −1, −1/2, 0, 1/2, 1 will be la-
belled by only their signs or zero, omitting 1 or 1/2, respectively.
Also the dependence of σνλ

μσ on kinematic variables is omitted.
The amplitudes of those cross section modulations that depend

on target polarisation are obtained from Eq. (1) as follows:

Asin(φ−φs)
UT = − Im(σ+−++ + εσ+−

00 )

σ0
, Acos(φ−φS )

LT = Reσ+−++
σ0

,

Asin(φ+φs)
UT = − Imσ+−+−

σ0
, Acos φs

LT = −Reσ+−
+0

σ0
,

Asin(3φ−φs)
UT = − Imσ−++−

σ0
, Acos(2φ−φs)

LT = −Reσ−+
+0

σ0
,

Asin φs
UT = − Imσ+−

+0

σ0
,

Asin(2φ−φs)
UT = − Imσ−+

+0

σ0
. (4)

Here, unpolarised (longitudinally polarised) beam is denoted by U
(L) and transverse target polarisation by T. The φ-independent part
of the cross section for unpolarised beam and target, denoted by
σ0, is given as a sum of the transverse and longitudinal cross sec-
tions:

σ0 = 1

2

(
σ++++ + σ−−++

) + εσ++
00 . (5)

The amplitudes given in Eq. (4) will be referred to as asymmetries
in the rest of the Letter.

3. Experimental set-up

The COMPASS experiment is situated at the high-intensity M2
muon beam of the CERN SPS. A detailed description can be found
in Ref. [27].

The μ+ beam had a nominal momentum of 160 GeV/c with a
spread of 5% and a longitudinal polarisation of P
 ≈ −0.8. The data
were taken at a mean intensity of 3.5 ·108 μ/spill, for a spill length
of about 10 s every 40 s. A measurement of the trajectory and the
momentum of each incoming muon is performed upstream of the
target.

The beam traverses a solid-state ammonia (NH3) target that
provides transversely polarised protons. The target is situated
within a large aperture magnet with a dipole holding field of 0.5 T.
The 2.5 T solenoidal field is only used when polarising the target
material. A mixture of liquid 3He and 4He is used to cool the target
to 50 mK. Ten NMR coils surrounding the target allow for a deter-
mination of the target polarisation P T , which typical amounts to
0.8 with an uncertainty of 3%. The ammonia is contained in three
cylindrical target cells with a diameter of 4 cm, placed one af-
ter another along the beam. The central cell is 60 cm long and the
two outer ones are 30 cm long, with 5 cm space between cells. The
spin directions in neighbouring cells are opposite. Such a target
configuration allows for a simultaneous measurement of azimuthal
asymmetries for the two target spin directions in order to become
independent of beam flux measurements. Systematic effects due
to acceptance are reduced by reversing the spin directions on a
weekly basis. With the three-cell configuration, the average accep-
tance for cells with opposite spin direction is approximately the
same, which leads to a further reduction of systematic uncertain-
ties.

The dilution factor f , which is the cross-section-weighted frac-
tion of polarisable material, is calculated for incoherent exclusive
ρ0 production using the measured material composition and the
nuclear dependence of the cross section:

f = np

np + ∑
A nA

σ̃A
σp

. (6)

Here, np and nA denote the numbers of polarisable protons in
the target and of unpolarised nucleons in the target material with
atomic mass A, respectively. The sum runs over all nuclei present
in the COMPASS target. The ratio of this cross section per nucleon
for a given nucleus to the cross section on the proton is param-
eterised according to Eq. (11) in Ref. [28] over a wide range of
Q 2, using measurements on various nuclear targets as described
therein. No dependence of nuclear effects on ν and on p2

T is as-
sumed as motivated by the NMC results on incoherent exclusive
ρ0 production [29] in a kinematic range similar to that of COM-
PASS. For the NH3 target the dilution factor amounts typically to
0.25 [20].

The spectrometer consists of two stages in order to recon-
struct scattered muons and produced hadrons over wide momen-
tum and angular ranges. Each stage has a dipole magnet with
tracking detectors before and after the magnet, hadron and elec-
tromagnetic calorimeters and muon identification. Identification of
charged tracks with a RICH detector in the first stage is not used
in the present analysis.

Inclusive and calorimetric triggers are used to activate data
recording. Inclusive triggers select scattered muons using pairs of
hodoscopes and muon absorbers. They are complemented by a
calorimetric trigger that relies on the energy deposit of hadrons in
one of the calorimeters. This trigger covers small acceptance holes
in the inclusive triggers. It was checked that this trigger does not
introduce any bias due to the acceptance of the calorimeters in the
xB j range covered by the present data [30]. Veto counters upstream
of the target are used to suppress beam halo muons.

4. Event selection and background estimation

The presented work is a continuation of the analysis of
Asin(φ−φS )

UT for exclusive ρ0 mesons produced off transversely po-
larised protons at COMPASS and it is based on the same proton
event sample as in Ref. [20]. The essential steps of event selec-
tion and asymmetry extraction are summarised in the following.
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The considered events are characterised by an incoming and a
scattered muon and two oppositely charged hadrons, h+h− , with
all four tracks associated to a common vertex in the polarised
target. In order to select events in the deep inelastic scattering
regime and suppress radiative corrections, the following cuts are
used: Q 2 > 1 (GeV/c)2, 0.003 < xB j < 0.35, W > 5 GeV/c2 and
0.1 < y < 0.9. The production of ρ0 mesons is selected in the two-
hadron invariant mass range 0.5 GeV/c2 < Mπ+π− < 1.1 GeV/c2,
where for each hadron the pion mass hypothesis is assigned. This
cut is optimised towards high yield and purity of ρ0 production, as
compared to non-resonant π+π− production. The measurements
are performed without detection of the recoiling proton in the final
state. Exclusive events are selected by choosing a range in missing
energy,

Emiss = (p + q − v)2 − p2

2Mp
= ν − Eρ0 + t

2Mp
. (7)

The four-momenta of proton, photon, and meson, are denoted by
p, q, and v respectively. Although for exclusive events Emiss ≈ 0
holds, the finite experimental resolution is taken into account by
selecting events in the range |Emiss| < 2.5 GeV, which corresponds
to 0 ± 2σ where σ is the width of the Gaussian signal peak. Non-
exclusive background can be suppressed by cuts on the squared
transverse momentum of the vector meson with respect to the
virtual-photon direction, p2

T < 0.5 (GeV/c)2, the energy of the ρ0

in the laboratory system, Eρ0 > 15 GeV, and the photon virtuality,

Q 2 < 10 (GeV/c)2. An additional cut p2
T > 0.05 (GeV/c)2 is used

to reduce coherently produced events. As explained in Ref. [20]
we use p2

T rather than t . After the application of all cuts, the
final data set of incoherently produced exclusive ρ0 events con-
sist of about 797 000 events. The average values of the kinematic
variables are 〈Q 2〉 = 2.15 (GeV/c)2, 〈xB j〉 = 0.039, 〈y〉 = 0.24,
〈W 〉 = 8.13 GeV/c2, and 〈p2

T 〉 = 0.18 (GeV/c)2. In order to correct
for the remaining semi-inclusive background in the signal region,
the Emiss shape of the background is parameterised for each indi-
vidual target cell in every kinematic bin of Q 2, xB j , or p2

T using
a LEPTO Monte Carlo (MC) sample generated with COMPASS tun-
ing [31] of the JETSET parameters. The h+h− MC event sample is
weighted in every Emiss bin i by the ratio of numbers of h±h±
events from data and MC,

wi = Nh+h+
i,data(Emiss) + Nh−h−

i,data(Emiss)

Nh+h+
i,MC (Emiss) + Nh−h−

i,MC (Emiss)
, (8)

which improves the agreement between data and MC signifi-
cantly [20].

For each kinematic bin, target cell, and spin orientation a sig-
nal plus background fit is performed, whereby a Gaussian func-
tion is used for the signal shape, and the background shape is
fixed by MC as described above. The fraction of semi-inclusive
background in the signal range is 22%, nevertheless the fraction
strongly depends on kinematics and varies between 7% and 40%.
An example is presented in Fig. 2. The background corrected dis-
tributions, Nsig

k (φ,φS), are obtained from the measured distribu-

tions in the signal region, Nsig,raw
k (φ,φS), and in the background

region 7 GeV < Emiss < 20 GeV, Nback
k (φ,φS). The distributions

Nback
k (φ,φS) are rescaled with the estimated numbers of back-

ground events in the signal region and afterwards subtracted from
the Nsig,raw

k (φ,φS) distributions. As no kinematic dependence of
the semi-inclusive background asymmetries, which were small,
was observed in the background region, no systematic uncertainty
is assigned due to extrapolation of this background into the Emiss
region of the signal.
Fig. 2. The Emiss distribution in the range 2.4 (GeV/c)2 < Q 2 � 10 (GeV/c)2, to-
gether with the signal plus background fits (solid curve). The dotted and dashed
curves represent the signal and background contributions, respectively. In the sig-
nal region −2.5 GeV < Emiss < 2.5 GeV, indicated by vertical dash-dotted lines, the
amount of semi-inclusive background is 35%. Averaged over the kinematic bins, the
fraction of semi-inclusive background in the signal region is 22%.

After the described subtraction of semi-inclusive background,
the final sample still contains diffractive events where the recoiling
nucleon is in an excited N∗ or � state (14%), coherently produced
ρ0 mesons (∼ 12%), and non-resonant π+π− pairs (< 2%) [20].
We do not apply corrections for these contributions.

5. Results and discussion

The asymmetries are evaluated using the background-corrected
distributions Nsig

k (φ,φS) by combining data-taking periods with
opposite target polarisations which are denoted by ±. The events
of the two outer target cells are summed up. The number of ex-
clusive ρ0 mesons as a function of φ and φS , where the index j
denotes the (φ, φS ) bin, can be written for every target cell n as:

N±
j,n(φ,φS) = a±

j,n

(
1 ± A(φ,φS)

)
. (9)

Here, a±
j,n is the product of spin-averaged cross section, muon flux,

number of target nucleons, acceptance, and efficiency of the spec-
trometer. The angular dependence reads:

A(φ,φS) = Asin(φ−φS )
UT,raw sin(φ − φS) + Asin(φ+φS )

UT,raw sin(φ + φS)

+ Asin(3φ−φS )
UT,raw sin(3φ − φS)

+ Asin(2φ−φS )
UT,raw sin(2φ − φS)

+ Asin φS
UT,raw sinφS + Acos(φ−φS )

LT,raw cos(φ − φS)

+ Acos φS
LT,raw cosφS + Acos(2φ−φS )

LT,raw cos(2φ − φS). (10)

The symbol Am
UT(LT),raw denotes the amplitude for the angular mod-

ulation m. After the subtraction of semi-inclusive background, the
“raw” asymmetries Am

UT,raw and Am
LT,raw are extracted from the fi-

nal sample using a two-dimensional binned maximum likelihood
fit with 12 bins in φ and in φS . They are used to obtain the trans-
verse target asymmetries Am

UT(LT) defined in Eq. (4) as:

Am
UT = Am

UT,raw

〈 f · |P T | · Dm(ε)〉 ,

Am
LT = Am

LT,raw
m

, (11)
〈 f · |P T | · P
 · D (ε)〉
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Table 1
Systematic uncertainties for the average asymmetries ob-
tained from the studies explained in the text.

i) ii) iii)

Asin(φ−φS )
UT 0.002 0.002 0.001

Asin(φ+φS )
UT 0.004 0.004 0.004

Asin(2φ−φS )
UT 0.002 0.001 0.002

Asin(3φ−φS )
UT 0.006 0.003 0.003

Asin φS
UT 0.001 0.003 0.001

Acos(φ−φS )
LT 0.005 0.011 0.023

Acos(2φ−φS )
LT 0.016 0.016 0.018

Acos φS
LT 0.006 0.029 0.023

in every kinematic bin. The denominator is computed using the
arithmetic mean of the product that is calculated for each indi-
vidual event. Here, P T is used, which in COMPASS kinematics is a
good approximation to ST . The depolarisation factors are given by:

Dsin(φ−φS ) = 1,

Dsin(φ+φS ) = Dsin(3φ−φS ) = ε

2
,

Dsin φS = Dsin(2φ−φS ) = √
ε(1 + ε),

Dcos(φ−φS ) =
√

1 − ε2,

Dcos φS = Dcos(2φ−φS ) = √
ε(1 − ε). (12)

In order to estimate the systematic uncertainty of the measure-
ments, we take into account the relative uncertainty of the target
dilution factor (2%), the target polarisation (3%), and the beam
polarisation (5%). Combined in quadrature this gives an overall sys-
tematic normalisation uncertainty of 3.6% for the asymmetries Am

UT
and 6.2% for Am

LT. Additional systematic uncertainties are obtained
from separate studies of i) a possible bias of the applied estima-
tor, ii) the stability of the asymmetries over data-taking time, and
iii) the robustness of the applied background subtraction method
and a difference between the mean asymmetries obtained in the
xB j , Q 2 and p2

T binning, which is originating from averaging the
depolarisation factors. A summary of these three systematic un-
certainties for the average asymmetries can be found in Table 1.
The total systematic uncertainty is obtained as a quadratic sum of
these three components and the normalisation uncertainty.

In Eq. (1), ST is defined with respect to the virtual-photon mo-
mentum direction, while in the experiment transverse polarisation
P T is defined relative to the beam direction. The transition from
ST to P T introduces in the cross section [26] the angle θ be-
tween the virtual photon and the beam direction, which is small
at COMPASS kinematics. Additionally, some of the AUT(LT) asym-
metries get mixed with AUL(LL) asymmetries that are suppressed
by sin θ . Presently the influence of the θ -related corrections can
only be studied based on a few available measurements [32,33] of
the double-spin asymmetry ALL for proton targets in the kinematic
range similar to that of COMPASS. Taking into account the small-
ness of sin θ at COMPASS (sin θ ≈ 0.04 on average), the correction
was found to be negligible. We provide the values of sin θ in the
Durham data base [34] to allow for corrections when new or more
precise data on AUL(LL) become available.

The results for the five single-spin and three double-spin asym-
metries as a function of xB j , Q 2, or p2

T are shown in Figs. 3
and 4, respectively. Error bars show statistical uncertainties. The
systematic uncertainties including the normalisation uncertainties
added in quadrature are represented by grey shaded bands. Av-
erage asymmetry values for all modulations are given in Fig. 5
and Table 2. For three of them, the experimental precision is as
high as O (±0.01). All average asymmetry values are found to
Table 2
Average asymmetries with statistical and system-
atic uncertainties for all measured modulations.

Asin(φ−φS )
UT −0.008±0.011±0.003

Asin(φ+φS )
UT −0.028±0.022±0.006

Asin(2φ−φS )
UT 0.004±0.008±0.003

Asin(3φ−φS )
UT 0.030±0.024±0.008

Asin φS
UT −0.019±0.008±0.003

Acos(φ−φS )
LT 0.065±0.047±0.026

Acos(2φ−φS )
LT 0.067±0.071±0.029

Acos φS
LT −0.094±0.065±0.038

Fig. 3. Single-spin azimuthal asymmetries for a transversely (T) polarised target and
unpolarised (U) beam. The error bars (bands) represent the statistical (systematic)
uncertainties. The curves show the predictions of the GPD model [25]. They are
calculated for the average W , Q 2 and p2

T of our data set, W = 8.1 GeV/c2 and
p2

T = 0.2 (GeV/c)2 for the left and middle panels, and at W = 8.1 GeV/c2 and

Q 2 = 2.2 (GeV/c)2 for the right panels. The asymmetry Asin(3φ−φS )
UT is assumed to

be zero in this model.

be of small magnitude, below 0.1. Except Asin φS
UT , all other average

asymmetry values are consistent with zero within experimental
uncertainties. All results, including the numerical values for the
correlations between the asymmetries, are available in the Durham
data base [34]. The five single-spin and three double-spin asym-
metries are extracted simultaneously. The result includes a refined
evaluation of the earlier published asymmetry Asin(φ−φS )

UT [20]. Al-
though both analyses use the same data, the change of the analysis
method results in different statistical fluctuations, which implies
that the final data samples used here and in [20] are not fully cor-
related.

As already mentioned above, there exists presently only the
model of Refs. [7–9] to describe hard exclusive ρ0 leptoproduc-
tion using GPDs. It is a phenomenological ‘handbag’ approach
based on k⊥ factorisation, which also includes twist-3 meson wave
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Fig. 4. Double-spin azimuthal asymmetries for a transversely (T) polarised target
and a longitudinally (L) polarised beam. The error bars (bands) represent the sta-
tistical (systematic) uncertainties. They are calculated for the average W , Q 2 and
p2

T of our data set, W = 8.1 GeV/c2 and p2
T = 0.2 (GeV/c)2 for the left and middle

panels, and at W = 8.1 GeV/c2 and Q 2 = 2.2 (GeV/c)2 for the right panels.

Fig. 5. Mean value 〈A〉 and the statistical error for every modulation. The error bars
(left bands) represent the statistical (systematic) uncertainties.

functions. Calculations for the full set of five AUT and three ALT
asymmetries were performed very recently [25]. They are shown
in Figs. 3, 4 as curves together with the data points. Of particular
interest is the level of agreement between data and model calcula-
tions for the following four asymmetries, as they involve chiral-odd
GPDs [25]:

Asin(φ−φs)
UT σ0 = −2 Im

[
εM∗

0−,0+M0+,0+ +M∗+−,++M++,++

+ 1

2
M∗

0−,++M0+,++
]
, (13)

Asin φs
UT σ0 = − Im

[
M∗

0−,++M0+,0+ −M∗
0+,++M0−,0+

]
, (14)

Asin(2φ−φs)
UT σ0 = − Im

[
M∗

0+,++M0−,0+
]
, (15)

Acos φs
LT σ0 = −Re

[
M∗

0−,++M0+,0+ −M∗
0+,++M0−,0+

]
. (16)

Here, the dominant γ ∗
L → ρ0

L transitions are described by helicity
amplitudes M0+,0+ and M0−,0+ , which are related to chiral-even
GPDs H and E , respectively. The subscripts L and T denote the
photon and meson helicities 0 and ±1, respectively. These GPDs
are used since several years to describe DVCS and HEMP data. The
suppressed γ ∗

T → ρ0
T transitions are described by the helicity am-

plitudes M++,++ and M+−,++ , which are likewise related to H
and E . By the recent inclusion of transverse, i.e. chiral-odd GPDs,
it became possible to also describe γ ∗

T → ρ0
L transitions. In their

description appear the amplitudes M0−,++ related to chiral-odd
GPDs HT [23,25] and M0+,++ related to chiral-odd GPDs E T [22].
The double-flip amplitude M0−,−+ is neglected. The transitions
γ ∗

L → ρ0
T and γ ∗

T → ρ0−T are known to be suppressed and hence
neglected in the model calculations.

All measured asymmetries agree well with the calculations of
Ref. [25]. In Eq. (13), the first two terms represent each a combi-
nation of chiral-even GPDs H and E . The inclusion of chiral-odd
GPDs by the third term has negligible impact on the behaviour of
Asin(φ−φS )

UT , as can be seen when comparing calculations of Refs. [9]

and [25]. The asymmetry Asin(φ−φS )
UT itself may still be of small

magnitude, because for GPDs E in ρ0 production the valence quark
contribution is expected to be not large. This is interpreted as a
cancellation due to different signs and comparable magnitudes of
GPDs Eu and Ed [20]. Furthermore, the small gluon and sea con-
tributions evaluated in the model of Ref. [9] cancel here to a large
extent. The asymmetries Asin φS

UT and Acos φS
LT represent imaginary

and real part, respectively, of the same difference of two prod-
ucts M∗M of two helicity amplitudes, where the first term of
this difference represents a combination of GPDs H T and H , and
the second a combination of E T and E . As can be seen in Fig. 5 and
Table 2, while no conclusion can be drawn on Acos φS

LT because of

larger experimental uncertainties, a non-vanishing value for Asin φS
UT

is measured. The asymmetry Asin(2φ−φS )
UT represents the same com-

bination of GPDs E T and E as the second term in Asin φS
UT . The

observation of a vanishing value for Asin(2φ−φS )
UT implies that the

non-vanishing value of Asin φS
UT constitutes the first experimental ev-

idence from hard exclusive ρ0 leptoproduction for the existence of
transverse GPDs HT .

6. Summary

Asymmetries related to transverse target polarisation were
measured in azimuthal modulations of the cross section at
COMPASS in exclusive ρ0 muoproduction on protons. The ampli-
tudes of five single-spin asymmetries for unpolarised beam and
three double-spin asymmetries for longitudinally polarised beam
were extracted as a function of Q 2, xB j , or p2

T . The asymmetry

Asin φS
UT was found to be −0.019 ± 0.008(stat.) ± 0.003(syst.). All

other asymmetries were also found to be of small magnitude but
consistent with zero within experimental uncertainties. Very re-
cent model calculations agree well with the present results. The
results represent first experimental evidence from hard exclusive
ρ0 leptoproduction for the existence of non-vanishing transverse
GPDs HT .
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