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Abstract — The experience curve effect has always challenged 

technology-related decisions. In the electricity sector, new renewable 

electricity generation technologies have shown a considerably high 

learning rate up to now, which could differentiate the profitability of 

energy generation technologies in the near future. The scope of this 

work is to investigate the effect that the Experience Curve of the 

renewable energy technologies may have on the orders for new 

electricity generation technologies and therefore, on the future 

electricity generation mix of Greece. The official renewable energy 

generation targets are considered as a constraint of the system, and 

the learning rates of the various technologies are included in the 

calculations. Three scenarios of learning rates have been applied, to 

examine the experience curve effect on renewable energy penetration. 

The national electricity generation system is modeled for long-term 

analysis and a linear programming method is applied, in order to 

come up with the optimal generating mix that minimizes electricity 

generation cost, while satisfying the national emissions reduction 

targets. In addition, two scenarios for future emission allowance 

prices are considered, in order to examine the effect of changes in 

this very volatile parameter. Furthermore, an investigation is made to 

identify if a point should be expected when renewable energy will be 

more profitable than conventional fuel electricity generation.  

 

Keywords—energy policy, experience curve, optimization, 

renewable energy economics.  

I. INTRODUCTION 

trategic planning for the medium- to long-term expansion 

of the electricity generating capacity of a specific country 

has been an important issue in the past, when electricity 

markets were regulated. The major concerns in regulated 

markets were mainly the dependence from imported fuels, 

stability and reliability of the transmission grid, as well as 

quality and security of supply. In recent years, the deregulation 

of the electricity sector as well as the introduction of 

environmental constraints, such as the reduction of greenhouse 

gas emissions and targets for penetration of Renewable Energy 

Sources (RES) in the electricity generating mix, have added 
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additional constraints that complicate further the procedure of 

planning. Furthermore, the rapid evolution of new 

technologies, especially renewables, has resulted in significant 

generation cost reduction. The main  result of the market 

deregulation is that the major focus of the private investors is 

the generation cost, since in a competitive market it is much 

more probable to survive and achieve higher yields if one has 

lower generation cost than his competitors. Therefore, 

technologies with the lowest generation cost are the most 

advantageous for private investors. The main result of the RES 

introduction and the CO2 emissions trading system is the 

complication of the investment decision as well as the addition 

of an extra expense stream for electricity generators based on 

conventional fuel sources, as they have to purchase the 

emission allowances they require.  

The scope of this work is to investigate the effect that the 

Experience Curve of the renewable energy technologies may 

have on the orders for new electricity generation technologies 

and therefore, on the future electricity generation mix of 

Greece. The renewable energy generation targets are taken into 

consideration as a constraint of the system, and the learning 

rates of the various technologies are included in the 

calculations. The methodology presented may be used for the 

electricity system of any country. 

 
TABLE I 

NOMENCLATURE 

Indices Description 

i Technologies included in the study 

t  Years [2010,2050] 

Sets Description 

REN Renewable technologies  

CONV  Conventional technologies 

Parameters Description 

AIi,t Investment annuities (€/MWel/year) 

Cfi,t Fuel cost (€/MWh fuel) 

Cco2t Forecasted CO2 price in year t (€/tn CO2) 

CO2i,t Total emissions allowance cost for year t and conventional 

tech. i (€/MWel) 

Ei Energy generated yearly from unitary capacity of technology i 

(MWh/MWel) 

Edemt Energy demand in year t (MWh) 

EGCi,t Average levelised lifetime electricity generation cost (€/MWh) 

Emco2i CO2 emissions of technology i (tnCO2/MWh electr.) 

Fi,t Total fuel cost for year t and technology i (€/MWel) 

Ii,t Investment cost per unit of capacity installed (€/MWel) 

OMfi,t Fixed Operational & Maintenance costs (€/kWel) 

OMvi,t Variable Operational & Maintenance costs (€/MWel) 

Pcli,t Capacity of tech. i scheduled to be decommissioned in year t 

(MWel) 

Pdemt Peak-load demand in year t (MWel) 

Pmaxi Maximum resource potential of technology i (MWel) 
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Ptoti,t Installed capacity of technology i in year t (MWel) 

Qi,t Projected global installed capacity of technology i in year t 

(GW) 

Topi Operational lifetime of technology i (Years) 

bi Learning rate of technology i 

favi Availability factor of technology i 

fcapi Capacity factor of technology i 

ni Efficiency factor of technology i 

r Interest rate 

II. LITERATURE REVIEW 

Researchers have dealt for a long time with the issue of the 

optimum electricity generating portfolio. Among the first to 

introduce the portfolio analysis in the Power Sector were Bar-

Lev and Katz [1]. Other researchers [2]-[4] have extended the 

analysis to various power expansion mixes. Furthermore, 

mean-variance portfolio techniques have been applied in 

various instances, presenting also various risk measures 

[5],[6].  

In the literature there are two predominant approaches, when 

dealing with energy portfolios and the future optimum power 

generation mix. The first approach mainly aims at maximizing 

the Net Present Value (NPV) of the entire system investigated, 

which is usually the electricity generation sector. The NPV 

comprises the objective function of an optimization problem, 

which is subject to an appropriate set of constraints, depending 

on the case examined. The optimum point determined by the 

optimization problem is the power generation mix for which 

the system NPV is maximized, thus indicating the optimum 

investing timing, such as in the works [7]-[9]. Inevitably, this 

approach entails forecasting of the future electricity prices.  

The second main approach of optimizing energy portfolios 

concerns works focusing on minimizing the electricity 

generation cost [10]. This approach has the advantage that no 

assumption over the future electricity prices has to be made. 

Focusing on minimum generation cost may imply maximizing 

the potential for positive financial yields, irrespective of the 

electricity price. Equivalently, attempting to minimize the 

generation cost may be considered equivalent to minimizing 

the cost to be passed on to the energy consumers [11]. For 

example, in [12], medium-range planning economics of 

alternative fuel options for electrical-power generation systems 

in Jordan is discussed, for a 15 year period. The options 

examined in this work were natural gas, heavy fuel oil, coal 

and local oil shale, which were compared using the levelised 

generation cost methodology. In [13], the electricity generation 

cost in Turkey has been investigated, focusing mainly on 

determining economy of scale, overcapitalisation, and 

technological progress for past years. 

Mean-variance frameworks have also been proposed to 

address the energy portfolio planning and the optimal 

allocation of positions in peak and off-peak forward contracts 

[14]. It has been shown that optimal allocations are based on 

the risk premium differences per unit of day-ahead risk as a 

measure of relative costs of hedging risk in the day-ahead 

markets. In a case study [15], multiple objectives are 

confronted in portfolios under demand uncertainty in order to 

lead to optimal expansion solutions while including  

environmental and demand constraints. The influence of the 

risk management has been analyzed in different studies 

concerning either solely electricity production or multi-

objective functions comprising of combined heat and power 

production [16],[17]. Decision support tools have been also 

developed [18] seeking for globally optimal solutions, taking 

into account financial and economical conditions and 

constraints imposed at an international level.  

The experience curves have been acknowledged as a 

significant method of analyzing the dynamics of technical 

change and cost development. The experience curve is 

constructed using historical data, and it is the extrapolated to 

predict future cost development [19]. Especially in the 

electricity generation sector, the new renewable electricity 

generation technologies have shown a very high learning rate, 

which leads to significant cost reduction. It is therefore 

interesting to examine how this would change the relative 

competitiveness of the various energy sources in the future. As 

the various researchers of the experience curves for renewable 

energy technologies have not reached a consensus over the 

exact values, a scenario analysis is performed in this work, to 

include the full range of learning rate values found in the 

relevant literature. The interested reader may refer to [20] for a 

thorough analysis on experience curves for various renewable 

energy sources. 

III. METHODOLOGY 

In this work, ten different electricity generation methods 

have been examined, using different fuel sources (as seen in 

Table III). The currently best available technology has been 

selected in all cases. The rationale behind this choice is that all 

available conventional and renewable energy sources should 

be included in the work. Nuclear power is omitted, as it is 

strategically excluded from the electricity generation mix of 

Greece since many years. The electricity generating cost is 

calculated for each year and each technology using the 

Levelised Lifetime Cost Estimation Methodology [21]. 

According to this methodology, the levelised lifetime cost per 

unit of electricity generated is the ratio of total lifetime 

expenses versus total expected outputs, both expressed in 

terms of present value equivalent. The original methodology 

has been expanded to match the specific requirements of this 

work. Thus, the average levelised lifetime electricity 

generation cost is 
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The investment cost is calculated as a series of equal 

annuities, spread over the entire lifetime of the specific 

technology, in order to be able to perform reliable calculations 

also for the time t where the operational lifetime of a specific 

technology is longer than the remaining time period for 

examination: 
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where the investment cost Ii,t is calculated using the learning 

rate, to take into account the experience curve effect stemming 

from the projected increase in global installed capacity for 

each specific technology: 
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where t0 is the reference year, equal to year 2010. In order 

to examine the effect of learning rates on the competitiveness 

of renewable energy generation, three scenarios of learning 

rate values have been examined. The learning rates used for 

the base scenario of this work may be seen in Table III 

(Medium LR). The scenario Low LR assumes the learning rates 

are half than those of the base scenario, and the High LR 

assumes the learning rates are double than those of the base 

scenario. 

The fuel cost per unit of capacity of each technology is 

calculated as 

 2050], [2010,  t,         ,, ∈∀= iCf
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where the energy generated from a unit of capacity of each 

technology is  

.        8760 ifcapfavE iii ∀=                                       (5) 

The cost of obtaining the emission allowances for the power 

plants using conventional fuel sources is calculated as 

 .        222 , CONViCcoEmcoECO tiiti ∈∀=         (6) 

The Operational and Maintenance cost (O&M) is 

distinguished into variable (OMv - proportional to the energy 

generated) and fixed costs (OMf).  

 

A.  The optimization model. 

The optimization problem is formed as a linear 

programming model, modeling a series of yearly decisions. 

Each yearly decision concerns the capacity of each one of the 

examined electricity generation technologies to be added to the 

current generation mix, in order to meet the electricity demand 

increase. The objective function to be minimised is the cost of 

generating the excess energy required in the year examined. 
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where the total installed capacity for each technology and 

year is provided by a recursive formula, taking into account 

the new generation capacity installed each year and subtracting 

the old generation capacity that has reached its operational 

lifetime during the year under examination: 

  

.          1, i -PclXPtotPtot i,tit-ii,t ∀+=                     (13) 

The first set of constraints (8) states the maximum potential 

of some renewable energy sources. In this work it has been 

assumed that the maximum installed capacity of wind, hydro 

and geothermal power must be less than the respective national 

potential, conservatively estimated, at all times.  

Constraints (9) and (10) refer to the power and energy 

demand. (9) ensures that the total installed generating capacity 

will be at least 30% greater than the peak-load demand, in 

order to secure uninterrupted supply of demand, even in peak-

load periods. (10) requires that the energy produced will be 

enough to satisfy energy demand. 

Constraint (11) takes into account grid stability issues. The 

fact that most renewable energy sources cannot be dispatched 

when required, prevents them from constituting a reliable 

base-load solution in the long term (mainly applicable to wind 

parks and photovoltaics, and to some extent for hydro and 

biomass). Despite their short setup periods and zero fuel 

requirements, they often suffer from resource unavailability. 

Thus, unpredictable conditions might impact the stability of 

the national grid and the reliability of power supply. Despite 

the fact that there is no consensus on the maximum allowable 

percentage of renewable energy to secure the grid stability, 

scientists agree that there is currently an upper limit on 

renewable power penetration to the grid [23]. For this reason a 

constraint is imposed ensuring that the total energy production 

from RES may not exceed 50% of the total energy demand. 

Constraint (12) reflects the current national renewable 

energy targets, which require that 35% of the total electricity 

from year 2020 onwards will be generated by renewable 

energy sources. In order to facilitate the model operation, this 

target has been linearly shared to the years until 2020, starting 

from a 10% RES share for the year 2010. 

Furthermore, an arbitrary upper limit equal to 1500 

MW/year for every conventional power technology and 1000 

MW/year for every RES has been applied, in order to avoid 

the unnatural case where only one power source is installed 

during one year. 

The CO2 allowance price uncertainty has been included in 

the work by analyzing two scenarios of price evolution. Both 

scenarios use as starting value the prevailing CO2 price at the 

end of the year 2009, which was around 15 €/tn CO2. The first 

one (scenario 1) assumes a very low increase in future 

emission allowance prices, whereas scenario 2 models a 

medium-to-high price increase (2,5% yearly). 

 



 

 

TABLE II 

CO2 PRICE SCENARIOS 

Year 

Scenario 1:       Low 

CO2 price (€/tn CO2) 

Scenario 2: Medium CO2 

price (€/tn CO2) 

2010 15,00 15,00 

2015 15,17 16,97 

2020 15,17 19,20 

2025 15,29 21,72 

2030 15,45 24,58 

2035 15,59 27,81 

2040 15,79 31,46 

2045 15,90 35,60 

2050 16,10 40,28 

 

The model formulation is based on several assumptions. 

Firstly, it has been assumed that conventional-fuel electricity 

generators will have to purchase the full amount of the 

emission allowances they require for electricity generation. 

Secondly, it is assumed that the renewable energy generators 

will not be able to trade the green certificates from the energy 

they generate. The potential income from trading emission 

allowances or green certificates has not been included in the 

cost estimation method used. Another assumption is that the 

inflation rate has not been included in the analysis, which 

means that all future values used are deflated to real values. 

The interest rate has been assumed equal to 8%. It should be 

noted also that no public subsidy has been assumed for the 

renewable energy sources, as subsidies are policies varying for 

each country and also within the same country with time. 

Therefore, this work takes into account the real electricity 

generation cost of all technologies, with either conventional or 

renewable fuel sources, as any type of subsidies are ultimately 

passed on to the final consumers (directly or indirectly) and 

finally increase the generation cost. The main inputs of the 

model are presented in Table III. 

 
TABLE III 

MAIN INPUTS OF THE MODEL (SOURCE: [9],[21]) 
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Investment cost (€/ 

KWel) year 2010 

1250 1150 440 1050 2200 2770 1100 1300 3400 1800 

Fixed cost  (€/kWel) 56,4 38 18,8 35 19 30 18 3 50 32 

Variable cost (€ / 

MWhel) 

3,2 1,6 1,6 1 0 0 0 1,5 1,5 18 

Availability factor 0,75 0,7 0,75 0,75 0,75 0,98 0,96 0,97 0,92 0,7 

Capacity factor 0,85 0,8 0,85 0,85 0,8 0,15 0,35 0,25 0,4 0,9 

Learning rate (Low) 0,005 0,005 0,005 0,005 0,05 0,1 0,05 0 0 0 

Learning rate (Medium) 0,01 0,01 0,01 0,01 0,1 0,2 0,1 0 0 0 

Learning rate (High) 0,02 0,02 0,02 0,02 0,2 0,4 0,2 0 0 0 

Efficiency Factor 0,51 0,45 0,54 0,41 0,3 1 1 1 1 1 

CO2 emissions 

(tnCO2 / MWhel) 0,66 0,62 0,38 1,027 0 0 0 0 0 0

Operational Life-Time 

(Years) 40 40 30 40 40 25 20 40 40 40

  

IV. RESULTS & DISCUSSION 

In Fig. 1 – 3, the calculated optimum generation mix, energy 

mix and renewable energy penetration level are presented, for 

the Low Learning Rate scenario.  It is interesting to note that 

with low future CO2 prices, lignite is the base-load 

conventional fuel source to dominate, while with higher CO2 

prices the base-load fuel chosen is Natural Gas, due to reduced 

emissions-related cost. Furthermore, increased CO2 prices 

lead to higher RES penetration in the electricity generation 

system. Actually, low CO2 prices lead to marginally satisfying 

the official RES penetration targets, whereas high CO2 prices 

lead to the maximum allowable RES penetration in the system 

(50% of the electricity generated yearly), after the year 2027. 

This fact implies that from this time onward, RES become 

more competitive than the cheapest conventional power 

source. In the high CO2 price case, a significant part of base-

load generation is replaced by biomass. 

 

 

 
Fig. 1 Generation Mix - Scenario Low LR 

 

 

 
Fig. 2 Energy Mix - Scenario Low LR 

 

 



 

 

 
Fig. 3 Renewable energy penetration - Scenario Low LR 

 

For the Medium Learning Rate scenario (base scenario), the 

results are very similar to the ones of the Low Learning Rate 

scenario (Fig. 1 – 3), and are therefore not presented. The 

main difference lies in the fact that with higher CO2 prices, the 

maximum allowable RES penetration level is achieved earlier, 

in year 2025 (Fig. 4). It is therefore concluded that with lower 

Learning Rate values (compared to the base case), the relative 

competitiveness of the electricity generation technologies 

examined does not change significantly.  

 

 
Fig. 4 Renewable energy penetration - Scenario Medium LR 

 

For the High Learning Rate scenario the results are 

presented in Fig. 5 – 7. It is interesting to note that in this 

scenario, solar PV is used significantly after the year 2027, 

which means that it becomes the most competitive RES after 

this time. In this case, a very large PV capacity has to be 

installed, leading to an increase on the total system installed 

capacity, due to the low capacity factor of solar PV 

technology. It should also be noted that in this scenario, even 

with low future CO2 prices, the RES penetration level 

gradually increases to 50% until the year 2048. 

 
Fig. 5 Generation Mix - Scenario High LR 

 

 
Fig. 6 Energy Mix - Scenario High LR 

 

The reason for this result may be better explained by Fig. 8, 

where the generation cost for all RES is presented, for the 

High LR scenario. It is obvious that after the year 2027, solar 

PV becomes the most competitive RES option, as the other 

competitive options have already exhausted their yearly 

capacity potential (wind, hydro and geothermal). There exists 

also a time frame, between years 2021 and 2027, where 

biomass is the most competitive RES, after wind, hydro and 

geothermal have exhausted their potential. The very high 

learning rate of solar PV assumed for this scenario is 

responsible for the very steep cost reduction. The generation 

cost of the RES is the same for scenarios 1 & 2, as the CO2 

price does not affect this cost, under the assumptions made for 

this work.  

 



 

 

 
Fig. 7 Renewable energy penetration - Scenario High LR 
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Fig. 8 Renewable energy generation cost evolution-Scenario High LR 

V. CONCLUSION 

To conclude, this work has attempted to investigate the 

effect of experience curve to the penetration of renewable 

energy on the future electricity generating mix of Greece. The 

methodology presented may be applied in any other case, and 

is mainly comprised of a linear programming model.  

The results of this work show that the experience curve 

effect may result in some renewable energy sources becoming 

even more competitive than conventional power sources, 

without any form of subsidy, if CO2 prices follow a medium 

increase trend in the future. RES could become more 

competitive than conventional power sources even with current 

CO2 prices, only if the most optimistic scenario for learning 

rates is assumed, which is however highly unlikely to be 

realized. Furthermore, it is shown that solar PV electricity will 

not be able to become more cost competitive than wind power, 

even if the most optimistic assumptions for future learning 

rates are realized. 

Finally, the reader should be aware that the learning rate 

values assumed are unfortunately characterized by uncertainty, 

and therefore the results should be treated as indications of 

future trends, and not as absolute values. 
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