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ABSTRACT 

Photodynamic therapy (PDT) is a novel treatment for malignant disease. The first step 

is intravenous injection of a light-absorbing, cytotoxic drug (the photosensitizer) that is 

then allowed time to accumulate in malignant tissue. The second step involves local 

activation of the photosensitizer with long (red) wavelength light, delivered usually 

from a laser. Subsequent to irradiation, highly reactive singlet molecular oxygen (Type 

II mechanism) is likely to be the most damaging cytotoxic species in vivo. The 

porphyrin molecule, Photofrin®, is the only photosensitizer currently registered for 

clinical use but is associated with several problems. Most disappointing is the fact that 

Photofrin® accumulates not only in malignant tissue but also in other organs, such as 

the liver, kidney and spleen. Its long persistence in the skin commonly causes severe 

photosensitization reactions in patients for up to three months post-treatment. 

Photofrin® also has poor light absorption properties within the therapeutic window (600 

to 800 nm) for PDT. Furthermore, PDT with Photofrin® has proved of no use in the 

treatment of malignant melanoma due, possibly, to competition between the 

photosensitizer and melanin for light absorption. 

Second-generation photosensitizers have tended to be porphyrin-based molecules, many 

of which have reached various stages of clinical trial. Of non porphyrin-based 

compounds, the cationic dye, methylene blue (MB), used traditionally as a nuclear stain 

in histology, has proved also to be an efficient photosensitizer, with maximum light 

absorption properties within the therapeutic window for PDT. Its use as a selective 

stain for tumour tissue in the bladder led first to its investigation in humans for the PDT 

of bladder cancer and inoperable tumours of the oesophagus. Radiolabelled MB has 

also recently been used as a tracer for metastatic melanoma in humans. The 

disadvantages of MB are an inherent (dark) toxicity and its rapid reduction in vivo to the 

inactive form, leuco-methylene blue (LMIB). 

This study found the cytotoxicity of MB to be enhanced by illumination and that 

successive methylation of the molecule corresponds to both increased light and dark 

toxicities in the EMT-6 (murine mammary), the SK-23 (murine melanoma) and SK-

MEL-28 (human melanoma) cell lines. The increased toxicities may be due to 

increased resistance to reduction (MBcNMB.cMMB<DMMB), improved singlet 
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oxygen quantum yield (MB.cMMBcDMMBcNMB), increased hydrophobicity 

(MB.cMMBCDMMBcNMB), improved cellular uptake (MBctvHv1BcDMMBNTvffi) 

and/or changes in intracellular targeting and localisation. MB is known to target the 

nucleus but it was proposed that the increased hydrophobicities could lead to the 

mitochondrial targeting of the derivatives. The intracellular localisation of the 

photosensitizers following incubation was studied using both fluorescence and confocal 

microscopy. Here, confocal microscopy showed that none of the four photosensitizers, 

including MB itself, target the nucleus prior to illumination. DMMB and NIMB in 

particular appear to be confined to small subcellular bodies within the cytoplasm. 

However, the precise locations of the photosensitizers, prior to illumination, were not 

established during the course of this study. Nevertheless, confocal microscopy showed 

that, upon illumination, all four photosensitizers rapidly relocalise within the nucleus. 

Since photosensitizers that localise in mitochondria are found to be more efficient 

inducers of apoptosis than photosensitizers that target other subcellular sites, the ability 

of the photosensitizers, MB, MMB, DMMB and NMB, to induce apoptosis in EMT-6, 

SK-23 and SK-MEL-28 cells in culture was investigated in this study. The methods 

used were visual examination of cell morphology, by use of the cyanine dye, JC-1, and 

the use of the FluorAce® Apopain Assay Kit from Biorad, in cells that had been 

exposed to the photosensitizers. From these, it was concluded that an apoptotic cell 

killing mechanism might play an important role in the photocytotoxicity of the 

photosensitizers, moreso for DMMB and NMB. 

The overall purpose of this project was to assess the potential of the derivatives of MB 

to be used in the PDT of cancer, with a special emphasis on malignant melanoma, since 

this is a field of cancer treatment where PDT has had no success. Although methyl 

substitution of MB did not abolish the inherent toxicity of the molecule, it is possible to 

assess the potential usefulness of the photosensitizers by examination of the light: dark 

differential. In fact, the light:dark differential was improved for all the derivatives of 

MB in all three cell lines. Nevertheless, NMB consistently performed the best, 

achieving maximum photocytotoxicity at concentrations that caused very little toxicity 

in the dark. The presence of melanin made no difference to the photosensitizing 

capabilities of the photosensitizers in melanoma cells. 
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In terms of a clinical application of the current work, PDT employing phenothiazinium 

photosensitizers is not suggested procedurally for the removal of primary melanoma, 

since this is routinely performed by excision. However, due to the demonstrated 

efficacy of MB in tracing microsatellites and its use in sentinel lymph node tracing, it 

may be of use in the photodynamic treatment of local metastatic lymph infiltration 

immediately post-surgery, as an alternative to lymphadenectomy. At present, MB is 

used routinely in various tracing or demarcation procedures, either visible or 

scintillographic, without reported toxicity. The derivatives used in the present in vitro 

study were all more effective in terms of the photodynamic effect and it is thus possible 

that future clinical developments in this direction may be feasible. 
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CHAPTER ONE. 

GENERAL INTRODUCTION. 



1.1 Cancer 

1.1.1 Cancer Aetiology and Epidemiology 

Cancer is not a single disease, but is a generic term for over a hundred different types of 

tumour that have become invasive or malignant. In the developed world, most people 

will be touched by cancer at some point during their lifetime, as approximately one 

person in three develops the disease, and the disease will end the life of approximately 

one person in five [Rennie & Rusting, 19961. 

Cancers are classified according to the tissue and cell types from which they derive and 

include carcinomas (from epithelial cells), melanomas (of the skin), sarcomas (from 

connective tissue or muscle cells), leukaemias and lymphomas (from haemopoietic and 

immune systems), gliomas (of the central nervous system) and retinoblastomas (of the 

eye). Almost any tissue can develop malignancies, indeed a single tissue may yield 

several types, each distinguishable by its own unique features [Ritchie, 1970]. In the 

west, the incidence of most cancers has risen in step with advances in industry and 

technology and is linked with overexposure to carcinogens such as tobacco smoke, high 

fat diets, ultraviolet light and toxic chemicals in the environment. It is also established 

that many different types of cancer, accounting for as many as fifteen per cent of the 

world's cancer deaths, are viral, bacterial or parasitic in origin [Trichopoulos et al., 

1996]. Worldwide there are more serious epidemiological problems than cancer, but the 

disease is of interest in a broader scientific context since it arises from disturbances in 

the fundamental life processes of the multicellular organism [Weinberg, 1996]. It is 

now known that virtually all cancers are derived from a single mutation in the DNA of a 

single cell. Indeed, cancers generally develop as a result of the progressive mutation by 

different carcinogens of three main sets of cellular genes [Soloman etal., 1991]. These 

are the growth-promoting proto-oncogenes, the growth-inhibitory tumour-suppressor 

genes and a group of genes active in DNA repair, which together control the growth and 

differentiation of normal cells [Soloman a al., 1991]. Once the ancestral cell (and its 

descendents) has accumulated a series of such mutations, it is able to escape all 

controlling signals and becomes capable of uncontrolled division and metastasis 

(migration to and colonization at distant sites of the body) [Ruoslahti, 1994]. 
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1.1.2 Conventional Cancer Therapy 

There are several families of chemotherapeutic drugs that induce cell death by 

disruption of various biochemical processes, including disregulation of the cell cycle 

[Hellman & Vokes, 1996]. A typical target is topoisomerase H, the enzyme responsible 

for separating the DNA double helix into two strands in preparation for replication. 

Topoisomerase II temporarily cleaves one strand of DNA, passes the other strand 

through the break, before reattaching the two cut ends together. Topoisomerase 

inhibitors include CP1'-11 and the single, most widely used, conventional 

chemotherapeutic agent, adriamycin, also known as doxorubicin [Hellman & Vokes, 

1996]. Adriamycin is an anthracycline antibiotic that acts primarily on the plasma 

membrane of cells leading to disruption of signal transduction systems with, most 

notably, increased activation of protein kinase C (PKC) [Murphree et al., 1981]. PKC 

causes malfunction of topoisomerase II, preventing the reattachment of the DNA strand 

breaks in dividing cells, thus causing these cells to die [Liu, 1989]. 

Other chemotherapeutic drugs include antimetabolic agents, alkylating agents and the 

plant alkaloids [Hellman & yokes, 1996]. Antimetabolites are usually analogues of 

molecules involved in various biochemical pathways in the living cell. Methotrexate is 

a prime example of such a drug and is a chemical analogue of folic acid. It functions, in 

part, by binding to the enzyme dihydrofolate reductase (D1-IFR) which normally 

converts folic acid into adenine and guanine. This drug thus prevents cell division by 

incapacitating the cell's ability to synthesise new DNA. Other examples of 

chemotherapeutic agents that behave in this way are fluorouracil and gemcitabine 

[Hellman & Vokes, 19961. Alkylating agents (cyclophosphamide and chlorambucil are 

examples) form chemical bonds with particular DNA nucleotides, causing defects in the 

normal double helical DNA molecule. The damage may involve breaks or 

inappropriate links between or within strands of DNA that will trigger cellular suicide if 

not corrected by DNA repair mechanisms. Finally, plant alkaloids (such as vinblastine, 

vinorelbine, paclitaxel and docetaxel) prevent cell division by binding to the protein, 

tubulin [Hellman & yokes, 19961. Tubulin is a component of microtubules, the 

network of fibres responsible for chromosomal separation during cell division. Drugs 

that interfere with the assembly or disassembly of these tubulin fibres also prevent 

successful cell division. 



Despite the multitude of advances made in the field of modem medicine, the 

identification of a single, proven treatment regime for cancer continues to prove elusive. 

Since carcinomas arise from within the host's own cell population [Section 1.1.11, 

normal and malignant cells have few differences that can be targeted by selective, 

pharmacological, anticancer regimes. Consequently, the conventional treatments for 

cancer (surgery, radiotherapy and chemotherapy) often prove to be more disabling than 

the disease itself. Conventional chemotherapeutic drugs are widely used but, 

unfortunately, have only a limited degree of selectivity for neoplastic cells and are 

disadvantaged by their toxicity towards normal tissues. The side effects encountered as 

a result of this acutely increase patient morbidity. In addition, and without doubt the 

major obstacle to effective cancer treatment, is the resistance of tumour cells to a whole 

range of structurally unrelated compounds. This phenomenon of broad resistance is 

termed pleiotropism or multidrug resistance (MDR) [Kartner & Ling, 1989; Moscow & 

Cowan, 1988]. One of the major areas in cancer research is, therefore, the development 

of tumour-specific drugs. Advances in gene therapy and immunotherapy offer hope for 

the future but are still largely experimental and used only as adjuncts to conventional 

cancer treatments. 

1.2 Photodynamic Therapy 

1.2.1 Clinical Practice 

Photodynamic therapy (PDT) is a largely experimental approach to the treatment of 

localised malignant and pre-malignant lesions [Gomer, 1989]. It has three major 

requirements: a photosensitizing drug (a dye), long (red) wavelength light and 

molecular oxygen. To date, the majority of clinical PDT has been carried out using 

only porphyrin-based compounds, commonly the sole registered PDT drug, Photofrin®. 

PDT induces cell death by the porphyrin-sensitized photo-oxidation of biological 

matter, which may be achieved either by endogenous or exogenous means [Henderson 

& Dougherty, 19921. In either case, administration of treatment is a bimodal process. 

Endogenous photosensitization requires the topical application of an inactive prodrug 

and will be discussed later [Section 1.5.1]. Exogenous photosensitization is the more 

common method and usually involves first the intravenous injection of a light-

absorbing, cytotoxic drug (the photosensitizer) that is, ideally, inert until illuminated. 
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This is then allowed time to accumulate in malignant tissue and it is important to delay 

the illumination step until a time when the ratio of drug level between malignant and 

adjacent normal tissues is at a maximum. The second step involves local activation of 

the photosensitizer with light of a high fluence and of an appropriate wavelength 

delivered usually from a laser [Section 1.2.4]. All photosensitizers exhibit a 

characteristic absorption spectrum and, generally speaking, each can be activated at 

wavelengths that fall within this particular range. However, because of its absorption 

by haemoglobin and other pigments such as melanin, there is only minimal penetration 

of short-wave visible light into blood-containing tissue, and deep penetration of light 

into tissue is a necessity for the treatment of larger and deeply lying (millimetre range) 

tumours. Haemoglobin has significant absorptions near 425, 544 and 577 nm, making it 

necessary to have illumination wavelengths > 600 nm. At wavelengths > 1200 nm, 

light absorption by water molecules becomes substantial. At wavelengths between 850 

and 900 nm, the photons may not have sufficient energy to participate in a 

photochemical reaction [Section 1.3]. For these reasons, the light delivery range in the 

red and near infrared regions of the visible spectrum (600 to 800 nm) has been 

determined as the 'therapeutic window' for clinical treatment. Moreover, tissue 

penetration typically doubles at wavelengths between 630 and 750 nm allowing larger 

tumours to be treated [Henderson & Dougherty, 1992; Wilson, 1989]. 

Most research suggests that, subsequent to irradiation, highly reactive singlet molecular 

oxygen (102)  is the most damaging cytotoxic molecule in vivo, though other reactive 

oxygen species may also be involved [Weishaupt et al., 1976]. Since the photophysics 

of PDT dictate that it is both a light- and oxygen-catalyzed process, the level of tissue 

oxygenation must therefore be adequate to sustain 102  formation. PDT is dependent on 

both drug concentration (mg drug per kg body weight) and light dose (J cm 2), with any 

tissue being susceptible to photodamage if the sensitizer concentration and light dose 

are sufficiently high. Since photosensitizers may be degraded (bleached) by light, a 

weaker response occurs at low drug concentrations [Section 1.2.31. In order to obtain a 

PDT response at lower cellular drug concentrations, the light exposure must be 

increased. When the correct photosensitizer dose is used, differential uptake by the 

tumour allows destruction of tumour and protection of normal tissue even at very high 

light doses, because the level of photosensitizer in normal tissue is below the 

photodynamic threshold for necrosis. There are similarities between fluence rate effects 
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in PDT and dose rate effects in radiotherapy, in that repair of sublethal damage can 

occur at very low dose rates and oxygen depletion may decrease the efficacy of both 

therapies at very high dose rates. A variety of neoplasms respond to PDT, but the 

treatment is only efficient in cases where the entire tumour can be reached by light, and 

one of the problems with PDT is access of light to the tumour. Thus, PDT is not 

suitable for tumours thicker than between five and seven millimetres, unless the light is 

applied interstitially through fibres [Moan & Berg, 1992]. 

1.2.2 Advantages of Photodynamic Therapy 

One major advantage of PDT over conventional surgical or radiotherapeutic regimes is 

its dual selectivity. This selectivity is obtained first by the preferential retention of the 

photosensitizer in target tissue. Secondly, since most photosensitizers exhibit very low 

toxicities in the absence of light, PDT is associated with minimal systemic toxicity. 

Photodynamic activity is confined to the illuminated area, thus ensuring a local response 

and sparing normal tissue. Chemotherapeutic drugs, in contrast, are toxic to cancerous 

and healthy cells alike although they can save lives. Previous treatment of tumours with 

radiation therapy and/or chemotherapy does not appear to reduce the efficacy of PDT, 

nor does PDT preclude the subsequent application of either regime. Unlike radiation 

therapy, PDT treatment can be repeated as often as necessary without danger to 

surrounding healthy tissue, as long as the light is focused only on the tumour. 

Moreover, tumour PDT does not in itself appear to be carcinogenic [Gomer et al., 

1988]. PDT is further favoured by a low incidence of complications and demonstrates 

excellent healing of affected areas, with regeneration of normal tissue and minimal 

scarring [Bown, 19931. Although originally envisaged as a primary treatment for 

superficial lesions (particularly of the skin), PDT has since also proven effective, in 

conjunction with conventional cancer therapies, as an adjunct treatment for larger, 

bulkier tumours [Dougherty et al., 1998]. PDT has a role to play in both palliation and 

complete local tumour eradication. A further application for PDT is as a diagnostic tool 

in tumour identification because, with a suitable imaging system, there is scope to 

exploit the fluorescent properties of photosensitizers that localise preferentially in 

tumour tissue [Peng etal., 1996]. 



1.2.3 Light Dosimetry 

Successful PDT requires homogeneous irradiation of the tumour region and light 

detection systems for dosimetry. Light dosimetry is a limiting factor in the application 

of PDT, yet most studies have failed to provide adequate and correct information on the 

total light output employed. The optimal dose of light used to activate a photosensitizer 

in human cancers is therefore not yet known. Since the distribution of photosensitizer 

concentration in tissue is often not known, the light dose absorbed by the 

photosensitizer cannot be calculated [Beyer, 1996]. 

Light dose is expressed as the delivered quantity in joules per square centimetre (J cm 

2), 
but the Grothus-Draper Law states that light must be absorbed by tissue in order for a 

clinical effect to take place [Dilkes, 19941. The energy absorbed is referred to as the 

energy fluence (also measured in J cm 2) and depends on several factors. These include 

the spectrum of the light source, irradiation geometry, depth of light penetration, light 

scattering in tissue (problematic in the brain), internal light reflection by normal tissue, 

photosensitizer concentration in tissue and haemorrhage within the tumour, all of which 

make the absorbed dose difficult to calculate [Anderson & Parrish, 1981]. 

Photobleaching of the photosensitizer must also be taken into account. Porphyrin 

molecules are photochemically unstable and cannot be activated an indefinite number of 

times to produce the desired therapeutic effect. Photobleaching in clinical PDT consists 

of one or more of the following: the photoinduced movement of porphyrins from one 

cellular location to another, photoinduced chemical modification of porphyrins without 

loss of the porphyrin ring, or photoinduced destruction of the porphyrin ring itself. 

Photobleaching occurs concurrently with the PDT effect and can be exploited to protect 

normal tissue [Potter et al., 1987] [Section 1.2.1]. 

For accurate control of tissue destruction, dosimetry is required in order to plan each of 

the three components of PDT. Most clinical and preclinical studies find that, assuming 

adequate oxygen supply, minimum levels of combined light and photosensitizer doses 

must be delivered to the target tissue for effective PDT [Beyer, 1996]. Developments in 

fibre optic technology over recent years have provided various types of optical fibres 

that can be used simultaneously for light delivery and light fluence measurement in 

tissue. Tissue optical measurements are generally achieved by introducing a light-

emitting source into the target tissue and mapping spatial distribution of light fluence 
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rates [Beyer, 1996]. The most common types for interstitial PDT treatment and light 

dosimetry measurement are cylindrical and isotropic diffusers, designed to provide 

more evenly distributed light emission patterns for irradiation. Cylindrical diffusers and 

microlenses have been used as light applicators in the bronchial tree during the PDT 

treatment of early stage lung cancer and in the surgical resection of pleural malignancies 

[Murrer etal., 1997]. In order to obtain a good estimation of the actual light dose to the 

tissue, cylindrical diffusers are harnessed to an isotropic detector and an expander in a 

Teflon sheet and transported through the working channel of a bronchoscope into the 

target area. The diffuser, detector and expander are then pushed out of the Teflon sheet 

into a central position with the detector at the surface. Both incident and reflected light 

can be measured by this system, giving a good estimation of the actual light dose to the 

tissue. 

1.2.4 Light Sources in Photodynamic Therapy 

Irradiation to activate the photosensitizer is delivered usually from a laser although a 

number of non-laser systems have been used in both clinical and experimental PDT 

[Patterson et al., 19911. The light source is selected taking into consideration the 

absorption spectrum of the photosensitizer and the tissue transmission. 

Non-laser Systems 

Early PDT was performed mainly with non-laser systems such as xenon arc lamps, 

light-emitting diode arrays, fluorescent tubes and slide projectors [van Hillegersberg, 

19941. Non-laser light sources emit fluences across a broad spectrum of wavelengths 

along with the light required to activate the photosensitizer. Consequently, they are 

often fitted with filters to eliminate irrelevant wavelengths and infrared components. 

Infrared radiation should be filtered out to avoid significant heating of tissue, although 

some investigators find that mild hyperthermia (40 °C to 42°C) acts additively or 

synergistically with PDT [Waldow & Dougherty, 19841. Hyperthermia can be avoided 

by using a fluence rate lower than 150 mW/cm 2 . 

Laser Systems 

The term 'laser' is an acronym for 'light amplification by the stimulated emission of 

radiation'. Lasers are classified according to the type of beam they emit [Rosenbach & 

Alster, 1996]. CW (continuous wave) lasers emit a constant beam of light for as long as 
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the operator depresses the foot pedal. Examples of CW lasers are the argon and CO2 

lasers. Pulsed lasers, on the other hand, emit high-energy light in short bursts in order 

to achieve selective photothermolysis. Examples of pulsed lasers are the Q-switched 

(QS) ruby, QS neodymium:yttrium-aluminium-garnet (Nd:YAG) and QS alexandrite 

lasers. Q switching is a technique that employs rotating mirrors and other devices to 

produce sudden bursts of stored high-energy light. Energy fluence is generally applied 

to lasers that emit short pulses of light, and irradiance used to describe output from CW 

lasers. It has been reported that pulsed light may have deeper penetration into tissue 

than CW light although some investigators find no difference at all [Cowed et al., 

19841. 

A laser beam of light has certain unique characteristics that distinguish it from 

'ordinary' light. It is monochromatic (has one narrow band of wavelengths), coherent 

(all the waves are in phase, in both time and space) and collimated (parallel, with very 

little divergence). It is also of high intensity in order to maximise its transmission 

through tissue. The parallel characteristics of a laser permit light to be focused to a fine 

point onto the end of a thin quartz fibre for interstitial insertion through endoscopes. 

For PDT, the monochromaticity of the laser beam permits selection of a single 

wavelength corresponding to the absorption maximum specific to the photosensitizer 

being used [Rosenbach & Alster, 1996]. This is in contrast to most natural and man-

made light sources that produce light composed of many different wavelengths. PDT 

progressed with the development of tuneable dye lasers that can be set (tuned) to emit 

the appropriate wavelength of light [van Hillegersberg, 1994]. Unfortunately, current 

technology does not yet provide a single laser capable of transmitting all useful 

wavelengths at the energies needed for clinical efficacy. 

The use of lasers in oncology began with high-power lasers acting as optical scalpels by 

thermal and ablative effects LAronoff, 19971. In contrast, PDT is carried out with low-

power lasers since the fundamental purpose of lasers here is to serve as light sources for 

driving photochemical reactions in tissue. However, a laser offers significant 

advantages whenever fibre-optics are needed to reach a tumour and addresses the 

limitations of alternative systems of non-uniform light delivery, lack of precision and 

control, and poor intensity (typically about 50 mW cm 2) [Wilson & Patterson, 1986]. 

For porphyrin-sensitized tissue the helium-neon laser with a wavelength of 632.8 nm 



was used first and proved to be a simple and reliable system despite its low power 

output. Nevertheless, it has since been superseded by a tuneable argon-dye laser, which 

delivers light of any wavelength between 350 and 700 nm. The energy for this is 

provided by a 5 to 25W continuous wave argon laser at 5 14.5/488 nm that optically 

pumps the dye laser containing a dye fluid fluorescent in the 630 nm region, such as 

rhodamine B or Kiton-red. This allows effective power levels of up to 3 or 4 W to be 

obtained, eighty to ninety per cent of which can be coupled into optical fibres of 200 to 

600 tm core diameter. Unfortunately, the argon-dye laser is expensive and difficult to 

handle. It has been replaced by the gold vapour laser that is a cheaper and simpler 

model but which will only operate at a single fixed wavelength of 628 nm, making it 

unsuitable for a significant number of photosensitizers. It is expected that eventually 

more compact and less expensive semiconductor light-emitting diode dye lasers may be 

the light source of choice for clinical PDT [van Hillegersberg, 1994]. 

1.3 The Photochemicat Reaction 

1.3.1 Photosensitization 

Light and oxygen are essential for life on earth, yet a combination of the two can be 

toxic. Alongside vital light-dependent processes occur simultaneous phototoxic 

reactions as a result of oxygen free radical formation [Spikes & Straight, 1967]. 

Molecular oxygen is a diradical that, in the absence of light, participates mainly in 

radical chain reactions. The peroxidic products formed as a result are potentially toxic 

to cells but these oxidation reactions in nature tend to have limited cytotoxicity, due to 

the protective effects of natural antioxidants such as tocopherol (vitamin E). The 

presence of light, however, creates many more reactive oxygen species, such as singlet 

oxygen and the superoxide anion radical, from which hydrogen peroxide and hydroxyl 

radicals can be derived [Singh, 1978]. Here again, natural cell components, such as the 

carotenoid pigments and the enzyme superoxide dismutase, offer protection from 

photocytotoxicity by respectively quenching singlet oxygen and converting the 

superoxide ion into hydrogen peroxide and water [Schaap, 19741. 

Photosensitization is a widely occurring phenomenon in biological systems due to the 

ubiquitous nature of both visible light and a number of photosensitising pigments and 
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related compounds [Kamat, 1996]. Environmental chemicals and certain natural 

pigments contained in cells that are able to absorb light, can expose or "sensitize" 

organisms to photochemical damage by oxygen. A photosensitized reaction occurring 

in the presence of oxygen is referred to as a 'photodynamic reaction'. Photocytotoxicity 

occurs as a consequence of oxygen free radical damage to certain cellular components. 

The main events are enzyme deactivation (from the destruction of specific amino acids) 

[Matheson etal., 1975], nucleic acid oxidation (primarily of guanine residues) [Wang & 

Midden, 1983] and membrane damage (from the oxidation of unsaturated fatty acids 

and cholesterol) [Girotti, 19901. 

Natural photosensitizers, such as the psoralens or hypericins found in plants, can induce 

photocytotoxicity if ingested or when deposited on the hands. Domestic cattle, for 

example, are liable to suffer hypericism from eating St John's Wort (Hypericum 

perforatum) because the pigment hypericin then becomes transported in the 

bloodstream to the epidermal capillaries where it may subsequently be activated by 

sunlight [Wainwright, 1996]. Mammalian cells, however, generally contain few 

chromophores that absorb light in the visible range of the solar spectrum and which are 

thereby able to act as photosensitizers. Porphyrins, for instance, usually encountered in 

iron complexes such as haemoglobin, myoglobin and cytochrome, are essential for life 

and are active in all viable human cells. Nevertheless, photodynamic effects may result 

when exogenous photosensitizers are added to cells or in pathological conditions when 

endogenous photosensitizers are present at abnormally high levels. Unfortunately, in 

these circumstances, antioxidant and detoxifying defences and DNA repair systems may 

be insufficient to counter the effects of oxidative stress. 

In humans, examples of photosensitization reactions are photosensitive porphyrias, 

drug-induced photosensitivity, and photoallergy. Related mechanisms may be 

responsible for the ageing of sun-exposed skin, cataract induction and some types of 

mutagenesis. In mammalian cells, endogenous photosensitization reactions commonly 

involve tetrapyrrolic derivatives. Porphyrias, for example, arise from enzymatic 

dysfunction in the haem biosynthetic and metabolic pathways. This leads to an 

accumulation of blood porphyrins in the skin and to a phototoxic response on exposure 

to UV or visible light. 



1.3.2 Light Absorption 

With the exception of oxygen, which exists as a ground state triplet molecule, all 

biological molecules in their unexcited ground state configurations are in the singlet 

state. On absorption of a photon of light, aromatic molecules are brought to their singlet 

excited states. These are extremely short-lived (less than one microsecond) and, from 

here, the photosensitizer may decay back to its original ground state and, for example, 

emit light in the form of fluorescence [Foote, 19901. All excited singlet states have a 

corresponding lower energy triplet state. For the dynamic effect, the photosensitizer 

must undergo intersystem crossing to the excited triplet state of the molecule [Figure 1]. 

This triplet species is more stable, with a longer lifetime (millisecond range), which 

increases the probability of its interacting with ground state triplet oxygen [Takemura et 

al., 1989]. 
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Figure 1. Jablonski Diagram showing possible transitions of aromatic molecules following light 
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In the presence of oxygen, two basic reactions can occur [Foote, 1991] [Figure 2]. The 

excited photosensitizer may undergo either a Type I photochemical reaction wherein it 

interacts directly with biomolecules by electron or hydrogen transfer, yielding radicals 

or radical ions. These in turn react with molecular oxygen to produce active species 

such as hydroxyl radicals, hydrogen peroxide and superoxide ion. Alternatively, and 

more commonly, the triplet photosensitizer undergoes a Type II mechanism and 

interacts with molecular oxygen, generating highly reactive singlet oxygen (half-life: 

10.6 seconds [Truscott et al., 1980]) by energy transfer. Occasionally, electron transfer 

from sensitizer to oxygen can occur generating oxidised sensitizer and superoxide ion 

[Athar et al., 1989]. 
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Figure 2. Chemical Mechanisms of Photosensitization [Adapted from Foote, 1990]. 

1.3.3 Cellular Effects 

Singlet oxygen [ 1 02] is highly electrophilic and reacts selectively with electron rich 

moieties, causing oxidative damage to essential cellular components. It has a lifetime of 

about 4 ps in water and 50 to 100 ps in lipid. In the cellular environment, this is reduced 
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to 0.6 ps, corresponding to a diffusion distance of about 0.1 xm due to quenching by 

cell constituents such as histidine, tryptophan, cholesterol or water [Moan et al., 1990]. 

1 02  therefore reacts close to its site of origin but it may penetrate biological membranes 

[Thomas et al., 1989; Girotti, 1990]. In fact, most observations have indicated that the 

cell membrane plays a critical role in porphyrin-sensitized photocytotoxicity. Certainly, 

1 02 generated from photosensitizers in the interstitial fluid is inefficient in inactivating 

cells compared to that generated by hydrophobic or cell-bound photosensitizers 

[Dougherty et al., 1998]. 

Hydrophobic, anionic photosensitizers (such as porphyrins) attach to plasma 

membranes and to membranes of cellular organelles (mitochondria, lysosomes, 

endoplasmic reticulum and, to a lesser extent, the nuclear envelope). On illumination, 

they exert damage either by direct photoperoxidation of membrane phospholipids and 

cholesterol [Thomas & Girotti, 19891 or by inactivation of membrane-bound transport 

and receptor systems [Moan et al., 19891. PDT damage to the plasma membrane is 

detectable within minutes following light exposure and is indicated by oedema and bleb 

formation [Moan et al., 1979], increased membrane permeability, leakage of enzymes 

(notably lactate dehydrogenase), cross-linking of amino acids [Reyftman et al., 1986] 

and membrane depolarisation [Specht & Rodgers, 1990]. For porphyrin-based PDT, the 

inhibition of mitochondrial enzymes is considered to be a further key event [Salet & 

Moreno, 1989] with cytochrome c oxidase and succinate dehydrogenase serving as 

major early targets in cytotoxicity [Gibson et al., 19891. Depending on the type of 

photosensitizer, its cOncentration and distribution, these events will have far-reaching 

consequences. Photosensitizers that localise in mitochondria are likely to induce 

apoptosis and, indeed, this form of cell death following PDT has been described 

[Agarwal et al., 1991]. However, unlike ionizing radiation that primarily affects the 

nucleus (causing double strand breaks in DNA), there is very little evidence for the 

nuclear uptake of hydrophobic photosensitizers [Moan, 1986]. The radius of a 

mammalian cell nucleus is approximately 5 j.tm so it is unlikely that photosensifizers 

located in the cytosol or plasma membrane could inflict major nuclear damage via a 

singlet oxygen mechanism. Nevertheless, there have been some unexplained reports of 

sister chromatid exchanges [Moan a al., 1980] and chromosomal aberrations [Evenson 

etal., 1982] being induced following porphyrin photosensitization. 
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For cationic and non-porphyrin photosensitizers, the order of cellular events may differ 

but is likely to reflect the pattern of their cellular distribution. Photosensitizers that are 

present in the cytosol can sensitize tubulin to photodamage causing an acculumation of 

mitotic cells and, in some cases, cell death [Berg & Moan, 1997]. Aggregated or 

hydrophilic photosensitizers are likely to be taken up by pinocytosis and/or endocytosis 

and to become localised in lysosomes or endosomes. These are permeabilized on 

exposure to light with the release of vast amounts of hydrolytic enzymes and 

culminating in necrotic cell death [Zdolsek, et al., 1990]. Nevertheless, whatever the 

primary lethal insult, there follows a rapid loss of cell integrity that, for porphyrin-based 

PDT, is complete within four hours post-treatment [Bellnier & Dougherty, 19821. 

1.3.4 Vascular Effects 

Vascular damage is induced almost immediately upon light exposure and, with the 

exception of cationic compounds, is the most obvious acute effect of porphyrin-based 

PDT in viva [Reed et al., 1988; Nelson a at., 19881. The evidence for this has come 

from in vitro colony forming assays [Henderson a al., 1985], sandwich observation 

chambers [Star a al., 1986], measurements of blood flow [Selman et al., 1986] and 

oxygen tension measurements within tissues [Hetzel & Farmer, 1984]. Porphyrin 

photosensitizers accumulate predominantly in the perivascular stroma [Peng a al., 

1991] with the endothelial cells of the vessel wall and red blood cells serving as major 

targets [Ben-Hur & Orenstein, 1991]. Endothelial cells accumulate high concentrations 

of porphyrin photosensitizers and have been found to be more sensitive than carcinoma 

cells to porphyrin-based PDT, supporting a vascular role in PDT-mediated toxicity 

[West a al., 1990]. Monitoring of tissue oxygenation in transplanted tumours in rabbits 

has shown that tumour ischaemia is brought about in a three-phase process [Tromberg 

a al., 1990]. First, molecular oxygen is expended during the photodynamic process for 

the generation of 102.  Then, endothelial cell damage triggers the first vascular events 

including platelet aggregation, transient vasoconstriction and vasodilation, vessel 

blanching, stasis and haemorrhage. These pathophysiological alterations in the 

microcirculation restrict the blood supply, reducing oxygen delivery to the tumour 

region. Total vascular collapse occurs ultimately therefore as a result of acute oxygen 

starvation (hypoxia) and nutritional deprivation [Reed et al., 1989]. The first visible 

signs of photosensitization are oedema and erythema, prior to any detectable endothelial 
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or tumour damage. These are apparent usually within twenty-four hours of PDT, with 

maximum necrosis developing after a few days [Henderson & Dougherty, 1992]. 

1.3.5 Immunologic Effects 

In addition to direct cell killing, a strong inflammatory reaction triggered by membrane 

damage is also an important post-PDT event that mediates further tumour destruction. 

Moreover, the immunologic effects generated are now no longer considered to be 

limited to the ischaemic effects caused by occlusion of the tumour vasculature. Rather, 

the antitumour activity of inflammatory cells and the existence of a tumour-sensitized 

immune reaction have now been demonstrated [Dougherty et al., 1998]. At the 

membrane level, the liberation of membrane lipids activates membrane-bound 

phospholipases (Al, A2 and C) with concomitant acceleration of phospholipid 

degradation. This is accompanied by a massive local release of lipid fragments and 

arachidonic acid metabolites including cytokines such as prostaglandin E2 (PGE2), 

[Henderson & Donovan, 1989] and the immunomodulators, interleukin-2 (IL-2), 

interleukin-143 (IL-113) and tumour necrosis factor-a (TNF-ct) [Neyso & Dougherty, 

1986]. Disruption of signal transduction pathways, also at the membrane level, triggers 

enhanced expression of stress proteins and early response genes [Luna et al., 1994] and 

genes regulating apoptotic cell death [Oleinick et at., 1993]. Consistent with a local 

response, tissues exposed to PDT ultimately become infiltrated by a wide range of fast-

acting and potent mediators. They include lymphocytes, plasma cells, vasoactive 

peptides, complement and acute phase proteins, proteinases, peroxidases, radicals, 

leukocyte chemoattractants and cytokines. These act on capillaries to increase 

permeability, permitting leakage of fluids and causing perivascular oedema [Fingar et 

al., 1992]. The inflammatory cascades themselves stimulate the recruitment of non-

specific immune effector cells such as mast cells, monocytes/macrophages and 

neutrophils to the treated site. 

The PDT drug, Photofrin® [Section 1.4.41, is found to concentrate not only in the 

vascular stroma but also in mast cells and macrophages within it [Korbelik etal., 19911. 

Neutrophils are particularly prolific and contribute to endothelial damage and 

destruction of the tumour parenchyma by their release of lysosomal enzymes and toxic 

oxygen radicals. Histamine release by mast cells has been observed in vivo [He et al., 
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1989] and has been demonstrated in human and murine mast cells in vitro [Glover etal., 

19901 following porphyrin photosensitization. Histamine induces endothelial cells and 

other blood components to release large amounts of thromboxane and von Willebrand 

factor both of which mediate platelet adhesion to the subendothelium and may thus 

contribute to platelet thrombus formation that occurs after in vivo PDT. Neoplastic loci 

tend to be rich in macrophages, these accounting for between twenty and forty per cent 

of the total cell population in the majority of spontaneous, chemical-induced and 

transplantable tumours. Macrophages release TNIF-cz and are able to ingest invading 

agents as well as debris in necrotic regions. They have been shown to target PDT-

treated tumour cells preferentially, with their tumouricidal action being potentiated both 

in vitro and in vivo [Korbelik & Krosl, 1994]. However, this is not likely to be an 

immediate post-PDT response since maximum levels of TNF-cc are only noted three to 

six hours after light exposure. Long term prophylaxis of tumour recurrence in PDT may 

be the result of macrophage and lymphocyte stimulation. Studies show that cytokines 

such as IL-i and TNF may be detected in the urine as long as four months after PDT 

even though the patient is asymptomatic [Korbelik & Krosl, 1994]. 

1.4 Development of Photodynamic Therapy 

1.4.1 Early History 

For centuries, man has been fascinated by the therapeutic properties of light. 

Heliotherapy (healing by the sun), first introduced in Ancient Greece by the renowned 

physician, Herodotus, was also practised by early civilisations from Egypt, China and 

India to treat diseases such as vitiligo, rickets, skin cancer and even psychosis [Epstein, 

1990]. Modern phototherapy (the use of artificial light to treat disease) came into 

existence at the end of the nineteenth century. Its founder, the Dane, Niels Finsen, was 

awarded the Nobel Prize in 1903 for his pioneering work in the treatment of smallpox 

scarring and lupus vulgaris, in the wake of which came the phototherapy of rickets, 

certain dermatological lesions, neonatal hyperbilirubinaemia and, most recently, cancer 

[Bonnett, 19991. The principle of dye-mediated photosensitization also has its roots in 

antiquity. Early recordings from India (1400 BC) and Egypt (12 AD), document the 

therapeutic application of psoralens containing preparations for the repigmentation of 

vitiliginous skin and leucoderma [Daniell & Hill, 1991]. 
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The modern age of photodynamic therapy can be traced to the year 1900 when a young 

German student named Oskar Raab inadvertently discovered that the in vitro toxicity of 

acridine (a coal tar derivative), incubated with the malarial protozoan, paramecium, was 

significantly increased upon exposure to light. Although Raab himself failed to provide 

a complete explanation for his findings, he did propose a future therapeutic application 

for such material in dermatology [Raab, 19001. In 1903, Raab's supervisor, Herman 

Von Tappeiner and the dermatologist, Jesionek, were first to apply the technique in 

oncology. They successfully treated skin conditions such as herpes, psoriasis and basal 

cell carcinoma, initially with eosin and then with a variety of photosensitizers, and 

employed either sunlight or an arc lamp as illumination [von Tappeiner & Jesionek, 

1903]. Von Tappeiner, now regarded as probably the most important early pioneer of 

photodynamic therapy, continued to conduct experiments into the photodynamic effect 

and provided evidence for the essential role of oxygen in the process [von Tappeiner & 

Jod!bauer, 1904; 19071. There followed a flurry of research activity using mammalian 

systems to study the mechanisms of photosensitization and it was noted that some 

dyestuffs could stain tumour tissue preferentially. However, no substantial work was 

done to follow up von Tappeiner's findings and it was to be over sixty years before the 

regime was again used to treat malignant disease. 

The history of porphyrins and their role in medicine is, by contrast, very brief and 

linked to the search for fluorescence as a tumour localiser. In 1924, it was observed that 

certain tumours emitted a red-orange fluorescence when stimulated by ultra-violet light 

[Policard, 1924]. This was attributed to the presence of endogenous porphyrins and was 

later confirmed in tumour-bearing animals injected with haematoporphyrin [Auler & 

Banzer, 1942; Figge a al., 1948]. Subsequently, the more purified haematoporphyin 

derivative (HpD), synthesised by Schwartz in 1955, was used for the fluorescent 

detection of tumours in humans, opening the way for the use of PDT in patients with 

cancer [Lipson etal., 1961]. 
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1.4.2 First Generation Photosensitizers: the Porphyrins. 

Porphyrins are cyclic compounds composed of a four-pyrrole ring linked through 

methylene bridges to form a planar macrocycle structure (a porphine). Porphyrins 

characteristically form complexes with metal ions that are able to bind to the nitrogen 

atom of the pyrrole rings. The electronic properties of the co-ordinated metal ion can, 

however, shorten the triplet lifetime of the porphyrin, thus reducing its photosensitising 

capabilities. Removal of the co-ordinately bound metal atom produces the free base 

porphyrin and a concomitant increase in photosensitising activity [Maillard et al., 

1980]. It is this free base porphyrin that is used in PDT. 

The first photosensitizer tested 'in the clinic was a complex mixture of porphyrins, 

prepared originally by Schwartz in 1955, and known as haematoporphyrin derivative 

(HpD) [Schwartz, 1955] [Figure 3]. 

E 

Figure 3. Chemical structure of haematoporphyrin derivative (FIpD). 

HpD is prepared by treating haematoporphyrin (Hp) with acetic acid, with the addition 

of a trace of sulphuric acid as a catalyst, then solubilization of the product in a dilute 
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base [Gomer & Dougherty, 19791. The product contains several species including 

porphyrin monomers and oligomers, only some of which are clinically useful as 

photosensitizers. HpD was subsequently partially purified by gel filtration to obtain the 

enriched fraction of the active material. This is porfimer sodium or Photofrin H 

(Photofrin®, QLT Inc., Vancouver, Canada and Lederle Laboratories, Pearl River, NY, 

USA). Photofrin® is a red-coloured, lyophilized water-soluble mixture, almost always 

administered by the intravenous route. It is, despite purification, an aggregated mixture 

of monomers, dimers and oligomer porphyrin molecules and their dehydration products, 

linked by both ether and ester bonds [Dougherty, 1987]. It was originally believed that 

dihaematoporphyrin ether (DI-IE) was the active component of porfimer sodium, but it 

is now known that the important photosensitizers within this drug are the oligomers of 

haematoporphyrin consisting of two to eight subunits linked via ether bonds. 

Compounds similar to Photofrin® (Photosan, Photoheme, Photocarcinomin) have also 

been used in PDT [Wohrle etal., 1998]. 

1.4.3 Modern History 

The current era of clinical PDT dates therefore from the 1960s when Lipson and co-

workers reported the first use of HpD for the PDT of metastatic breast cancer. Despite a 

positive response, Lipson did not pursue treatment beyond one patient [Lipson & 

Baldes, 1966]. Nevertheless, the resurgence of interest around this time marked the 

beginning of the current, expansive era of PDT, and owes much to the advent of laser 

technology and the development of fibre-optic delivery systems [Section 1.2.4]. This 

instigated experiments using HpD and laser light from several groups of workers, most 

notably Dougherty and co-workers, who came to initiate the first systematic human 

trials of PDT at the Rosewell Park Cancer Institute in Buffalo, U.S.A. Of a series of 

twenty-five patients, complete or partial response was found in one hundred and eleven 

out of one hundred and thirteen cutaneous or subcutaneous malignant lesions 

[Dougherty et al., 1978]. From that time on, PDT has been the subject of many 

preclinical studies investigating its application as a treatment modality for a whole 

range of human cancers and with a multitude of papers published on the subject. See 

'Table 1' for a summary of the main historical events that led to the establishment of 

current clinical PDT. 
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1841- tlaematoporphyrin (from the Greek 'porphuros' meaning 'purple') first synthesised by Scherer (Gennany) 
1871 as 'cruentin', a precipitate of sulphuric acid and dried blood, washed free of iron. Later described as 'iron- 

free haematin' by Mulder, then finally renamed 'haematoporphyrin' by Hoppe-Seyler in 1871. Spectrum, 
fluorescence and chemical properties defined by Thudichum in 1867 [Daniel] & Hill. 19911. 

1900 First photodynamic experiments performed by student, Oscar Raab under the supervision of Herman von 
Tappeiner (Germany) [Raab. 1900; von Tappeinei-, 1900). 

1900 First recorded incidence of photosensitization in humans. Neurologist, Prime (France), orally administered 
eosin for epilepsy and noted dermatitis in areas of the body exposed to tight [Prime. 19901. 

1903 Von Tappeiner and Jesionek (Germany) clinically exploited the photosensitized reaction, successfully 
treating herpes, psoriasis and skin carcinoma by topical application of eosin activated subsequently either 
by sunlight or arc tamp [von Tappeiner & Jesionek. 19031. 

1905 Von Tappeiner and .Jodlbauer (Germany) reported the oxygen-dependency of the photosensitized reaction 
and coined the term 'photodynamic action' [von Tappeiner & Jodlbauer. 1905; 19071. 

1908- Hausman (Austria) was first to study the biological properties of haematoporphyrin, showing that the 
1911 destruction of paramecium and red blood cells by haematoporphyrin was accompanied by acute 

photosensitization in white mice and guinea pigs [Daniell & Hill, 1991]. 

1913+ Meyer-Betz (Germany) was first author to demonstrate photosensitization in humans when he self- 
administered 200 mg haematoporphyrin and exposed areas of his skin to light. The accompanying oedenia 
and erythema persisted for over 2 months. Meyer-Betz and chemist, Fischer, continued to study porphyrin 
chemistry and student, Max Lemberg, later wrote the first book in English on porphyrins [Meyer-Bet'.. 
1913; FischcreraL. 1925]. 

1924 Policard (France) attributed spontaneous red fluorescence, induced by UV light in experimental tumours, 
to naturally occurring porphyrins in human tumours [Policard. 19241. 

1942+ Auler and Banzer (Germany) were first to observe the photodynamic action of haematoporphyrin, 
confirming its selectivity for tumour tissue. They demonstrated haematoporphyrin-sensitized tumour 
necrosis in tumour-bearing animals but further experiments in humans were abandoned with the advent of 
the Second World War [Auler & Banzer. 19421. 

1948 Figge and co-workers (U.S.A) demonstrated selective retention of haematoporphyrin in vivo in mice and 
recognised its potential as a diagnostic too] for cancer [Figge etal., 19481. 

1955 Rassmussen-Taxdal noted fluorescence of haematoporphyrin in a range of human tumours in viva 
[Rasmussen-Taxdal cial.. 19551. 

1955 Schwartz synthesized haematoporphyrin derivative (HpD) and demonstrated its enhanced localizing 
properties in experimental tumours ISchwartz etal.. 19551. 

1961 Lipson and co-workers reported endoscopic fluorescence in 15 patients with endobronchial tumours using 
HpD as the photosensitizer ILipson etal.. 19611. 

1966 Lipson & Baldes were first to carry out PDT with HpD in humans. They treated a single chest wall 
recurrence of breast carcinoma that responded but was not cured. PDT in humans was abandoned for the 
second time ILipson & Baldes. 19661. 

1972- Diamond 0 at. and Dougherty 0 al. demonstrated the long-term therapeutic effects of HpD on a variety of 
1974 tumours in rats and mice [Diamond cial.. 1972; Dougherty etal.. 1974]. 

1975 Kelly & Snell (England) reported lip1) uptake in malignant and pre-malignant bladder lesions and 
reported promising results of a single clinical treatment of bladder cancer with HpD using light from a 
mercury lamp [Kelly cial.. 19751. 

1976 Singlet oxygen identified as the main cytotoxic agent [Weishaupt etal.. 19761. 

197$ The first systematic human trials of PDT for skin tumours, using HpD and light from a xenon arc lamp, 
initiated at Roswell Park Cancer Institute in Buffalo, U.S.A. [Dougherty etal.. 19781. 

1980 The first PUT treatment using HpD and 630 nm light from a tunable argon dye laser with a fibre optic 
delivery system [Dougherty etal.. 19801. 

Table 1. Significant historical events leading to the development of photodynamic therapy 
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1.4.4 Photofrin® 

The photosensitizer of choice over almost three decades and the only one currently 

registered for clinical use is the porphyrin-based porfimer sodium or Photofrin II 

(Photofrin®). Photofrin® is an anionic, hydrophobic molecule and a purified form of 

its forerunner, haematoporphyrin derivative (HpD), manufactured by Quadra Logic 

Technologies Inc., Vancouver, Canada. In practice, intravenous injection of Photofrin® 

(1 to 5 mg kg') is followed twenty-four to seventy-two hours later by local irradiation 

with long wavelength (red) light directed through single quartz fibres with a variety of 

speciality attachments [Henderson & Dougherty, 19921. Photofrin® exhibits an intense 

characteristic porphyrin absorption peak in the blue region of the visible spectrum 

around 400 nm (termed the Soret band) and four additional absorption bands (of 

decreasing intensity) between 500 nm and 630 nm. The drug is illuminated at its 

weakest absorption band at about 630 nm [Gomer et al., 1984] because light of this 

(red) wavelength has superior tissue penetrating properties [Section 1.2.1] [Wilson et 

al., 1985]. Standard light dosimetry is 100 to 200 J cm 2  [Schuitmaker et al., 19961 

although this and the method of light delivery may be varied according to the site and 

size of the tumour [Marijnissen & Star, 1987]. Photofrin® distributes well to all 

regions of the body, but is then cleared over the first twenty-four to seventy-two hours 

following infusion, from all tissues except the liver, spleen, kidneys, skin and malignant 

tumours [Gomer & Dougherty, 19791. In mice, [ 14C] Photofrin® is cleared from the 

blood with kinetics fitting a triexponential equation with elimination half-lives of four 

hours, nine days and thirty-six days. Approximately one per cent of the total injected 

material remains in the circulation at twenty-four hours post-injection, with some 

material (approximately 0.01 per cent) still detectable at seventy-five days. Over sixty-

five per cent of the drug is excreted in the faeces over an eight-day period [Bellnier et 

al., 1989c]. 

Photofrin® demonstrates differential uptake and/or retention in malignant tissue such 

that after two to three days following administration there is a high concentration of the 

drug in the tumour relative to the surrounding normal tissue [Bugelski et al., 1981]. 

The mechanisms by which porphyrins are taken up and retained, are not fully 

understood but are probably a combination of several factors. Once within the 

circulation, Photofrin® attaches to porphyrin-binding proteins in the blood, mainly 
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serum albumin and hemopexin that bind non-specifically to stromal elements and are 

found to accumulate in abnormal tissue such as tumours [Moan et al., 1985]. A small 

amount (less than ten per cent) is also bound to erythrocytes. However, the most 

substantial proportion of the drug is bound to lipoproteins (and almost completely 

partitioned in the lipid moiety), although the concentration of these in the blood is less 

than five per cent that of albumin. Porphyrin-lipoprotein interaction is dependent upon 

the likelihood that low-density lipoprotein (LDL) receptor-mediated endocytosis 

activity is elevated in malignant cells [Korbelik, 1992]. Normal cells acquire 

cholesterol for membrane synthesis through the adsorptive endocytosis of plasma LDL. 

Since rapidly proliferating cancer cells require large amounts of cholesterol for the 

synthesis of new membranes, they also have higher LDL requirements and higher LDL 

receptor activities than normal cell types [Goldstein & Brown, 1977]. In fact, the 

distribution pattern of porphyrins is correlated with the relative number of LDL 

receptors in different normal tissues [Kessel, 1986]. However, the significance of the 

'receptor hypothesis' in tumour selectivity is open to debate, since other porphyrin-

based photosensitizers (such as meso-tetraphenylporphin tetrasulphonate and aluminium 

phthalocyanine tetrasulphonate [Section 1.5.1]) are excellent tumour localisers yet they 

do not bind to LDL. On the other hand, haematoporphyrin has a high affinity for LDL 

but, nevertheless, is a poor tumour localiser [Korbelik, 1992]. 

An alternative theory for preferential distribution of porphyrins may involve the 

abnormal structure of tumour stroma with its vast interstitial space, leaky vasculature, 

compromised lymphatic drainage and large content of collagen, elastin and lipid 

[Gullino, 19661. Hydrophobic molecules such as Photofrin® are lipid-soluble [Freitas, 

1990] and it has been observed that the affinity of such photosensitizers for neoplastic 

tissues increases upon increasing their degree of hydrophobicity [Berg et al., 1995]. 

Porphyrins also bind to elastin, collagen and fibrin [Musser et al., 19801, and newly 

synthesised collagen in tumours has a higher affinity for porphyrins than the acid-

insoluble collagen in mature tissue [Musser et at., 19821. Consequently, the interstitial 

compartment of tumours, that comprises mainly a large collagen and elastic fibre 

network, may act as a 'reservoir' or 'sink' for circulating porphyrins. Furthermore, the 

interstitial fluid (which bathes cells and which is found between their plasma 

membranes and the vascular walls) has a pH value that is lower and a lactic acid 
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concentration that is higher in tumours (due to increased glycolytic activity) than in 

most normal tissues. (The intracellular pH, on the other hand, is identical or slightly 

higher in tumours than in normal tissue [Gerweck & Seetharaman, 1996]) A lowered 

pH results in neutralization of the negative charge of porphyrins, thereby increasing 

their hydrophobicity and favouring cellular uptake [Bohmer & Morstyn, 1985]. The 

fact that the pH of tumour tissue is lower than the blood supply that feeds it [Gullino et 

al., 1965] may, at least in part, explain the selective retention of porphyrins in tumour 

tissue. Finally, there is a general recruitment of macrophages and inflammatory cells 

into tumour tissue and it has been shown that large amounts of Photofrin® are taken up 

by these cells in tumour-bearing animals [Korbelik et al., 1991]. 

1.4.5 Current Status of Photodynamic Therapy 

Since the first clinical experiments in the 1970s, several thousands of patients world-

wide, both with early stage and advanced stage solid tumours, have been treated using 

PDT with Photofrin®. During that time, PDT has developed into a fully-fledged 

biomedical discipline with its own association, the International Photodynamic 

Association (WA), and regular conferences devoted solely to this subject. Clinically, 

the regime has been used mainly for bladder cancer, lung cancer and in malignant 

disease of the skin and upper aerodigestive tract. The first health agency approval for 

PDT with Photofrin® was obtained in 1993 in Canada for the prophylactic treatment of 

recurrent papillary bladder cancer. Following this, the Canadians also approved its use 

for the reduction of obstruction and palliation of dysphagia in patients with completely 

or partially obstructing oesophageal cancer. In 1995, the Oncology Drugs Advisory 

Committee of the USA Food and Drug Administration (FDA) approved Photofrin® for 

palliative treatment of patients with totally obstructing tumours and partially obstructing 

oesophageal cancers and, in 1997, for tumour ablation of lung cancer patients who are 

unsuitable for thermal laser therapy. In countries such as the Netherlands, France, 

Germany and Japan, PDT is extensively used to treat lung and oesophageal cancer, 

superficial bladder cancer, cancers of the skin, gastric and cervical cancer, and cervical 

dysplasia [Schuitmaker et al., 1996]. Although it is clearly evident that PDT can cause 

significant tumour necrosis, most clinical studies to date have involved patients who 

have failed conventional treatments. The likelihood of successful tumour control using 

PDT in these patients is therefore accordingly reduced. As a result, it is difficult to 
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assess the success and potential future benefit of PDT clearly. Nevertheless, most 

therapies have demonstrated at least a palliative effect of PDT, with reports generally of 

positive results [Dougherty et al., 1998]. 

1.4.6 Disadvantages of Photofrin® 

Despite attempts to purify the active components of haematoporphyrin, Photofrin® 

nevertheless remains a heterogeneous mixture of several porphyrin species, not all of 

which are involved in the photodynamic effect [Dougherty, 1987]. Variation between 

batches is therefore sometimes encountered in the clinic, making it difficult to predict 

the outcome of treatment. Furthermore, porphyrins do not readily undergo structural 

mono-substitution to allow investigation into changes in physico-chemical properties 

that might lead to increased drug activity. It has also become apparent, unfortunately, 

that the selectivity of Photofrin® for tumour tissue is less than originally reported and, 

on systemic administration, the drug is found also to localise in many normal tissues, 

especially those of the reticuloendothelial system, such as liver, kidneys and adrenals 

[Bugelski, 1981]. Drug accumulation reaches maximum levels more rapidly in normal 

tissues (c five to ten hours) than in tumour tissue (twenty-four to seventy-two hours). 

Consequently, illumination of the tumour region is carried out twenty-four to seventy-

two hours after drug administration when the ratio of the drug concentrations favours 

malignant tissue. At this time, the photosensitizer shows minimal clearance from 

normal tissue, with about sixty per cent of peak levels in the spleen and about thirty per 

cent in lung still detectable seventy-five days after treatment. Particularly problematic 

is its accumulation in the skin, with slow clearance (half-life ca. nineteen days), 

necessitating that patients avoid exposure to bright light and sunlight for up to eight 

weeks post-treatment, in order to limit the risk of severe sunburn-type reactions 

[Dougherty et al., 19901. Although this is a minor inconvenience compared with the 

adverse effects of chemotherapeutic agents, it can lead to quite severe complications, 

especially when patient compliance is poor. Unlike true sunburn, which is the 

erythematous inflammation of the skin by ultraviolet radiation and which often develops 

over several hours, photodynamic reactions to the sun or bright lights may arise as soon 

as fifteen minutes following Photofrin® injection. The patient suffers acute stinging or 

itching, then oedema and blistering to the exposed area. If exposure is long enough, full 

thickness necrosis may be experienced. 
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The absorption spectrum of Photofrin® poses a further disadvantage for its use in PDT. 

Photofrin® (and similarly HpD) exhibits the characteristic intense porphyrin Soret band 

absorption peak around 400 nm (the blue region), with four weaker, Q bands at longer 

wavelengths (505, 540, 580 and 630 nm). However, this is not aligned with the 

therapeutic window (600 to 800 nm) [Section 1.2.2], so porphyrins are illuminated in 

the near infra red (around 630 nm) where their light absorption coefficients are very 

small (E30 am  =3500 I mor 1  cm') [Pottier et al., 1986]. This permits maximum light 

penetration into tissue and overcomes problems of light scattering associated with 

shorter wavelength irradiation. Particularly disappointing, and of interest to this project, 

is the failure of porphyrin-based PDT to prove effective in the treatment of primary 

cutaneous melanotic melanoma, despite clear successes against a range of amelanotic 

metastatic lesions [Lui et al., 1996]. This is thought to be a result of limited light 

penetration in pigmented lesions. The transmission of incident light increases up to 

about 700 nm in lightly pigmented tumours, whereas in the presence of extensive 

pigmentation (such as in melanotic melanoma), tissue transparency is observed only at 

wavelengths above 780 nm [Svaasand et al., 19901. Sensitivity of melanotic melanoma 

to PDT has only been observed in the presence of the porphyrin analogue, Si(IV)-

naphthalocyanine which displays an intense absorbance (c =500 000 I mol' cm') at 780 

nm, thereby avoiding competition with melanin for light absorption [Biolo etal., 1994]. 

1.5 Future directions 

1.5.1 Second-generation Photosensitizers: Porphyrin-based Compounds 

Second generation photosensitizers based on porphyrins are at various stages of pre-

clinical and clinical evaluation. A vast array of new compounds has been produced 

either by synthetic modification of the parent molecule or by direct synthesis of de novo 

porphyrin analogues. Some of them are metal-free whilst others contain a diamagnetic 

metal complex 	Derivatives of several groups, including the chlorins (also 

benzochlorins and bacteriochiorins), phthalocyanines (and the closely related 

naphthalocyanines), purpurins, benzoporphyrins, pheophorbides, porphycenes, verdins 

and texaphyrins, have been prepared and have proven preclinical efficacies. The 

phthalocyanines and naphthalocyanines are worthy of mention as a group since they are 

the most common family of hydrophobic photosensitizers. Following this only those 
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compounds that have entered clinical trials will be described further and these presented 

in order of extent of clinical use for cancer. 

Phthalocyanines and Naphihalocyanines 

Phthalocyanines (Pcs) (and the closely related naphthalocyanines (Ncs)) are structurally 

similar to porphyrins, with either a basic tetrabenz- or tetranaphtho-tetraazaporphyrin 

core, but show a strong absorption in the 650 to 750 nm range [Dougherty, 1984]. This 

is due to extended conjugation of the pyrrole moieties and replacement by nitrogen of 

the methine (-CH=) bridge [Figure 4]. 

Figure 4. Chemical structures of phthalocyanine (left) and naphthalocyanine (right) molecules. 

Substitution of these compounds is possible, either around the periphery of the molecule 

or within its central cavity, by chelation of metals bearing axial ligands. Both non-

metallo and metallo derivatives have been studied but metal-free Pcs and Ncs show 

little photodynamic effect so, without exception, the Pcs and Ncs used in PDT contain a 

central metal atom. This is in contrast with porphyrin-based photosensitizers that tend 

to be non-metallated. The Pc (and Nc) macrocycle can combine with most metal and 

metalloid elements of ths periodic table and be substituted at the periphery with a wide 

variety of substituents. However, the most potent photosensitizers of these classes are 
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reported to be the zinc- and aluminium-substituted Pcs, particularly the di-sulphonated 

Pc, AIPcS2 [Moan et al., 1994]. AIPc is a particularly effective photosensitizer in vitro 

[Ben-Hur, 1989], whilst chloroaluminium sulphonated Pc has produced excellent 

responses in spontaneous tumours in animals [Roberts et al., 1991]. Zinc extends the 

lifetime of the metastable triplet state [Rosenthal, 1991] and, for a series of four 

zinc(fl)-substituted Ps, varying in charge and hydrophobicity, it was found that 

maximum tumour necrosis developed between nine and fourteen days in rats, with the 

cationic compound being the most potent photosensitizer [Cruse-Sawyer, J.E., 1998]. 

Of Ncs, Si(IV)-naphthalocyanine is the only photosensitizer to date that has proved 

effective against melanotic melanoma [Biolo etal., 1994] [Section 1.4.6]. 

5-Aminolaevulinic acid/Protoporphyrin IX 

A promising approach to PDT is the use of the five-carbon amino acid 

NIH2CH2COCH2CH2COOH, 5-aminolaevulinic acid (5-ALA), to induce endogenous 

photosensitization in malignant tissue [Figure 5]. 
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FigureS. Chemical structures of 5-aminolaevulinic acid/Protoporphyrin IX 

5-AJ..A is a naturally occurring precursor of haem that is produced in every nucleated 

cell. The technique exploits the haem biosynthetic pathway (which occurs in 

mitochondria) and, in particular, the immediate haem precursor, protoporphyrin IX 

(PpIX) [Kennedy et al., 1990]. Exogenous 5-ALA acts as a prodrug that, upon local or 

oral administration, is absorbed locally or via the bloodstreath and converted by cellular 
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enzymes to PpIX. Though an excellent photosensitizer, PpIX is not normally present 

within tissue at therapeutically useful concentrations since its production is subject to 

negative feedback inhibition, depending on the local concentration of haem [Figure 61. 
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> ALA synthetaso 
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Figure 6. The haem biosynthetic pathway. [Taken from Kennedy etal.. 1990.1 

Haem inhibits the activity of 5-ALA synthase, the first and rate-limiting enzyme of the 

biosynthetic pathway that catalyzes the production of 5-ALA from the condensation of 

glycine and succinyl CoA. Oral administration of 5-ALA bypasses this control in 

certain types of malignant (and regenerating) tissues. 5-ALA-PDT takes advantage of 

the fact that the activity of two particular enzymes is altered in some malignant cells 

[Leibovici a cxl., 1988; El-Sharabasy et cxl., 1992]. Ferrochelatase catalyzes the 

insertion of an iron atom into PpIX to form haem (which is not photoreactive), thereby 

inhibiting photodynamic activity. Porphobilinogen deaminase (PBGD) is the rate-

limiting enzyme involved in precursory synthesis of PpIX. Some malignant cells have a 

relatively low activity of ferrochelatase but elevated activity of PBGD. High levels of 
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PBGD and low levels of ferrochelatase lead to overproduction of PpIX and its 

accumulation at photosensitizing concentrations in malignant tissue [Figure 6]. 

Following irradiation, 5-ALA-induced PpIX is photobleached very rapidly, leaving no 

detectable PpIX [Wessels et at., 1992]. In fact, PpIX is almost completely cleared from 

the body within twenty-four hours of its induction whether orally, topically or 

intravenously administered, reducing the risk of prolonged skin photosensitivity 

[Bedwell et al., 1992]. Moreover, since surrounding normal tissue contains very small 

amounts of PpIX, it runs no risk of serious photodamage, permitting the use of very 

large light doses, if necessary. 

The first clinical results with 5-ALA appeared in 1990 from Kennedy et al., who treated 

eighty basal cell carcinomas with 20 % (w/v) 5-ALA, applied topically in a proprietary 

oil-in-water emulsion. After an incubation time of three to six hours, lesions were 

exposed to light from a slide projector equipped with a 500 W lamp to give a range of 

light doses between 15 J cm 2  and 150 J cm 2. Complete responses were found in ninety 

per cent of treated lesions two to three months post-treatment [Kennedy et al., 19901. 

At the same time, Kennedy and co-workers also reported on the use of ALA-PDT to 

treat early invasive squamous cell carcinoma and metastatic carcinoma of the breast. 

Further collaborative studies from the group using topically-applied 5-ALA found 

complete responses first in seventy-nine per cent (of three hundred lesions), and then in 

eighty-seven per cent (of over eight hundred cases) of basal cell carcinomas of the skin 

[Kennedy et al., 1992; Kennedy et al., 1996]. Other areas of investigation include the 

treatment of precancerous solar keratoses and various skin dysplasias [Peng et al., 1997; 

Calzavara-Pinton, 1995; Cairnduff et at., 1994; Wolf et al., 1993], high-grade 

oesophageal dysplasia in Barrett's oesophagus [Barrel at., 1996] and mucosal lesions in 

the gastrointestinal tract [Bown & Millson, 1997]. In June 1998, DUSA 

Pharmaceuticals, Inc. submitted to the US FDA the results of phase ifi clinical trials in 

which ninety-one per cent of lesions were cleared in patients using twenty per cent ALA 

plus blue light to treat multiple actinic keratoses of the face and scalp [McCaughan, 

1999]. 
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rneso-tetra(m-hydroxyphenyl)chlorin (in- THPC, Tern oporfin, Foscan &) 

5,10,1 5,20-tetrakis(rneta-tetrahydroxyphenyl)chlorin (rn-TFIPC, temoporfin, Foscan(D) 

was first synthesised at Queen Mary College, London, United Kingdom [Bonnett, etal., 

1989][Figure7]. 

Figure 7. Chemical structure of rneso-tetra(m-hydroxyphenyl)chlorin (m-THPC, Temoporfin, Foscan®) 

Of all second-generation photosensitizers, chlorins have been most studied. They are 

derived from two sources, either by chemical synthesis or by modification of 

chlorophyll a, and have large molar extinction co-efficients above 650 nm [Spikes, 

1990]. Foscan® itself is a stable compound, easily manufactured with a purity of over 

ninety-nine per cent and appears to date to be the most potent photosensitizer on a molar 

basis available for clinical PDT. Foscan® has a much stronger absorption peak in the 

red region of the visible spectrum than Photofrin® (at 652 nm compared with 630 nm, 

respectively) and consequently greater photoactivation and deeper tissue penetration. It 

also has a much higher 102  yield and therefore relies on lower light doses for activation 

[Ma et al., 1994]. Drug doses as little as 0.1 mg kg' and light doses as low as 10 J cm 2  

with Foscan® are reported to be required for efficacy [Blant et al., 19961. Light doses 

with Photofrin® are generally above 100 J cm 2  [Schuitmaker et al., 1996] [Section 

1.2.21. Skin photosensitization is less of a problem with Foscan® (two to three weeks 

compared with two to three months with Photofrin® [Dougherty et al., 1990]), although 
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this varies greatly between individuals and is still longer than is found with other second 

generation photosensitizers [Savary etal., 1994]. 

Interest in the meso-tetra(hydroxyphenyl)porphyrin series as clinical photosensitizers 

began in the 1980s because they, or their anions, were expected to show enhanced 

absorption at wavelengths in the red [Milgrom, 1983]. In the event, these compounds 

proved to be highly potent photosensitizers with favourable tumour selectivity 

[Berenbaum a al., 1986]. Since then, Foscan has undergone extensive in vivo testing 

and cost-benefit analysis [Bonnett et al., 1989; Berenbaum a al., 1993], and appeared 

to be on the verge of commercialisation until non-approval by the FDA in early 2001. 

The first clinical reports appeared in 1991 and described the treatment of malignant 

mesothelioma using intraoperative PDT with Foscan®. Selective tumour uptake and 

tumour necrosis up to 10 mm in depth following surgery was reported [Ris etal., 1991]. 

Most of the initial work with Foscan® focused on early-stage invasive cancers of the 

head and neck. Preliminary investigations from Savary a al. (1994) found a complete 

response in fourteen out of sixteen early-stage carcinomas of the upper aero-digestive 

tract without recurrence in a six-month follow-up period. In this case, skin 

photosensitivity was six weeks at most. Possibly the best results for early bronchial or 

oesophageal cancers have come from researchers in Lausanne, Switzerland, with 

seventy-seven per cent of tumours eradicated in twenty-eight patients using Foscan-

mediated PDT. No recurrences occurred in a three to thirty-five month follow-up 

period. In contrast, late-stage tumours were controlled in only one out of four patients 

by this method. (In fact, none of the groups currently working with this photosensitizer 

now believes that it is an appropriate agent for palliating advanced malignant disease.) 

Skin photosensitivity here was seen only in the first week post-injection, although other 

complications (one oesophageal fistula, one bronchial stenosis and possibly two occult 

oesophageal perforations) occurred [Grosjean et al., 1996]. As a result, it has been 

proposed that green light rather than red should be used for early lesions to minimise the 

risk of muscle damage and perforation [Monnier a al., 1994]. Green light exhibits 

lower tissue penetration (and is less painful) than red [Fritsch, etal., 1993] and Foscan® 

also absorbs in this part of the spectrum. The photosensitizer has a second, smaller 

absorption peak at 514 nm that can be used when treating superficial tumours in thin-

walled organs such as the oesophagus. Consequent to these and other successful trials 
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[Dukes & DeJode, 1995; Ris et al., 1996; Baas et al., 19971, a multicentre European 

evaluation study of Foscan-mediated PDT for head and neck cancers was carried out 

under the sponsorship of Scotia Pharmaceuticals, U.K. [Dukes, a al., 1997; Savary a 

al., 1997] 

Benzoporphyrin Derivative-Monoacid Ring A (BPD-MA, Verteporfin) 

Derivatives of benzoporphyrins (BPD5) are of interest as clinical photosensitizers 

because they absorb light maximally at wavelengths around 690 nm and have low skin 

toxicity compared to Photofrin® [Pandey a al., 1993]. 

Figure 8. Chemical structure of benzoporphyrin derivative-monoacid ring A (BPD-MA, Verteporfin) 

As they are hydrophobic molecules, BPDs must be formulated into liposomes for 

application. Monoacid forms of BPD share similar pharmacological properties but have 

greater PDT activity than their corresponding diacid analogues [Richter a al., 1990]. 

Benzoporphyrin derivative-monoacid ring A (BPD-MA, Verteporfin) [Figure 8] is in 

fact a chlorin composed of two monomethyl esters and synthesised from protoporphyrin 

[Pangka et al., 1986]. It has a strong molar absorption co-efficient at 690 nm where 

there is a "window" between the absorbance of haemoglobin and water. Further 

desirable features of the drug have led to its clinical use against a variety of cutaneous 

and extracutaneous targets. BPD-MA has, for instance, demonstrated good selectivity 

for tumour tissue. Drug concentrations five times greater in malignant tissue than in 

normal skin have been reported using fluorescence spectroscopy in patients with basal 

cell carcinoma [Lui a al., 1996]. In vitro studies on varibus cell lines suggest that 
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uptake of BPD-MA is via receptor-mediated endocytosis through the LDL receptor 

[Kessel, 1989b; Allison et al., 19941. Accumulation of BPD-MA into malignant tissue 

following intravenous injection is rapid, permitting same-day irradiation of the tumour 

region. Furthermore, its short half-life and rapid clearance ensure that skin 

photosensitivity is only of very limited duration (seventy-two hours in humans is 

reported) [Levy et al., 1994]. Consequently, Phase 1/11 trials with BPD-MA for the 

PDT of non-melanoma skin cancers, endometrial ablation and psoriasis have now been 

completed [Leung, 1994; Levy, 1995]. 

BPD-MA has also demonstrated potential in the treatment of atherosclerotic plaque 

[Allison et al., 1997] illustrating the scope for PDT outside the field of neoplasia. Of 

particular interest though is the use of BPD-MA to treat choroidal melanomas [Allison 

et al., 1997] and age-related macular degeneration (ARMID) [Husain et al., 1996, 1997]. 

ARMD is the most common cause of blindness in people over fifty years of age. In 

certain patients, vision is impaired by leaky vasculature near the macula, but further loss 

may be incurred as a result of damage to the retina by the thermal lasers used in 

conventional treatment. Using PDT, BPD-MA is allowed to accumulate in the vessels 

as much as possible then activated at 690 nm through an ophthalmoscope generally 

using a diode laser. This allows selective closure of leaky vessels without damage to 

overlying tissue. A preliminary study of one hundred and seven patients showed that a 

single treatment was effective in forty-four per cent of patients though there was some 

recurrence of leakage after four to twelve weeks [Gragoudas et al., 1997]. Multiple 

treatments may offer improved results and are being evaluated in further trials 

[Schmidt-Erfurth et al., 1997]. BPD-MA has now moved into Phase ifi randomized 

trials involving four hundred patients in twenty-eight centres in North America and 

Europe for the treatment of ARMID. 
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mono-L-aspartylchlorin e (Npec, MACE) 

Mono-L-aspartyl chlorin e6 (Npe6, MACE) is a synthetic aspartyl derivative of chlorin-

e6 [Figure 9]. It is a pure, monomeric compound with a major absorption peak at 664 

nm, very short-lived phototoxicity and rapid clearance from tissues [Allen et al., 1992]. 

Figure 9. Chemical structure of mono-L-aspartylchlorin e6 (Npe 6, MACE) 

Preliminary research in the late 1980s established that the aspartate esters of chiorin e6 

could induce cell death in vitro and tumour control in vivo [Nelson et al., 19871. 

Mechanistic investigations revealed also the hydrophilic character of the molecule, 

demonstrating that MACE enters cells via endocytosis and becomes ultimately localised 

in lysosomes [Roberts & Berns, 1989]. In addition, it has been demonstrated in PTK2 

cells that lysosomes are preferentially damaged following MACE-mediated PDT 

[Roberts et al., 1989]. Subsequent in vivo and pharmacokinetic analysis confirmed the 

photodynamic action of MACE against transplanted mouse mammary carcinomas and 

suggested a major vascular component in the tumoricidal action of this photosensitizer 

[Gomer & Ferrario, 1990]. Further to this, MACE has been the subject of clinical trials 

for the treatment of endobronchial lung cancer and superficial malignancies of the skin 

and nasopharynx. Good response rates were seen with illumination four to eight hours 

following drug administration and skin photosensitivity was limited to the first two to 

four days [Allen.et al., 1992]. 
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Tin ethyl etiopurpurin (SnET2, Purlytin ?)) 

Purpurins were first synthesised in 1960 [Woodward, 1960] and metal derivatives of the 

free base purpurins prepared in 1986 by Morgan and Tertel at the University of Toledo 

[Morgan & Tertel, 1986]. 

Figure 10. Chemical structure of tin ethyl etiopurpurin (SnET2, Purlytin®) 

Tin ethyl etiopurpurin (SnET2, Purlytin®) is the major representative of the purpurin 

family [Figure 10]. It is a synthetic chlorophyll analogue (a metallochlorin) that can be 

activated by 664 nm visible red light in vivo [Garbo, 1996]. Since the molecule is 

hydrophobic, it must be formulated into a lipid emulsion or with the common 

solubilization agent, Cremophor EL, for clinical use [Razum et i1., 1996]. SnET2 has 

been shown to be selective for and retained by tumour but not normal tissue. The 

presence of the metal ligand alters intracellular targeting of the molecule so, whereas 

metal-free derivatives inhibit biosynthesis of DNA, SnET2 mediates photodamage at 

sites of membrane transport [Kessel, 1989c]. A pilot study on the canine prostate 

demonstrated tissue necrosis up to a depth of one centimetre following illumination 

twenty-four hodrs after administration of SnET2 [Selmen & Keck, 1994]. Preliminary 

Phase J/ll clinical trials, carried out to evaluate drug and light doses and to assess the 

safety of the drug, found that ninety-five to one hundred per cent of basal cell carcinoma 

and all metastatic breast carcinoma lesions had responded twelve weeks following PDT 

treatment using SnET2. Of the breast carcinoma lesions, complete and partial responses 

were ninety-six per cent and four per cent respectively and, of basal cell nevus 

syndrome tumours, eighty-six per cent and fourteen per cent, respectively [Snyder et al., 
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19961. In a second study involving treatment of AIDS-related Kaposi's sarcoma, forty-

five patients with four hundred and four tumours were treated. Complete responses 

were found in sixty per cent of lesions and partial responses in the remaining forty per 

cent [Razum et al., 19961. Side effects of PDT with SnET2 are reported to be minimal 

with mild, transient photosensitivity found only in a small percentage of patients. 

Furthermore, the rapid clearance of this drug is considered to be an advantage in 

dermatology. SnET2 has now moved into phase ifi clinical study with a view to U.S. 

FDA approval for its use in the PDT of various cutaneous metastases and AIDS related 

Kaposi's sarcoma [Razum, etal., 1996; Rifkin etal., 1997; Kaplan eta!; 1998]. 

Lutetium texaphyrin (PCJ-0123, Lu-Tex) 

The texaphyrins are a new class of "expanded porphyrins" which have a system that is 

not a tetrapyrrole, but does have an expanded co-ordination sphere that readily forms 

metal complexes [Sessler et al., 1988; 1994]. Metallotexaphyrins substituted with 

lanthanum and lutetium form long-lived triplet states and are efficient generators of 

singlet oxygen [Harriman et al., 1989; Grossweiner et al., 1999]. Unfortunately, many 

of them have relatively poor solubility in aqueous solution and some only short stability 

in phosphate buffered saline or tissue culture media. 

Figure 11. Chemical structure of a texaphyrin molecule 

Lu(llI) derivative PCI-0123 (lutetium texaphyrin) is one exception that is both stable 

and water-soluble [Figure 11]. 	Lu-Tex is highly fluorescent, acts both as a 
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photosensitizer and a magnetic resonance imaging contrast agent, and has a broad 

absorption peak at 732 nm, permitting maximum penetration (about six millimetres) 

into tissue [Young et al., 19961. Studies with Lu-Tex have progressed from cellular and 

bacterial [Ehrenberg et al., 1991], then viral [Matthews et al., 1992] systems, to 

mammalian tumour models [Woodburn et at, 1996] and preliminary investigations 

involving varibus metastatic skin cancers [Wieman et al., 1996; Renschler a al., 1997]. 

Phase I clinical trials evaluated one hundred and sixty-three skin lesions from fifteen 

breast metastases, seven malignant melanomas, five Kaposi's sarcomas, two invasive 

basal cell and two squamous cell carcinomas and found a complete response in twenty-

nine per cent and partial response in seventeen per cent of all cases. Unlike some other 

photosensitizers, Lu-Tex preferentially accumulates in malignant tissue (via an 

increased lipoprotein receptor mechanism) with no necrosis in the surrounding normal 

skin [Renschler a al., 1997]. In fact, Lu-Tex is believed to be one of only a few 

photosensitizers to exert direct tumour cell toxicity, causing selective tumour necrosis 

with very little evidence of vascular-mediated damage. Woodburn et al. demonstrated 

intracellular localisation of Lu-Tex in lysosomes of EMT-6 neoplasms using confocal 

laser scanning microscopy and found an intense apoptotic response following 

illumination [Woodburn et al., 19961. PDT-induced apoptosis of vascular cells with 

Lu-Tex has recently also been reported [Simon a al., 1999]. All in viva studies to date 

have indicated that this drug is cleared rapidly from plasma with biphasic 

pharmacokinetics (T312 0.25 and 8.8 h in humans) and induces only mild, transient skin 

photosensitivity. This makes it a suitable agent for repeated PDT, which gives better 

results than single treatments in animal models [Miles & Young, 1997]. Lu-Tex is 

currently moving into Phase liJifi clinical trials for various cutaneous cancers. 

1.5.2 Second-generation Photosensitizers: Cationic Dyes 

Cationic dyes represent an entirely different class of photosensitizers based on non-

porphyrin compounds. Some vital dyes, used for over a century both in industry and 

histology, have long been known to act as photosensitizers and have attracted interest in 

PDT since they affect the mutation, metabolism and viability of mammalian cells, 

bacteria and viruses. Most dyes are organic compounds that contain a chromophore and 

an auxochromic group attached to at least one benzene ring. The colour of the dye is 

attributable to its chromophore and its dyeing property to the salt-forming auxochrome. 

Vital dyes are divided into two categories, basic and acid dyes, not terms that refer to 
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the hydrogen ion concentration, but that are indicative of whether the ionised 

auxochrome is respectively cationic or anionic [Gill et al., 1981]. 

The earliest reports of vital dyes being used in histological staining came in 1642 from 

Grew, who used Cochineal extract to stain plant tissues, and shortly afterwards from 

Leeuwenhoek, who stained muscle fibres with Saffron [Barbosa and Peters, 1971]. One 

of the first reports of the use of a cationic dye in the treatment of human cancer, was 

presented in 1906 at the 571h 
 Annual Meeting of the American Medical Association by 

Dr. Jacobi [Jacobi, 19061. Over a period of fifteen years, Jacobi observed that the 

phenothiazinium dye, methylene blue, orally administered at 120 mg to 400 mg per day 

to one hundred and fifty patients with inoperable cancer, produced a palliative effect in 

most patients, especially women with uterine cancer. The treatment appeared to be 

particularly effective when patients were placed in bright sunlight for long periods of 

time. Methylene blue, along with several other cationic dyes, also demonstrated in viva 

cytotoxicity against animal tumours in the 1940s, prior to the advent of modem PDT 

[Lewis et al., 1946; Riley, 1948]. Later, in 1963, another phenothiazinium dye, 

toluidine blue (applied topically as a one per cent aqueous solution) was used for the in 

vivo delineation of dysplasia and carcinoma of the uterine cervix in two hundred women 

[Richart, 1963]. The degree of staining was found to correlate with the severity of the 

disease, which may explain the results obtained by Jacobi some sixty years before. 

Other examples of commercial photosensitizers that have been examined for 

photocytotoxicity include acridines [Iwamoto et al., 19871, xanthines [Melloni et al., 

19881, phenoxazines [Cincotta et al., 1994], phenothiazines [Canete et al., 1993] and 

triarylmethanes [Wadwa et al., 1988]. 

Whilst cellular uptake of anionic compounds (such as Photofrin®) is strongly dependent 

upon their hydrophobicity [Moan et al., 1987], uptake of cationic photosensitizers is 

thought to occur because of their attraction for the negatively-charged inside surface of 

cellular membranes. Whereas hydrophobic, anionic dyes generally localise in 

membrane structures (including plasma, mitochondrial, endoplasmic reticulum and 

nuclear membranes), hydrophilic compounds tend to localise in lysosomes. 

Hydrophobic, cationic photosensitizers are found to accumulate preferentially in 

mitochondria. Rhodamine 123, for example, is a mitochondria-specific cationic dye 
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[Bernal et at., 19831 that has demonstrated photocytotoxicity in carcinoma cells in vitro 

[Nadakavukaren et al., 1985; Meloni et al., 1988] and antitumour activity in animal 

models in vivo [Herr et al., 1988; Arcadi, 1990]. It is believed that their mitochondrial-

localising property arises from an abnormally high electrochemical potential across the 

mitochondrial membranes of individual carcinoma cells [Davis et al., 1985; Oseroff, 

1986]. An observation of particular therapeutic interest is that light exposure seems to 

increase the retention of rhodamine derivatives in cells [Shea et al., 1989]. However, 

although cationic, hydrophobic dyes (including rhodamine 123, tri aryl methyl methane 

derivatives, chalcogenapyrylium dyes and cryptocyanins) appear to be selectively 

retained in certain types of carcinoma cells compared to normal cells in vitro [Modica-

Napolitano et al., 1990; Oseroff et al., 1986], few demonstrate selective tumour 

accumulation in vivo [Kinsey et al., 1989]. Furthermore, the photocytotoxicity of many 

commercial photosensitizers is not achieved without concomitant dark toxicity [Bernal 

et at., 1983; Herr et al., 1988; Arcadi, 1990], and few workers have thus far attempted 

to overcome this problem by the synthesis of specifically designed photosensitizers 

based on these compounds. 

Nevertheless, some novel, cationic compounds based on phenoxazines and 

phenothiazines may hold promise for the future [Cincotta et al., 19901. 

Benzophenoxazines are derivatives of the tetracyclic dye, Nile blue, and possess several 

features required of an effective photochemotherapeutic drug i.e. they selectively stain 

tumours, are stable in physiological conditions, exhibit low systemic toxicity and absorb 

light within the therapeutic window. Unfortunately, these compounds are inefficient 

photosensitizers, both in vitro and in vivo, due to their inability to form long-lived triplet 

states [Section 1.3.2]. However, researchers found that use of the heavy atom effect to 

increase the spin-orbit coupling, and substitution of appropriate halogens (I, Br) to the 

benzo[a]phenoxazine nucleus, enhanced the photoactivity of several of the Nile blue 

derivatives thus created [Foley et al., 1987]. In vitro photosensitization correlated with 

singlet oxygen yields for these compounds. Further studies using animal models 

demonstrated the selective retention of the derivatives in vivo [Lin, Schulok, Kirley et 

al., 1991]. A preclinical evaluation of substituted benzo[a]phenothiazinium 

photosensitizers has demonstrated promising properties for their use in human skin 

cancer [Cincotta et at., 1994]. The low systemic toxicity and an absorption peak at 
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around 650 nm are combined with a good tumour killing ability and lack of unwanted 

cutaneous toxicity. 

EN ccx2HE 
+ 

Figure 12. Chemical structure of 5-ethylamino-9-diethylaminobenzo[a]thiazinium chloride [EtNBS]. 

Replacement of the oxygen atom in benzophenoxazines with sulphur gives rise to the 

corresponding benzophenothiazinium chromophores [Cincotta et al., 1987] [Figure 12]. 

Derivatives of benzo[a]phenothiaziniums are efficient absorbers of red light (620 to 660 

nm) with molar extinction coefficients of about 75 000 1 mol cm', have more 

hydrophobic character than the parent compounds [Cincotta & Foley, 1988], and have 

demonstrated promising results in vivo [Cincotta et al., 1990]. 

1.6 Aim of Project 

The aim of the project was first to examine the effect of simple alkylation of the 

phenothazinium chromophore on the cytotoxicity of the well-known biological stain 

and photosensitizer, methylene blue (MB). It was also proposed to investigate factors 

that might contribute to the observed patterns of cytotoxicity and to study the 

mechanisms by which the photosensitizers might bring about cell death. Ultimately, the 

project sought to assess the potential of MB and its derivatives, 1-methyl methylene 

blue (MMB), 1,9-dimethyl methylene blue (DMIMB) and new methylene blue N (NMB) 

to be used in the PDT of both non-pigmented and pigmented lesions. 
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CHAPTER TWO: 

CYTOTOXICITY OF METHYLENE BLUE AND ITS 

DERIVATIVES IN THE EMT-6 CELL LINE 
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2.1 ABSTRACT 

The cationic phenothiazinium dye, methylene blue (MB), has previously been 

investigated as a potential photosensitizer in clinical photodynamic therapy. Its 

apparent dismissal from mainstream PDT is likely to be as a result of an inherent (dark) 

toxicity and its rapid reduction in vivo to the inactive compound. The cytotoxic and 

photodynamic activities of MB and two other commercially-available stains, 1,9-

dimethyl methylene blue (DMIMB) and new methylene blue N (NMIB), together with a 

newly synthesised compound, 1-methyl methylene blue (MMB), were measured here 

against the murine mammary tumour cell line, EMT-6, using a standard MYF assay. 

The three derivatives exhibited increased dark toxicity with concomitant higher 

phototoxicity compared to MB at a white light dose of 7.2 J cm 2 . Successive 

methylation also rendered the phenothiazinium chromophore more resistant to reduction 

to its inactive leuco form and led to increased levels of singlet oxygen production, 

increased hydrophobicity and improved cellular uptake, providing a possible 

explanation for the increased toxicities of the methylated derivatives. Of the four 

photosensitizers, NMB exhibited with the highest light:dark differential in this cell line 

and, in this respect, demonstrated the greatest clinical potential. 
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2.2 INTRODUCTION 

The phenothiazinium dye, methylene blue (MB) (tetramethylthionin chloride), also 

known as Swiss blue, is a basic dye with a relative molecular mass of 319. As a 

member of the thiazine subgroup of the quinoneimine family of dyes, MB has typically 

a 2-benzene ring structure joined by one sulphur and one nitrogen atom [Figure 131. 

Like most of the dyes in this group, the primary importance of ME is not within the 

textile industry but in several fields of biology including, amongst others, cytology, 

histochemistry, histology, microbiology, mycology, parasitology and virology. MB is 

one of the most widely used of all dyes, particularly in the field of histology, where it is 

used mainly as a nuclear stain. MB itself will stain a vast range of organisms, 

microorganisms, cellular and subcellular bodies and tissues including bacteria, leprosy 

organisms, yeast, diphtheria, rickettsiae, spirochaetes, algae, bone and cartilage, nervous 

tissue, splenic and lymphoid tissue, leukocytes, mitochondria, Nissl bodies, Negri 

bodies, pancreatic Paschen bodies and many others. In combination with acid dyes, MB 

is also an ingredient of staining formulations such as Giemsa and Leishman, which are 

used to study blood and parasites [Barbosa & Peters, 1971]. 

In addition to its long tradition as a vital stain, MB has played an important role in 

investigations of major biological processes in vivo. It has been used extensively in 

humans, for example, for the localisation of ureteral orifices, fistulae, and for the 

therapy of cystitis and urolithiasis [Gill ci al., 1981]. When the dye was found to stain 

injured urothelial surfaces but not normal urothelium, it was postulated that bladder 

tumours might also have abnormal surfaces that could be selectively targeted by vital 

dyes such as MB. Urothelial injury results in nucleation and crystal adhesion of 

calcium oxalate and magnesium ammonium phosphate (struvite) in experimental 

animals [Gill ci al., 1979]. Similarly, microscopic crystals of stone salts and gross 

crystalline masses are frequently found adherent to the surfaces of human bladder 

tumours. Consequently, MB was used to delineate tumour tissue in the management of 

patients with bladder cancer [Fukui ci al., 1983; Gill ci al., 1984] and as an adjunct to 

check cytoscopy in recurrent bladder tumOurs [Kaisary, 1986]. More recently, selective 

staining of intestinal metaplasia in Barrett's oesophagus has been demonstrated with 

MB [Canto, 1996]. 
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MB is also a known bioactive photosensitizer and has several other features that would 

suggest its potential as an agent in clinical PDT. It is readily available and 

manufactured with a high level of purity. Very importantly, it absorbs light maximally 

in the red region of the spectrum (600 to 800 nm), which corresponds to the therapeutic 

window for PDT [Section 1.2.1]. To this end, several groups have tested the dye's 

toxicity against various cell lines [Gill et al., 1987; Fowler et at., 1990; Yu, D-S., 1990; 

Wang & Densmore, 19951 and in experimental animals, with promising results [Gill et 

at., 1987; Yu, D-S, 1990; KOnig et al., 19871. DNA is recognised as an important 

primary target for MB photosensitized biological damage, and mutagenic effects are 

found in living systems when cell destruction is incomplete [Bellin & Grossman, 1965; 

Tuite & Kelly, 1993; Antony et al., 1995]. However, photoactivated MB will also 

oxidise lipids [Kamat & Devasagayam, 1996] and amino acids [Nilsson a al., 1972], 

and cause damage to lysosomal membranes [Santus a at., 1983; Yao & Zhang, 1996]. 

Recent research has implicated MB-induced microtubular photodamage in cell death 

[Stockart et at., 1996]. As with porphyrin-based PDT, Type U photochemical reactions 

are believed to predominate in MB-induced photocytotoxicity, although Type I 

processes have also been observed [Kamat & Devasagayam, 1996] [Section 1.3.2]. The 

photochemistry of the phenothiazinium nucleus has been investigated extensively by 

several groups, particularly in the area of DNA-MB interactions. On illumination, 

intercalated MB causes the formation of oxidised guanine residues, notably 8-

hydroxyguanosine, via the intermediacy of singlet oxygen [Tuite & Kelly, 1993]. This 

research has led to the use of MB in the eradication of viruses, such as HTV and 

Hepatitis C, from donated blood [Zeiler et al., 1994; Bachmann et al., 1995]. The 

technique involves mixing a small amount of photosensitizer with the blood and its 

subsequent illumination whilst still in the 'blood bag'. This is permitted because red 

blood cells, unlike viruses, do not contain DNA, and the long (red) wavelengths 

required to activate the photosensitizer do not cause collateral damage to other blood 

components. It has also been suggested that MB cytotoxicity includes the generation of 

hydroxyl radicals which effect changes to the homeostatic mechanisms of intracellular 

calcium [Lee & Wiirster, 1995]. 

Despite its extensive commercial applications, the use of MB as a photosensitizer in 

clinical PDT has been sparse. Nevertheless, MB has been used to treat several tumour 

types both in animals and in humans. One of the earliest publications of the use of MB 
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to treat cancer in humans dates back to 1906, when Jacobi treated patients suffering 

inoperable disease with pills containing MB. Although no cures were effected, the 

treatment was claimed to have prolonged lives [Jacobi, 1906]. In humans, MB has been 

used for the PDT of bladder carcinoma [Williams et al., 1989] and inoperable 

oesophageal tumours [Orth et al., 1995]. In the former case, direct instillation of the 

photosensitizer into the bladder cavity, and its local retention, reduces the possibility of 

systemic side effects. Using a topical application, NIB, in combination with the 

photosensitizing pro-drug, 5-aminolaevulinic acid [Section 1.5.2], has been used in the 

PDT of psoriasis [Schick a al., 1997]. MB has since also been tested alongside Zn-

phthalocyanine and Photosan-3 in experimental colonic tumours in mice, comparing 

favourably with the other two photosensitizers, with seventy-five per cent of the 

tumours being destroyed by a single PDT treatment with MB [Orth a al., 19981. More 

recently, the effect of PDT using MB (free and combined with liposomes) as the 

photosensitizer for treating human ovarian malignant tumours cultivated on the 

chorioallantoic membrane has been evaluated. Two days after PDT, the treated 

implanted tumours were markedly decreased in size and areas of necrosis with black 

coloration, dryness and eschar formation were observed. Five days after PDT, tumour 

regression was clearly observed in all the treated tumours [Ismail et al., 19991. 

The hydrophilic/ hydrophobic character of any drug will influence its partitioning 

behaviour in the various pharmacological compartments in which it is subsequently 

found. The Log P value is a simple in vitro measure of the partitioning behaviour of a 

compound and is taken as the logarithm of the partition coefficient of that compound 

between a two-phase mixture, normally water and 1-octanol, such that 

LogP=Log{c 1 /c}. 

The more hydrophilic a compound, the greater its water solubility, and hence the more 

straightforward its systemic administration. On the other hand, the more hydrophobic 

(or lipophilic) a compound, the greater its affinity for the various lipids encountered 

(complexed to blood proteins or at the cell membrane, for example), and the greater the 

likelihood of cellular uptake. Normally, alkyl substitution of a compound will cause an 

increase in its hydrophobicity (positive Log P), promoting its binding to serum transport 
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lipoproteins, increasing cellular uptake and, possibly, altering its intracellular targeting 

and localisation. 

Like most other phenothiazinium dyes, MB is a salt, with the dye chromophore being 

the cation. The dye cation is hydrophilic (Log P = —0.9) and this determines many 

aspects of its pharmacology and intracellular localisation. The presence of 

dimethylamino groups at positions 3- and 7- of the molecule, explains the fact that MB 

is cationic under normal physiological conditions, unlike other commercially available 

phenothiazinium dyes, such as toluidine blue 0 and new methylene blue N (NIMB). 

These dyes contain primary and secondary amino functionality respectively, which can 

lead to the formation of neutral quinoneimines by deprotonation, thus allowing a greater 

variety of pharmacologically active species. In terms of biological activity, these dyes 

cannot be compared directly with true MB derivatives since, because of the presence of 

the two tertiary amino groups, MB derivatives are unable to form neutral 

quinoneimines. 

Once in the biological milieu, the metabolism of MB usually occurs rapidly via the 

reduction of the cation to the neutral leucobase (LMB) by the ubiquitous cellular 

coenzymes, NADH and FADH2 [Bongard et al., 1995]. The neutral species is highly 

hydrophobic (Log P > +3) and the difference in pKa  of the two forms is sufficient to 

cause a considerable decrease in DNA binding affinity. Thus, although MB is cationic 

at physiological pH, LMB has a pIca  of 5.8, resulting in only 3.8 per cent protonation at 

physiological pH. High ionisation is essential for efficient DNA intercalation, and 

photodamage to DNA is believed to be an important element of MB photocytotoxicity. 

In addition, LMB, in either its neutral or protonated form, absorbs only in the ultraviolet 

region of the spectrum, thus exhibiting negligible photodynamic activity at wavelengths 

in the region 600 to 800 nm, the therapeutic window for 1DT [Section 1.2.1]. To some 

extent, this rapid metabolism might be useful in avoiding the current problem of 

prolonged skin photosensitivity that is a feature of porphyrin-based PDT. However, the 

short-lived pharmacological activity of MB, coupled with its inherent (dark) toxicity, 

may also explain the apparent dismissal of the photosensitizer as an agent in mainstream 

PDT. 
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Many of the vital stains, apart from MB, have been found to be either toxic to the target 

organism or to induce a number of subtle pathological symptoms in that organism 

[Barbosa & Peters, 1971]. Few workers have thus far attempted to eradicate this 

problem by the synthesis of specifically designed photosensitizers based on commercial 

dyes. Novel derivatives of MB are scarce, but arise mainly from changes in the amino 

substituents at positions 3- and 7- of the phenothiazine ring [Motsenbocker et al., 1993; 

Strekowski et al., 1993; Creed et al., 1983]. One exception is a pentacyclic analogue, 

derived from a substituted tetrahydroquinoline, that has been prepared and investigated 

in rats [Peng a al., 1993]. Commercial MB derivatives are available which have 

substituents in alternative positions in the ring, e.g. methylene green (4-nitro MB) or 

Taylor's blue (1,9-dimethyl MB) (DMMB) which has been used as a metachromatic 

stain. Recently, DMMB, like MB, has been found to photoinactivate viruses in red cell 

suspensions without significant loss of integrity of anucleate red cells [Wagner a al., 

1998]. There is no available literature on the effect of such substitution on the tumour-

localising or photosensi ti zing abilities of the resulting compounds to enable quantitive 

structure-activity relationships to be derived, although such studies have been carried 

out on a series of benzo[a]phenothiazinium analogues [Foley & Cincotta, 1987; 

Cincotta a al., 1987; Cincotta & Foley, 1988; Cincotta, 1990; Cincotta a al., 1996]. 

Extra selectivity in anti-cancer drugs can be achieved using anti-tumour antibodies that 

bind to cancer cell surfaces. This has been attempted with ME by the synthesis of side 

chain maleimido- and succinimido-derivatives [Motsenbocker a al., 1993]. The 

resulting MB-protein conjugates were reported to be slightly less photoactive in vitro 

than the parent compounds. 

The purpose of this first study was to assess the effect of simple alkylation of the 

phenothiazinium chromophore using MB and two other known biological stains, 1,9-

dimethyl methylene blue (DMMB) and new methylene blue N (NIvIB), together with a 

newly-synthesised intermediate compound, 1-methyl methylene blue, (MMB) [Figure 

131. In this way, it was intended that the weak electron-releasing and/or steric effects of 

the methyl group(s) would inhibit the cellular reduction of the chromophore, thus 

allowing a stronger photosensitizing effect to be exerted. Physicochemical 

characteristics (visible absorption, singlet oxygen efficiency, log P) were also 

established and the toxicity of MB and its three derivatives measured against the murine 

mammary tumour cell line, EMT-6, using a standard MIT assay [Carmichael et al., 
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19871. The cellular uptake of the photosensitizers (using methanol extraction) and the 

effect of variable illumination on toxicity were also investigated. The non-pigmented 

EMT-6 cell line is well characterised and was already in use within the university. It 

was chosen as a preliminary test system because it is an uncomplicated line that grows 

readily and rapidly in culture. A resistant sub-line of EMT-6 (EMT-6 (R)) had 

previously been used to demonstrate that treatment with MB and certain other cationic 

dyes, (such as Toluidine blue 0 and Victoria Blue BO), could overcome resistance in 

cells that over-express the P-glycoprotein (PgP) drug efflux pump. PgP is associated 

with resistance to conventional chemotherapeutic agents [Section 1.1.5] [Burrow, 

1997]. 
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Figure 13. Schematic representations of the photosensitizers used in this study, [a] MB, [b] MMB, [c] 
DMMS and [d] NMB. MB has typically a 2-benzene ring structure joined by one nitrogen (blue) and one 
sulphur (yellow) atom. MMB has a substituted methyl (-CHr) group at position I- of the basic 
phenothiazinium molecule. DMMB has substituted methyl groups at positions I-and 9-of the molecule. 
NMB has methyl groups at positions 2- and 8- and the dimethylamino groups [(CH 3)2N-1 at positions 3-

and 7- are replaced by ethylamino groups LCI -I3CH2NI-I-]. 
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2.3 MATERIALS & METHODS 

2.3.1 General Reagents 

Methylene blue (MB), 1,9-dimethyl methylene blue (DMMB), new methylene blue N 

(NMIB), 1 ,3-diphenylisobenzofuran (DPIBF), N,N-dimethylani line, 3-

(dimethylamino)toluene, methanol (spectrophotometric grade) and 1-octanol were 

purchased from Aldrich (Gillingham, UK) and used without further purification. 

Trypsin, MY!' (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-2H-tetrazolium bromide) and 

DMSO (dimethyl sulfoxide) were obtained from Sigma (Poole, UK). 

2.3.2 Photosensitizers 

2.3.2.1 Preparation 

MB, MMB and DMMB were recrystallised from methanol prior to use. 1-Methyl 

methylene blue (MMB) was synthesised from N,N-dimethylaniline and 3-

(dimethylamino)toluene, using the oxidative method as described by Fiertz-David 

[1949]. The purity of the photosensitizers was ensured by thin layer chromatography 

(silica gel, eluent methanol/chloroform/acetic acid 85:10:5). The purity of MMB was 

further examined by high performance liquid chromatography: a 3.3 cm Perkin Elmer 

RPC-18 short column was employed with 10 % (v/v) methanol/water as the mobile 

phase. This gave a single peak with the same retention time (0.30 minutes) when 

monitored at either 656 nm or 290 nm. Proton magnetic resonance spectroscopy 

(Bruker WM250) gave the following peaks in D20: (31-1, s CH3-Ar), 2.7 (12H, s 

[CH31 2N), 6.2-6.9 (51-1, m, Ar-H). Spectral measurements of stock solutions of the 4 

photosensitizers (1 mg m1 1  in methanol) were carried out on a Hewlett Packard 8452A 

diode array spectrophotometer. 

2.3.2.2 Singlet Oxygen Measurements 

The four photosensitizers were assayed for efficiency of singlet oxygen production 

using the decolourisation of DPIBF in methanol. Thus, the decrease in absorption at 

410 nm was monitored spectrophotometrically with time as in the method of Cincotta et 

al. [1987]. The singlet oxygen yield for MB ((PAM8)  is given as 0.443 [Cincotta et al., 

19871. By assuming that the decrease in absorption of DPIBF at 410 nm is directly 
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proportional to its reaction with singlet oxygen, the time for a fifty per cent decrease in 

absorption of DPIBF at 410 nm is directly proportional to its reaction with singlet 

oxygen. The time for a fifty per cent decrease in absorption caused by each of the 

photosensitizers under identical conditions (tI,2MBD) thereby gives a measure of its 

photosensitizing efficiency. Thus, the time for the DPIBF absorption to decrease by 

fifty per cent due to MB photosensitization (t,,2MB) was taken as 1.0. To calculate the 

singlet oxygen yield for the methylated methylene blue derivatives ((DaMBD),  the 

following formula was used. 

112MB 

4 AMBD = 

1I2MBD 

2.3.2.3 Hydrophobicity Values (Log P) 

The hydrophobicities of the photosensitizers were calculated in terms of log F, the 

logarithm of their partition coefficients between phosphate-buffered saline and 1-

octanol. The data were calculated using the standard spectrophotometric method 

[Pooler & Valenzeno, 19791 based on the relationship 

(A-A') 	11w 

LogP =Log { 	• 	} 

A' 	V0 

where A and A' are the absorption intensities before and after partitioning respectively, 

and Vw and V0 are the respective volumes of the aqueous and 1-octanol phases. 

Determinations were repeated five times. 

2.3.2.4 Reduction Rates 

Reduction rates for the four photosensitizers were determined by monitoring the 

diaphorase-catalysed conversion of NADH to NAD+ at 340 nm, using a 

spectrophotometer attached to a chart recorder. (Both forms of the coenzyme absorb 

light at 260 nm but only the oxidised form, NADH, absorbs at 340 nm). Diaphorase is 

probably a denatured lipoamide dehydrogenase and is the name loosely applied to 
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several enzymes which catalyse the oxidation of either D-NADH or f3-NADPH in the 

presence of an electron acceptor such as methylene blue or 2,6-dichiorophenol. 

indophenol. Many different assay procedures and 'units' are used and diaphorases 

specific of j3-NADH or f3-NADPH are known. For this experiment, into a quartz 

cuvette were added 1 ml photosensitizer (20 liM in HBSS) and 100 i1 NADH (2.5 mg 

m14  in HBSS), and the spectrophotometer set to zero. The reaction was initiated by the 

addition of 50 xl diaphorase (from Clostridium kuyven, 13 BAEE units mg' solid, 1 mg 

ml' in FIBSS) (Sigma) to the cuvette. Rates of reduction were calculated initially as 

absorption units/minute and converted to enzyme activity (j.tmoles/litre/minute) using 

the molar extinction coefficient (C) for NADH, which is 6220 mol' cm 4  at 340 nm. 

2.3.3 Cell Culture 

2.3.3.1 Maintenance of the EMT-6 Cell Line 

The murine mammary tumour cell line (EMT-6) was originally obtained from Zeneca 

Pharmaceuticals, Macclesfield, Cheshire. Cultures of cells were grown routinely in 25 

cm2  tissue culture flasks (Falcon, Fahrenheit Laboratories, Rotherham, U.K.) in a 100 % 

humidified incubator (Napco, Model 5410, maintained at 37 °C, 5 % CO2: 95 % air). 

They were cultured in RPMI 1640 culture medium (Life Technologies, Paisley, UK), 

supplemented with 10 % (v/v) foetal calf serum (Labtech International, Rigmer, East 

Sussex, U.K.), 200 mM glutamine (Sigma) and penicillin (10 000 units ml') I 

streptomycin (10 000 pig ml') (Sigma). Subculture was performed every two to three 

days. For this, monolayer cultures of cells were dissociated using trypsin (activity 1200 

BAEE units/mg solid) (Sigma) in 0.5 % (w/v) ethylenediaminetetraacetic acid (EDTA) 

(Sigma) in phosphate buffered saline (PBS) and resuspended at 5 x 10 4  cells per 10 ml 

medium. 

Stock cultures were regularly frozen down at a rate of approximately 1 °C min 1  and 

preserved in 1 ml aliquots in liquid nitrogen at a density of 5 x 106  ml' in RPMI 1640 

medium containing 20 % (v/v) foetal calf serum and 10 % (v/v) DMSO (Sigma). When 

required, frozen stocks were thawed rapidly by immersion of the freezing vials (Sigma) 

in a 37°C water bath. The cells were then washed with RPMI 1640 medium, 

centrifuged at 150 g for five minutes, the medium aspirated and replaced with fresh 
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medium in order to remove the DM50. The cell line was passaged at least twice prior 

to experimental use. All manipulations were carried out aseptically in a laminar air 

flow cabinet (Flow Gelaire BSB 4A). 

2.3.3.2 Growth Kinetics of the EMT-6 Cell Line 

Cultures of cells in the exponential phase of growth were dissociated using trypsin and 

resuspended at a cell density of 1 x 10 4  cells ml'. 2 ml aliquots of this suspension were 

seeded into 35 mm tissue culture plates and incubated in a humidified atmosphere at 

37°C, 5 % CO2: 95 % air. Three plates were removed at twenty-four-hour intervals and 

the cell number calculated by counting with an improved Neubauer haemocytometer. 

The medium was replaced on the remaining plates when necessary. A growth curve 

was constructed with growth of the cell line calculated as cell number per plate, with 

each point representative of three counts. 

2.3.3.3 Cytotoxicity of the Photosensitizers against the EMT-6 Cell Line 

A cell suspension of EMT-6 cells in RPM! 1640 was prepared at a density of 5 x iø 

cells per ml and sufficient volume to seed eight 96-well microtitre plates (Falcon, 

Fahrenheit Laboratories, Rotherham, U.K.). Cells were seeded 1000 per well (in 200 uI 

medium) and incubated at 37 °C, 5 % CO2 and 95 % air for two days. Varying 

concentrations of each dye (0 to 160 uxM) were added and the cells incubated, as 

previously, for three hours. The medium containing the drug was then aspirated and the 

cells rinsed twice with 200 il RPM! 1640, before replacing with a further 200 j.tl RPMI 

1640. Each plate was either illuminated for thirty minutes or kept dark. Light from a 

source of variable wavelength but with maximum emission in the 600 to 700 nm region 

and a fluence of 4 mW cm 2  was used to illuminate plates of cells that had been exposed 

to the various dyes. The light dose was measured using a Skye SKP 200 light meter 

(Skye Instruments Ltd.). The temperature of the system was monitored constantly 

during irradiation but no heating effect was observed. Following this treatment, the 

cells were grown on again at 37 °C, 5 % CO: 95 % air for a further three days. To 

evaluate cell viability and then calculate percentage toxicity, the M'fl' assay was 

adapted from Carmichael et aL [1987]. 25 uxl MTF (5 mg ml' in PBS) was added to 

each well and the plates returned to the incubator for five hours. The medium and MY!' 

were subsequently aspirated, taking care not to disturb the formazan crystals. 100 u1 

DMSO was then added to each well to solubilise the crystals. The plates were shaken 
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for ten minutes and the absorbances read on a plate reader (Anthos HT1 11, measuring 

filter 540 nm; reference filter 620 nm). The various toxicities were calculated as a 

percentage of control. 

2.3.3.4 Light Dose Study 

EMT-6 cells were seeded into 35 mm petri dishes (1000 cells per ml in 2 ml of cell 

suspension), then grown on for two days in RPMI 1640 medium whilst being 

maintained at 37°C, 5 % CO2 and 95 % air. After two days, the medium was removed 

and replaced by 2 ml of either 12 j.xM MB, 2.5 jiM MMB, 0.2 jiM DMMB or 0.4 iiM 

NMB in RPMI 1640 (i.e. doses giving 5 % dark toxicity), with each experiment being 

carried out in triplicate. The cells were incubated in the presence of drug for a further 

three hours. Medium and drug were then removed, the cells rinsed with 2 ml of RPMI 

1640 and finally 2 ml of medium replaced. The cells were illuminated with a fluence of 

either 9.8 mW cm 2 , 4.7 mW cm 2 , 3.3 mW cm 2  or 2.0 mW cm 2  for thirty minutes 

(corresponding to light doses of 17.6, 8.5, 5.9 or 3.6 J cm 2 , respectively), then grown on 

as above for a further three days. The cells in each petri dish were then counted 

microscopically using the improved Neubauer haemocytometer. 

2.3.3.5 Uptake of the Photosensitizers in EMT-6 Cells 

Spectral measurements on doubling dilutions of dye (0 to 20 isM in methanol) were 

carried out to check adherence to the Beer-Lambert law, and in order to construct a 

calibration curve expressed in picomoles dye/1000 cells. 

Suspensions of EMT-6 cells wereseeded into 75 cm 2  culture flasks at a cell density of 8 

x iø cells mr', in 20 ml RPMI 1640 medium, supplemented with 10 % (v/v) foetal calf 

serum, 200 mM L-glutamine and penicillin/streptomycin solution (at 1 x 10 4  units and 

10 mg mE', respectively). The cells were then incubated at 37 °C, 5 % CO2: 95 % air 

and grown to confluence over five days. The medium was aspirated and replaced by 

doubling dilutions of each photosensitizer (0 tolO jiM) in 20 ml RPMI 1640 medium or 

by 20 ml RPMI 1640 medium for the control. Cultures of cells were also incubated in 

the presence of the photosensitizers (all at 5 j.tM) for 0.5, one, two or three hours under 

the same conditions. 



Following incubation, the medium was aspirated from each flask and the cell 

monolayers rinsed twice with PBS to remove all traces of the photosensitizers. The cell 

monolayers were dissociated by the addition of 1 ml 0.25 % (w/v) trypsin (1200 BAEE 

units/mg solid) and 0.5 % (w/v) EDTA in PBS. The cells were resuspended in 10 ml 

RPMI 1640 to prevent further digestive action of the trypsin, and counted using an 

improved Neubauer haemocytometer. The cell suspensions were centrifuged for ten 

minutes at 150 g and the supernatants discarded. Each pellet was rinsed and 

resuspended twice in 2 ml PBS. The supernatant was aspirated and 1 ml methanol was 

added to each final pellet, mixed and left for ten minutes. The cell suspensions were 

then centrifuged at 2000 g for thirty minutes and the absorbances of the supernatants 

determined spectrophotometrically using Xmax values of 664 nm (MB), 656 nm 

(MIvIB), 648 nm (DMMB) and 630 nm (NMB) as determined previously [Section 

2.2.2.1 and 2.3.1.1]. 
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2.4 RESULTS 

2.4.1 Photosensitizers 

2.4.1.1 Absorption Spectra 

The photosensitizers [for structures see Figure 131 were found to obey Beer's Law in 

the concentration range 10 to 10-7 M. In addition, the absorption spectra showed no 

change in the pH range 1 to 8. MB and its derivatives all have absorbance maxima at 

long (red) wavelengths, corresponding to the therapeutic window (600 to 800 nm) for 

PDT [Figure 14]. The three derivatives exhibited small hypsochromic shifts in long 

wavelength absorption compared to that of MB, and all of the methylated derivatives 

had slightly decreased intensities [Table 2]. 

2.4.1.2 Singlet Oxygen 

Singlet oxygen yields, expressed as the relative rates of photosensitized oxidation of 

DPIBF in methanol at 279 K and measured as the decrease in absorption at 410 nm to 

half its original value, were elevated in all three derivatives compared to MB, following 

the order NMB>DMMB>MMB>MB [Table 2]. 

Table 2. Physicochemicat data for the photosensitizers, MB, MMB, DMMB and NMB, and including 
data for the benzo[a]phenothiazinium, EtNBS, for comparison. (aWavelength  of maximum light 
absorbance, htogarithm  of the extinction coefficient measured in aqueous buffer at pH 7.3, CsingIet  oxygen 
yield based on MB = 1.00 and dlogarithm  of the partition coefficient between water and 1-octanol). 

photosensitizer 	X1 (nm)a 	Log €2' 	102c 	 Log Ph 

MB 664 4.98 1.00 -0.10 

MMB 656 4.78 1.11 

DMMB 648 4.91 1.22 +1.0 

NMB 630 4.95 1.35 +1.2 

EtNBS 652 4.84 0.06 +2.76 
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Figure 14. Absorption spectra of the photosensitizers in methanol, [a] MB, [b] MMB, [c] DMMB and 
[d] NMB. Values for Amax are MB = 664 nm, MMB = 656 nm, DMMB = 648 nm and NMB = 630 nm. 
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2.4.1.3 Hydrophobicity Values (Log P) 

The hydrophobicities of the methylated derivatives, calculated in terms of Log P. the 

logarithm of their partition coefficients between PBS and 1-octanol, were increased 

compared to the lead compound, MB, and followed the order 

NIMB>DMMIB>MMBWvm. The three derivatives have positive log P in contrast to 

that of MB itself, which is negative [Table 2]. 

2.4.1.4 Reduction Rates 

Reduction rates were determined by monitoring spectrophotometrically the diaphorase-

catalysed conversion of NADH to NAD+ in the presence of photosensitizers. By this 

method, chromophore methylation was found to decrease the reduction potential of the 

resulting compound and followed the order MBcNMBcMMBcDMIvIB. The order of 

the rates of reduction for MB, MIvIB and DMMB corresponded to the degree of 

methylation of the molecule, but the results for NMB deviated from the expected trend. 

NMB was less easily reduced than MB, with a value of almost half that of the parent 

compound, but was more readily reduced than both MMB and DMMB [Figure 15]. 
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Figure 15. Rates of reduction for the photosensitizers, MB, MMB, DMMB and NMB, measured by 
monitoring the diaphorase-catalysed oxidation of NAD+ to NADH at 340 nm in the presence of each 
photosensitizer at 20 pM concentrations. Each bar is the mean of ~ 4 experiments ± SEMs. 
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2.4.2 Cell Culture Experiments 

2.4.2.1 Growth Kinetics of the EMT-6 Cell Line 

The growth curve [Figure 16] was used to determine subculture regimes and 

experimental protocols involved in the testing of the photosensitizers on EMT-6 cells. 

After seeding, EMT-6 cells entered a characteristic lag period of two days, followed by 

a period of exponential growth over a further two to three days (the 'log' phase 

doubling time), before a final period of reduced or zero growth after they had become 

confluent. 
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Figure 16. Growth kinetics of the murine, mammary tumour cell line, EMT-6, incubated in a humidified 
atmosphere at 37 °C and in the presence of 95 % air, 5 % CO2. Each point is the mean of 3 experiments 
carried out in triplicate ± SD. 

2.4.2.2 Cytotoxicity of the Photosensitizers in EMT-6 Cells 

Statistical analysis, using the Student's t-test, was carried out to confirm that exposure 

of EMT-6 cells to white light alone (7.2 J cm 2) did not produce cytotoxicity (p = 

0.05) [Figure 171. The methylated derivatives were more toxic against EMT-6 cells 

under dark conditions than was MB [Figure 18]. Using 7.2 J cm 2  of white light, the 

associated photocytotoxic effects were also far greater with the derivatives than with 

MB. In terms of clinical application, the greater the ratio of light:dark toxicity, the 

more beneficial the photosensitizer. The IC50 for MB at this light dose was 18.7 gM, 

with a corresponding dark toxicity of 7.9 %. Thus the toxicity ratio (light:dark) here 

was 50:7.9 = 6.3. The corresponding light:dark ratios for MIvIB, DMMB and NMIB at 

their respective IC50s are 11.9, 17.2 and 10.0. However, the IC90 may give a more 
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useful clinical indication. For example, the IC90 value for DMIMB on illumination at 7.2 

J cm 2  is 0.27 jiM, and at this concentration the dark toxicity corresponded to a cell kill 

of 21.3 %, giving a ratio of 4.2. The corresponding ratios for NIIvIE, MMB, and MB 

were 13.2, 6.3, and 3.2 respectively [Table 31. 
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Figure 17. Effect of tight (7.2 J cm 2) on EMT-6 cells in culture. Cell viability was evaluated using the 
standard MTT assay adapted by Carmichael et al. (1987). MTT is a yellow tetrazolium dye that is 
reduced by the mitochondria of living cells to purple formazan crystals. The crystals are solubilised in 
DMSO and their absorbance read spectrophotometrically at 540 nm. Each point represents the mean of 8 

experiments ± SEMs. 
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Figure 18. Photocytotoxicity 	and dark toxicity [•] of the photosensitizers [a] MB, [b] MMB, [c] 
DMMB and [d] NIMB against the murine mammary tumour cell line, EMT-6. Responses at low 
concentrations of DMMB and NMB are represented in figures [e] and [f] respectively. Each point is the 
mean of at least 8 experiments ± SEM. 
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Table 3. Toxicity data and light : dark ratios for the photosensitizers used in this study. 

photosensitizer dose (jiM) % light 

toxicity 

% dark 

toxicity 

light 	dark 

toxicity 

MB 18.7 50 7.9 6.3 

MMB 2.20 50 4.2 11.9 

DMMIB 0.09 50 2.9 17.2 

NMB 0.39 50 5.0 10.0 

MB 37.7 90 27.9 3.2 

MMB 4.80 90 14.2 6.3 

DMMB 0.27 90 21.3 4.2 

NMB 0.61 90 6.8 13.2 

2.4.2.3 Light Dose Study 

The light dose study was carried out at photosensitizer concentrations giving 5 % dark 

toxicity [Figure 191. At this concentration, MB did not reach 100 % photocytotoxicity 

even at the highest light dose used (17.6 J cm 2). This was considerably less than that 

used by Canete et al. who reported 100 % cell death in HeLa cells at 90 J cm 2  with 10 

jiM MB [Canete et al., 1993]. The methylated derivatives were already close to 100 % 

photocytotoxicity at the original light dose used (7.2 J cm 2) and concentrations giving 5 

% dark toxicity, so the increased light dose made little improvement on the 

photocytotoxicity in these cases. However, it was noticeable that the photocytotoxicity 

of MIvIB and NMB decreased slightly at light doses <7.2 J cm 2  [Figure 19]. In terms 

of the light:dark differential, this was greatest (78:5 = 15.6) for MB at the highest light 

dose used (17.6 J cm 2). The ratio for MMIB and NMB approached 20 at the maximum 

light dose, whilst that for DMMB was 20 across the light dose range. A maximum 

ratio of 20 light:dark toxicity may therefore be possible for MB at further increased 

light doses. 
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Figure 19. Photocytotoxicity of the photosensitizers. MB •J, MMB  [•], DMMB (] and 14MB j] 
against the EMT-6 cell line as a function of the light dqse. Photosensitizer concentration in each case was 

that giving 5 % dark cytotoxicity. Each bar is the mean of p. 9 experiments and standard error was less 
than 5 % in all cases. 

2.4.2.4 Uptake of the Photosensitizers in EMT-6 Cells 

For calibration curves of photosensitizers in methanol, see Appendix 1. The three 

derivatives, MMB, DMMB and NMB showed good correlation between extracellular 

photosensitizer concentration and cellular uptake after three hours incubation [Figure 

201. The parent compound, MB, showed a concentration-dependent increase only up to 

a concentration of 2.5 iiM. At concentrations of 2.5 to 10 lAM uptake of ME almost 

levelled. The order of concentration-dependent uptake of the dyes over three hours was 

MBcMMBcDMMBcNMB [Figure 20]. 
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Figure 20. Uptake of the photosensitizers MB [e], MMB [U], DMMB [A] and NMB [x] into EMT-6 
cells over a range of concentrations. Each point is the mean of 4 experiments carried out in triplicate 
SEM. 

Evidence of cellular uptake of all the photosensitizers was apparent after only thirty 

minutes of incubation with a significant amount present after one hour [Figure 21]. The 

degree of uptake after thirty minutes was MB=MMB.cNMBcDMMB. At one to three 

hours the pattern of uptake was MB<MMBcDMMB<NMIB [Figure 211. 
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Figure 21. Uptake of the photosensitizers MB [•]. MMB [U], DMMB [A] and 14MB [x] at 5 MM 
concentrations into EMT-6 cells over a period of 3 hours. Each point is the mean of 4 experiments 
carried out in triplicate SEM. 
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2.4 

We have shown that, at a white light dose of 7.2 J cm 2, substitution of the established 

photosensitizer, methylene blue, at various positions of the phenothiazinium 

chromophore leads to both increased photocytotoxicity and increased dark toxicity in 

the murine mammary tumour cell line, EMT-6, compared to that of MB itself. 

However, the ratios for light:dark toxicity were also higher at lower light doses for the 

methylated derivatives and their levels of photocytotoxicity are comparable to that of 

the benzo[a]phenothiazinium compounds investigated by Cincotta et at. [Section 1.5.2] 

[Cincotta et al., 19931. For example, against EMT-6 cells, the promising 

photosensitizer EtNBS gave an IC 50  of 0.1 j.tM. This is comparable with the value of 

0.09 iiM obtained in the present work for DMMB. Moreover, DMMIB gave > 90 per 

cent photocytotoxicity at a concentration of 0.2 isM and a light dose of 3.6 J cm 2  which 

is comparable to the 3.3 J cm 2  employed with EtNBS. Although the dark toxicity for 

EtNBS is reportedly much lower for a 0.5 jiM dose (six per cent compared to forty-one 

per cent for DMMB), no IC90 was reported for the photocytotoxicity [Cincotta et al., 

1993]. The IC90 value may, in fact, give a more useful indication of clinical potential, 

particularly when considered alongside the light:dark ratio. The greater the light:dark 

differential, the greater the clinical potential of the photosensitizer, since a high degree 

of photosensitizing activity can be achieved with little or no toxicity in the dark, thus 

minimizing the possibility of systemic side effects. From the present study using the 

EMT-6 cell line, it is clear that of the four photosensitizers, NMB is more effective as 

far as light:dark differential is concerned at both the IC50 and IC90 levels. However, 

this is most apparent at the IC90 since here the light:dark differential for NMB is more 

than four-fold that of MB, more than double that of MMB and at least three-fold that of 

DMMB. 

The higher dark toxicities and photocytotoxicities of the methylated derivatives may be 

explained by several factors. As discussed earlier, it is apparent from the literature that 

phenothiazinium photosensitizers and their benzologues are prone to cellular reduction 

[Bongard et al., 1995]. Indeed this may be advantageous in the clinic as the rate of 

reduction of EtNBS in mice is reportedly higher in healthy tissue than in tumours, thus 

increasing the apparent tumour selectivity and decreasing the probability of skin 
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photosensitization [Cincotta et cii., 1996]. The in vitro reduction of MB, MMB and 

DMPs4B was examined prior to this study in aqueous media with a gold microdisc 

electrode using the method of Svetlicec et cii. [1987] (data not shown) and followed the 

order MB>MMB>.DMMB. In the present study, the in vitro reduction of MB and its 

derivatives was examined by monitoring the diaphorase-catalysed conversion of NADH 

to NAD+ at 340 nm and supported the previous observations, following the order 

MIB>NMB>MMB>DMIMIB. Thus, from a cellular point of view, it can be argued that 

the derivatives, particularly MMB and DMMIB, will be present in their oxidised 

(cationic) forms for a longer period of time than MB. There will therefore be higher 

concentrations of the photoactive form of the methylated derivatives present. The 

increased stability to reduction, at least in the in vitro electrochemical system used, may 

be explained by the weak electron-releasing effect of the methyl groups. This would 

make the chromophore more electron rich and thus less amenable to reduction. In cell 

culture this could contribute to the increased levels both of dark toxicity and 

photocytotoxicity exhibited by the methylated derivatives. 

Methylation of the phenothiazinium chromophore resulted in considerable increases in 

the hydrophobicity of the system. This was expected, since the non-polar character of 

the methyl group is well established [Hansch & Leo, 1979]. Indeed, Hansch and Leo 

give a guideline figure for Log P supplement of +0.65 for the addition of one —CHr 

unit. A degree of hydrophobic character (log P) is necessary for uptake into cells and 

will influence, to some extent, intracellular targeting and localisation. The three 

derivatives have positive log P values, whereas that for MB is negative. All three 

derivatives demonstrated improved and concentration-dependent uptake into EMT-6 

cells compared to MB. Uptake of MB was relatively poor with little increase in uptake 

at concentrations above 2.5 xM. Evidence of cellular uptake of all four photosensitizers 

was apparent after thirty minutes with a significant amount present after one hour of 

incubation. Improved cellular uptake and the lower reduction rates are expected to give 

higher viable intracellular concentrations of the methylated photosensitizers. Taken 

with the higher singlet oxygen efficiencies, this provides a feasible explanation for the 

much improved photocytotoxicities encountered, relative to MB. The lower reduction 

rates, together with potential variation in intracellular localisation may also explain the 

increased dark toxicities of the methylated derivatives. 
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As already mentioned, changes in hydrophobicity also bear influence on intracellular 

localisation and it may be possible that increased hydrophobicity leads to increased 

mitochondrial targeting. It has been shown previously in fibroblasts that vital stains 

bearing a unipositive charge and having 0 c log P c 5 tend to localise in the 

mitochondria [Raschid & Horobin, 1990]. It has also been found that the mitochondria 

of malignant cells preferentially accumulate and retain certain hydrophobic, cationic 

compounds, such as rhodamine 123 [Summerhayes et al., 1982] and dequalinium 

chloride [Rashid & Horobin, 19901 to a much greater extent than the mitochondria of 

most normal cells. MB itself is thought to localise mainly in the cell nucleus [Tuite & 

Kelly, 1993; Yu et al., 1990]. This could indicate that a different cellular localisation 

pattern for the methylated derivatives is responsible for their greater observed 

cytotoxicities. 

Phenothiazinium dyes are already established as efficient photosensitizing compounds. 

However, this efficiency is affected by the substitution pattern in the periphery of the 

chromophore. For example, the presence of a fused benzene ring lowers the singlet 

oxygen efficiency as in the benzo[a]phenothiazinium series [Lin et al., 1991], as does 

the inclusion of alkylamino groups at positions 3- and 7- in place of alkylamino 

[Wainwright et al., 1999]. In the current study, the presence of extra methyl groups in 

the ring system led to increased singlet oxygen efficiencies in the spectrophotometric 

assay employed. It is also interesting to note that the singlet oxygen efficiencies of the 

MB derivatives used in the present study were increased approximately 20-fold 

compared to that of the promising benzo[a]phenothiazinium derivative, EtNBS [Table 

2; Figure 12]. In terms of inherent ability to photosensitize the production of singlet 

oxygen, as measured spectrophotometrically, the order was NMB>DMMB>MMB>MB. 

Taken with the increased resistance to reduction and the possibility of more critical 

intracellular localisation, this may explain the greater photocytotoxicity of the 

methylated derivatives against EMT-6 cells relative to that of MB. lonisation data for 

MB, MMB and DMIMIB is not included as each is fully ionised in the pH range 1-8. 

Such behaviour separates these three compounds from NMB and other phenothiazinium 

photosensitizers such as toluidine blue 0 and the benzo[a]phenothiaziniums, such as 

EtNBS. In NMB, the presence of N-ethylamino instead of N, N-di methyl amino groups 

at positions 3- and 7- of the phenothiazinium chromophore facilitates deprotonation of 

the N-H group, leading to a neutral quinoneimine species. This can be shown 



spectrophotometrically in alcohol, the maximum absorption wavelength (X) for the 

NMB cation being 630 nm at neutral pH, the quinoneimine being formed at higher pH 

with the X 1, shifting to 540 nm. Both cationic and neutral forms exist in equilibrium 

([cation] >> [quinoneimine]) at neutral pH, allowing the possibility of differing uptake 

mechanisms for this class of compounds. The importance of such behaviour has been 

reported previously in studies on benzo[a]phenothiazinium photosensitizers. The 

presence of the neutral species as part of an equilibrium may have important 

ramifications in terms of in vitro uptake and in vivo pharmacology and may explain the 

high light:dark differential found with NMB. Such equilibria are not formed by the 

other photosensitizers in the present study, since the dimethylamino group does not 

allow deprotonation. In this respect, the presence of the tertiary dimethylamino groups 

in positions 3- and 7- of the phenothiazine ring system makes the MB system somewhat 

simpler. 
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CHAPTER THREE: 

CYTOTOXICITY OF METHYLENE BLUE AND ITS 

DERIVATIVES AGAINST THE SK-23 AND SK-MEL-28 

MELANOMA CELL LINES. 

70 



3.1 ABSTRACT 

The cytotoxicity and photocytotoxicity of methylene blue (MB) and three of its 

derivatives, 1-methyl methylene blue (MMB), 1,9-dimethyl methylene blue (DMMB) 

and new methylene blue N (NMB) against two pigmented melanoma cell lines (SK-23, 

murine melanoma and SK-MEL-28, human melanoma) were investigated in culture. 

The derivatives were all more effective photosensitizers than MB in both cell tines over 

a range of light doses (3.6 to 17.6 J cm 2). In fact, the patterns of cytotoxicity for the 

four photosensitizers were very similar to those found earlier against the murine 

mammary tumour cell line, EMT-6. The increased activity correlated with increased 

cellular uptake and inherent photosensitizing efficacy. The photosensitizers also 

showed varying levels of interaction with the biopolynier melanin and, although this 

appeared to affect uptake and activity, there was no direct correlation with toxicity. Of 

the four photosensitizers, NMB exhibited with the highest light:dark differential in the 

SK-23 and SK-MEL-28 cell lines, as was found earlier in the EMT-6 line. In this 

respect, NMB again demonstrated the greatest clinical potential. 
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3.2 INTRODUCTION 

Melanoma is the most rapidly increasing malignancy in humans and poses the greatest 

risk in terms of mortality. The two most common forms are superficial spreading 

melanoma (SSM) and lentigo malignant melanoma (LMJvI). Early malignant 

melanomas are usually variegated in colour (ranging from shades of tan and brown to 

black, sometimes red and white), asymmetrical with irregular borders and generally 

greater than six millimetres in diameter. As such, they are distinct from benign 

pigmented lesions that are more uniform in colour and shape. A malignant melanoma is 

diagnosed on the basis of any significant change in a preexisting melanocytic nevus or 

in the skin surrounding it, or the development of any new pigmented lesion in patients 

over forty years of age [Steiner et al., 1987]. Various factors influence the risk of 

developing malignant melanoma including family history, blond or red hair, freckled 

skin, excessive solar exposure and/or over three sunburns before the age of twenty years 

[Clark et al., 1978]. The disease frequently afflicts comparatively young people, with 

one child in a million under the age of ten developing the disease each year. By the 

mid-teens this incidence is increased one hundred-fold to one in ten thousand per year. 

In addition to this, certain benign pigmented lesions pose an added clinical dilemma 

since they are associated with an increased risk of developing malignant melanoma. 

These include congenital melanocytic nevi, dysplastic nevi, dysplastic nevus syndrome 

and common melanocytic nevi, all of which are themselves disfiguring, becoming more 

difficult to treat with time. 

If detected early, skin cancer is easily treatable with a minimum amount of discomfort 

and scarring. However, melanomas in particular are aggressive tumours and, in the 

majority of cases, cannot be cured by any of the conventional therapies, once metastasis 

has taken place. The usual treatment is surgical excision but adjuvant chemotherapy 

may be employed, particularly decarbazine (DTIC) [Ho, 19951 or limb perfusion 

involving the nitrogen mustards (e.g. melphalan) [Krementz et at., 1994]. Radiotherapy 

is also an option. Depending on the progress of the tumour at diagnosis, 

lymphadenectomy may be indicated, although a more conservative approach to 

dissection may be possible via the use of sentinel node demarcation [Rivers, 1996]. 

With the traditional therapies, there remains the problem of side effects, either due to 

disfigurement in surgery or to systemic toxicity and immunosuppression following 
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chemotherapy or radiotherapy. Both in terms of morbidity and patient compliance, the 

minimization of such side effects is obviously highly desirable. However, even with the 

increased sophistication of modern cancer treatments, the degree of further 

improvement of these therapies is limited, mainly due to a fundamental lack of 

selectivity for tumour tissue. The ongoing search for new drugs and novel therapeutic 

approaches to cancer treatment, which offer greater selectivity, thus remains important. 

A therapeutic approach offering lower toxicity and invasiveness is photodynamic 

therapy (PDT) [Section 1.2]. Over recent years, dermatology has taken advantage of 

PDT for the treatment of skin cancer and other skin diseases. In fact, modem PDT was 

first envisaged as a treatment for cutaneous disease and originates from the first 

published study of clinical PDT in 1903 by the dermatologist, Jesionek, who 

successfully treated skin cancer with eosin and light [Section 1.4.1]. The skin has 

significant advantage over other organs for the application of PDT, in having 

accessibility to all of its three essential requirements (photosensitizer, visible light and 

oxygen). Another major benefit is the ability to assess the clinical response visually and 

the relative ease in obtaining biopsies for analysis. Unfortunately, prolonged acute skin 

photosensitization limits the application of PDT using the conventional photosensitizer, 

Photofrin®, in the treatment of cutaneous disease. Nevertheless, in exceptional 

circumstances, this therapy provides a useful and seemingly effective alternative mode 

of treatment, yielding high response rates and excellent cosmetic results. PDT has been 

most extensively studied for the treatment of malignant non-melanotic cutaneous 

lesions, particularly basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and 

Bowen's Disease, using either systemic or topical administration of a photosensitizer 

(or photosensitizer precursor), coupled with a superficial light delivery system 

[Calzavara-Pinton et al., 1996]. BCC of the skin is the single most common 

malignancy seen today and its incidence continues to increase. It has been the most 

commonly treated skin tumour using PDT, with a complete response rate of eighty-three 

to eighty-eight per cent [Wilson et al., 1989]. Good palliation has also been achieved 

using PDT for patients with primary and secondary breast carcinomas who have failed 

one or more of the conventional therapies. Preliminary results in the treatment of 

advanced classic and ADS-related Kaposi's Syndrome appear to indicate that PDT may 

replace ionizing radiation and chemotherapy as the treatment of choice, because it is 
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very effective and may be repeated several times without causing cumulative side-

effects. Unfortunately, results using PDT for SCC have so far been poor and lower than 

those found with surgery and radiotherapy [Calzavara-Pinton et al., 1996]. 

Unlike the amelanotic melanomas mentioned above, it is generally believed that 

pigmented (melanotic) melanomas in humans do not respond well to PDT, due to the 

presence of the pigment melanin in tumour cells. In fact, there is found to be a 

correlation between the degree of tumour pigmentation and the PDT response, with a 

better response found in lighter tumours than darker ones [Calzavara-Pinton et al., 

1996]. The situation is further complicated in the case of metastasizing tumours, such 

as malignant melanoma, since it may be difficult to trace the secondary foci. Natural 

melanins are biological pigments that can be found in humans in the skin, hair, eyes, 

and also in the midbrain and inner ear. In mammals, melanins are formed as 

intracellular granules and are then transferred from melanocytes to epithelial cells where 

they form the predominant pigment of hair and the epidermis. In the skin and eye, their 

main role is to afford protection from photodamage as a result of exposure to solar 

radiation. The capacity of melanins to bind both exogenous and endogenous substances 

in a dynamic fashion may bring about various, possibly pathogenic, effects in the 

organism involved. These effects may be implicated in the pathogenesis of certain 

disease states linked to some long-term drug regimes, for example in the case of 

chlorpromazine and chloroquine which both induce chorioretinopathy by binding to and 

subsequent release from retina melanin [Knoerle et al., 1998]. As complex biopolymers 

with free radical centres that can bind multivalent metal ions, melanins are capable of 

absorbing light quite strongly even at long, visible wavelengths. They are also able to 

scavenge reactive oxygen species and to participate in electron-exchange reactions. In 

lightly pigmented thammalian tissues, light scattering limits the efficacy of PDT in the 

far-red region (700 to 850 nm) of the spectrum, whilst in heavily pigmented tissues, 

light absorption by melanin at these wavelengths is still significant. Melanin absorbs 

light even at the long visible wavelengths used in PDT, thus decreasing the amount of 

light available to the photosensitizer and possibly reducing the efficacy of the regime 

[Herd a al., 1997]. In addition, the antioxidant properties of melanin might interfere 

with the cell killing processes involving oxygen radicals that are commonly assàciated 

with PDT [Corsaro a al., 1995]. Such protective effects have been reported against 

hydrogen peroxide and hydroxyl radicals during Rose Bengal photosensitization (Type I 
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photosensitization) [Rozanowska et al., 19951, whilst the perylenequinone hypericin 

exhibited significantly higher photocytotoxicity against amelanotic melanoma cell lines 

than against a melanin producing melanoma cell line [Hadjur et al., 1996]. In order to 

circumvent any likely effects of melanin, the use of long-wavelength absorbing 

photosensitizers, outside the absorption spectrum of melanin, is a logical initial step. 

Photodamage has been demonstrated in the presence of silicon naphthalocyanine 

derivatives which display intense absorbances (c =500 000 I moF' cm 1 ) at 780 nm, 

although they are significantly less effective against melanotic than amelanotic 

melanoma cell lines [Soncin et al., 1998]. Benzoporphyrin derivative (BPD-MA) is 

also reported to be effective in vivo against pigmented melanoma in mice, the efficacy 

being increased by pre-illumination with 1064 nm (near infrared) light in order 

selectively to break down melanosomes [Busetti et al., 1999]. Finally, the effectiveness 

of several treatment strategies in metastasizing melanotic melanoma may be severely 

compromised by the immunosuppressive [Wick, 1983] and mutagenic potential of 

melanogenesis [Miranda et al., 1984]. Melanin synthesis can, in some cases, induce 

resistance in melanoma cells to radiotherapy [Hill, 1989], chemotherapy [Slominski et 

al., 1993] and PDT [Favilla et al., 1995]. 

Several photosensitizers have been used in dermatology including haematoporphyrin 

derivative (HpD), Photofrin®, 5-aminolaevulinic acid (5-ALA), benzoporphyrin 

derivative (BPD), tin ethyl etiopurpurin (SnET2) and monoaspartyl chlorin e6 (MACE). 

The use of the well-known phenothiazinium photosensitizer, methylene blue (MB), and 

its congeners in clinical PDT remains sporadic, mainly because PDT has developed 

from porphyrin-derived drugs [Wainwright, 1996]. However, PDT using topically 

applied MB (10 % ointment) has been used in dermatology for the treatment of 

psoriasis and compared with 5-ALA (also 10 % ointment). The responses of the lesions 

were similar for both drugs although those treated with ALA-PDT were accompanied 

by a burning sensation, whereas none occurred with MIB-PDT [Schick et al., 19971. 

Logically, the widespread application of MB and the related phenothiazinium dye, 

toluidine blue 0, in surgical demarcation (such as the tracing of sentinel lymph nodes 

[Rivers, 1996]), in addition to their widespread use in the clinical staining of 

carcinomata [Creagh et al., 1995], underlines the low toxicity of the compounds. The 

efficient photosensitizing behaviour of the phenothiazinium dyes is also well 
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established [Tuite & Kelly, 1993]. However, in terms of its use in clinical malignancy, 

MB is utilised locally, mainly against accessible tumours such as superficial bladder 

cancer [Williams et al., 19891 and has been used against inoperable oesophageal 

tumours [Orth et al., 1995]. Unlike Rose Bengal, which is an anionic dye and does not 

bind to melanin, MB is known to have a high affinity for the polymer, as do other 

cationic compounds [Potts,1964; Knoerle et al., 19981. The mechanism behind this is 

not fully understood, though it could involve the formation of charge-transfer complex 

and van der Waals' forces between the aromatic rings of MB and the aromatic indole-

nucleus of melanin [Foster & Hanson, 1966; Larsson & Tjalve, 1979]. In recent work, 

Link et al. demonstrated high affinity and stable binding of radiolabelled MB to 

pigmented melanomas in both athymic mice and humans [Link etal., 1996]. The group 

subsequently reported the use of radiolabelled MB as a tracer for metastatic melanoma 

in humans. Melanoma secondaries are often less pigmented than the primary lesions 

due to a 'depigmentation' process that accompanies tumour growth proportionally with 

the growth rate. Since random dissemination of melanoma makes it virtually 

impossible to predict the localisation of its metastases, the diagnostic potential of 

radioiodinated MB in the detection and treatment of small secondaries has been 

evaluated [Link etal., 1998]. 

The increased efficacy of MB derivatives having successive chromophore methylation 

has already been established in the murine mammary tumour cell line, EMT-6 [Chapter 

2; Wainwright et al., 19971. Various physico-chemical characteristics that are pertinent 

to an efficient photosensitizer and that may be responsible for the increased efficacy 

(absorption spectra, singlet oxygen efficiency, Log I', reduction rates, cellular uptake) 

have also been investigated. The present study is an investigation into the activity of 

MB and the same phenothiazinium derivatives against a murine melanoma cell line 

(SK-23) and a human melanoma cell line (SK-MEL-28). The ability of the 

photosensitizers to bind to melanin was also examined, 
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3.3 MATERIALS & METHODS 

3.3.1 Reagents and Phàtosensitizers 

3.3.1.1 Preparation 

The photosensitizers, methylene blue (MB), 1-methyl methylene blue (MMB), 1,9-

dimethyl methylene blue (DMMB) and new methylene blue N (NMB), and various 

reagents were purchased and/or prepared as previously described [Sections 2.3.1 and 

2.3.2.1]. Synthetic melanin was purchased from Sigma. 

3.3.2 Cell culture 

3.3.2.1 Maintenance of the SK-23 and SK-MEL-28 Cell Lines 

The melanoma cell lines (murine SK-23 and human SK-MEL-28) were originally 

obtained from the Cancer Research Centre (Patterson Institute), Christie Hospital, 

Manchester. Both cell lines were cultured routinely in 25 cm 2  tissue culture flasks 

(Falcon, Fahrenheit Laboratories, Rotherham, U.K.) in a 100 % humidified incubator 

(Napco, Model 5410, maintained at 37 °C, 5 % CO2: 95 % air). They were grown in 

RPMI 1640 culture medium (Life Technologies, Paisley, UK), supplemented with 10 % 

(v/v) foetal calf serum (Labtech International, Rigmer, East Sussex, U.K.), 200 mM L-

glutamine (Sigma) and penicillin (10 000 units m15 / streptomycin (10 000 jig m15 

(Sigma). Subculture was performed every five to six days (SK-23 cells) or every six to 

seven days (SK-MEL-28 cells) as previously described [Section 2.3.3.1]. Stock cultures 

were regularly frozen down and stored in liquid nitrogen, also as previously described 

[Section 2.3.3.1]. 

3.3.2.2 Growth kinetics of the SK-23 and SK-MEL-28 Cell Lines 

Growth kinetic analysis of the SK-23 and SK-MEL-28 cell lines was carried out as 

previously described [Section 2.3.3.2]. 
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3.3.2.3 Cytotoxicity of the Photosensitizers against SK-23 and SK-MEL-28 Cells 

Toxicity testing of the four photosensitizers, in both the SK-23 and SK-MEL-28 cell 

lines, was carried out as in Section 2.3.3.3, with the following amendments, taking into 

account the different growth characteristics of the cells [Section 3.4.1.1]: 

[1] Cells were seeded with 1000 cells per well (in 200 jii RPMI 1640) and incubated for three to 

four days in a humidified atmosphere at 37 °C, 5 % CO2 : 95 % air. 

[2] Following photodynamic treatment, cultures of cells were grown on for a further four to five 

days, prior to MTT assay. 

3.3.2.4 Light Dose Study 

SK-23 or SK-MEL-28 cells were seeded at 1000 cells per well (in 200 Al medium) into 

96-well microtitre plates and grown on for three to four days in a humidified 

atmosphere at 37 °C, 5 % CO2: 95 % air. The cells were then incubated for three hours 

with the relevant photosensitizers at a dose giving 15 % dark toxicity in the initial 

toxicity test [Section 3.4.1.2]. The medium containing the drug was then aspirated and 

the cells rinsed twice with 200 j.tl RPM1 1640, before replacing with a further 200 jsl 

RPMI 1640. The cells were illuminated with a fluence rate of either 9.8 mW cm 2, 4.7 

mW cm 2, 3.3 mW cm 2, or 2 mW cm 2, for thirty minutes (i.e. light dose = 17.6, 8.5, 5.9 

or 3.6 J cm 2, then grown on as above for a further four to five days. Toxicity was 

measured as previously described using a standard MiT assay [Section 2.3.3.3]. 

3.3.2.5 Uptake of the Photosensitizers in SK-23 and SK-MEL-28 Cells 

Cellular uptake into SK-23 and SK-MEL-28 cells was carried out for the four 

photosensitizers as previously described [Section 2.3.3.5]. 

3.3.3 Melanin Binding Studies 

3.3.3.1 Absorption Spectrophotometry 

The photosensitizers were assayed for melanin binding following the method of Potts 

[1964]. Most natural melanins are particulate in nature and not soluble in most solvents 

so, for conventional spectrophotometric methods, certain synthetic polymers can serve 
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as reasonable models for analysis. Briefly, the light absorption of 5 j.tM solutions of the 

photosensitizers in buffer was measured at the relevant Aiim value. The solutions were 

then stirred vigorously with 10 jig of synthetic melanin (Sigma) for fifteen minutes, 

centrifuged at 600 g and the absorption of the supernatants re-read on the 

spectrophotometer. The percentage binding to melanin was thus calculated by 

difference. Measurements were carried out four times. 

3.3.3.2 Absorption Spectra 

The photosensitizers were prepared as in Section 3.3.3.1 and their absorption spectra 

recorded both in the presence and absence of melanin. 
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3.4 RESULTS 

3.4.1 Cell Culture Experiments 

3.4.1.1 Growth Kinetics 
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Figure 22. Growth kinetics of [a] the murine, melanoma cell line, SK-23 and [b] the human melanoma 
cell line, SK-MEL-28, incubated in a humidified atmosphere at 37 °C and in the presence of 95% air, 5% 
CO2. Each point is the mean of 3 experiments carried out in triplicate ± SD. 

The growth curves [Figure 22] were used to determine subculture regimes and 

experimental protocols involved in the testing of the photosensitizers on SK-23 and SK-

MEL-28 cells. After seeding, cells entered a characteristic lag period of three days (SK-

23 cells) and four days (SK-MEL-28 cells). This was followed by a period of 
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exponential growth over a further five to six days (SK-23 cells) or six to seven days 

(SK-MEL-28 cells), before a final period of reduced or zero growth after they had 

become confluent. The log phase doubling time of these cell lines was therefore 

considerably longer than that of the EMT-6 cells used in the previous study [Section 

2.3.2]. 

3.4.1.2 Cytotoxicity of the Photosensitizers against SK-23 and SK-MEL-28 Cells 

At the standard light dose of 7.2 J cm 2, each of the compounds exhibited higher 

photosensitising efficacies in both melanoma cell lines compared to the lead compound, 

MB [Figures 23 & 24]. As in the previous cell culture study using the murine 

mammary tumour cell line, EMT-6, DMMB was highly photoactive at very low 

concentrations. The IC90 values for DMIvIB were 0.1 and 0.4 i.tmol for the human and 

murine melanoma cell lines, respectively, and compared with those for the EMT-6 line 

in the previous study [Table 4]. NMB also performed well against both melanoma cell 

lines (5K-MIE[-28; IC90 = 0.5 i.tmol: SK-23; IC90 = 1.1 j.tmol) [Table 4]. MMB was 

less effective in both cell lines than either of the dimethylated photosensitizers, but was 

considerably more active than MB [Table 41. 

When tested against the SK-MEL-28 human melanoma cell line at the standard light 

dose (7.2 J cm 2), it was evident that the dark (inherent) toxicities of MB and MMB 

were appreciable relative to their phototoxicities, even at high phototoxicity values. 

Thus, 38.8 j.tM MB caused 80 % phototoxicity and 52.6 % dark toxicity, while MMB at 

9.7 jiM gave 90 % photo- and 43.2 % dark toxicity. The corresponding light:dark ratios 

were 1.5 and 2.1. In the SK-MEL-28 cell line, DMMB and NMB both exhibited high 

levels of photocytotoxicity at relatively low corresponding dark toxicities, thus having 

higher light:dark toxicity ratios than the lead compound, MB. NMB was particularly 

interesting in this respect, having by far the highest ratio at 7.5 [Table 5]. 

The behaviour of the photosensitizers against the SK-23 murine melanoma cell line was 

broadly similar to that in the human melanoma cell line. At the standard light dose, 

MMB exhibited higher dark toxicity than MB which had a much improved light:dark 

toxicity ratio. In this cell line, the activity of DMMB was higher than that of NIMB, 

although both showed improved light:dark toxicities (10.2 and 8.0, respectively). 
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Figure 23. Photocytoxicity [•] and dark toxicity •j  of the photosensitizers. [a] NIB, [b] MMB, [c) 
DMMB and Id) NMB, against the murine melanoma cell line, SK-23. Responses at low concentrations of 
DMMB and NIMB are represented in figures [e] and [f] respectively. Each point is the mean of at least 14 
experiments ± SEM. 
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Figure 24. Phototoxicity [•J and dark toxicity •j  of the photosensitizers, [a] MB, [b] MMB, [e] DMMB 
and [d] NMB, against the human melanoma cell line, SK-MEL-28. Responses at low concentrations of 
DMMB and Nl'vlB are represented in figures le) and [f] respectively. Each point is the mean of at least 10 
experiments ± SEM. 
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Table 4. Toxicity data and light:dark ratios in the SK-23 cell line for the photosensitizers at a light dose 
of 7.2 J cm 2 . 

photosensitizer dose (giM) % light 

toxicity 

% dark 

toxicity 

light 	dark 

toxicity 

MB 15.2 50 7.8 6.4 

MMB 1.6 50 7.0 7.1 

DMMB 0.05 50 0 - 

NMB 0.3 50 1.0 50 

MB 39.6 90 17.6 5.1 

MMB 5.0 90 46.0 2.0 

DMMB 0.4 90 8.8 10.2 

NMB 1.1 90 11.2 8.0 

Table S. Toxici7 data and light:dark ratios in the SK-MEL-28 cell line for the photosensitizers at a light 
dose of 7.2 J cm 

photosensitizer dose (MM) % light 

toxicity 

% dark 

toxicity 

light : dark 

toxicity 

MB 21.0 50 25.5 2.0 

MMB 2.2 50 10.1 5.0 

DMMB - 50 - - 

NMB 0.3 50 9.1 5.5 

MB 38.8 80 52.6 1.5 

MMB 9.7 90 43.2 2.1 

DMMB 0.1 90 31.8 2.8 

NMB 0.5 90 12.0 7.5 

84 



[a] 

Z. 
60 

40 

'A 

0 	3.6 	5.9 	8.5 	17.6 

light dose (J/cm2) 

[b] 

'I 

>1 

60 

0 
t 40 

I' 

r 
0 	3.6 	5.9 	8.5 	17.6 

light dose (J/cm2) 

Figure 25. Photocytotoxicity of the photosensitizers, MB [U],  MMB  [U],  DMMB  [U]  and NMB [U], 
against [a] SK-23 and [b] SK-MEL-28 cell lines as a function of the light dose. Photosensitizer 

concentration in each case was that giving 15 % dark cytotoxicity. Each bar is the mean of i 
experiments and standard error was less than 5 % in all cases. 



3.4.1.3 Light Dose Study 

Using a series of light doses (ranging from 3.6 to 17.6 J cm 2), and photosensitizer 

concentrations giving 15 % dark toxicity in the previous experiments [Section 3.4.1.2], 

MB was clearly the least effective photosensitizer in the human melanoma cell line 

(SK-MEL-28). The photosensitizer did not, in fact, achieve a complete cell kill even at 

the highest light dose used in this cell line [Figure 25b]. Here, DMMB demonstrated 

the highest degree of photocytotoxicity, achieving almost 100 per cent cell kill at all the 

light doses used, whilst similar results were achieved with NMB at light doses of 5.9 J 

cm 2  and above, and with MMB at the highest light dose of 17.6 J cm 2. In the SK-23 

cell line, and with lower light doses, MB and MMB exhibited similar activity [Figure 

25a]. However, the light:dark toxicity ratios for these two photosensitizers in this cell 

line were increased at higher light doses, moreso for MMB than for MB [Figure 25a]. 

Here too, DMIVIIB demonstrated the highest level of photocytotoxicity, again achieving 

almost 100 per cent cell kill at all the light doses used. NIMB achieved 100 per cent kill 

only at the highest light dose of 17.6 J cm 2, whereas MB and MMB failed to achieve 

this at any of the light doses used. 

3.4.1.4 Uptake of the Photosensitizers in SK-23 and SK-MEL-28 Cells 

The four photosensitizers showed a concentration- and time-dependent uptake into both 

murine (SK-23) and human (SK-MEL-28) cell lines. Alkyl substitution of the 

phenothiazinium chromophore influenced cellular uptake in both cell lines, with 

successive methylation corresponding to successive improvements in cellular uptake 

[Figures 26 & 27]. The doubly methylated compounds, DMMB and NMB, exhibited 

the greatest cellular uptake in both cell lines, although their pattern of uptake was 

reversed. In SK-23 cells, the pattern of uptake was MBcMMBcNMBcDMMB whilst 

in the SK-rVffiL-28 line, it was MBcMMBcDMMBcNMB. The relative uptakes of the 

DMMB and NMB in the SK-23 cell line were similar at the ICos. At 5 gM 

concentrations, a significant amount of all four photosensitizers was present within the 

cells after only one hour of incubation and it also appeared that, after two hours, uptake 

began to level. Cellular uptake of the photosensitizers was considerably greater into 

SK-23 cells than into the human (SK-MEL-28) melanoma line. The low dark toxicity 

of NMIB is underlined by the greater uptake of this photosensitizer compared with the 

more dark toxic DMMB in the human melanoma cell line. 
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Figure 26. Uptake of the photosensitizers into [a] SK-23 cells and [b] SK-MEL-28 
cells of the photosensitizers, MB [•], MMB [U], DMMB [A], NMB [x] over a range 
of concentrations. Each point is the mean of 3 experiments carried out in triplicate ± 
standard deviation. 
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Figure 27. Uptake of the photosensitizers into [a] SK-23 cells and [b] SK-MEL-28 
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3.4.1 Melanin Binding Experiments 

3.4.2.1 Absorption Spectrophotometry 

Using the method of Potts [1964] and calculated as percentage binding, the melanin 

affinities of the photosensitizers were found to follow the order: 

MB>MMB>NMB>DMIMB [Figure 28]. 
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Figure 28. Percentage binding of the four photosensitizers to melanin. The value of 82.2 % for MB 
compares favoufable with a value of 87 % from previously published literature [Potts, 1964]. Each bar is 
the mean of 4 experiments. SEMs were less than 5 per cent in all cases. 

3.4.2.2 Absorption Spectra 

Absorption spectra in the region of 250 to 820 nm for the four photosensitizers and their 

compositions with synthetic melanin are presented in Figure 29. The absorption peaks 

of the photosensitizers were decreased in the presence of melanin, indicative of binding 

to the biopolymer. Particularly of note is the absorption spectrum of DMIrvIIB, which is 

shifted hypsochromically (to lower wavelength) on binding to melanin. This suggests 

that the interaction between DMMB and the biopolymer is significant, as there has been 

a change in the electron cloud of the phenothiazinium chromophore, moreso than the 

other photosensitizers investigated in this work. 
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3.5 DISCUSSION 

The photosensitizers used in the present study were selected on evidence obtained in the 

earlier work using the non-pigmented mouse, mammary tumour cell line, EMT-6 

[Wainwright et al., 1997][Chapter 2]. The patterns of both photocytotoxicity and dark 

toxicity mirrored those found in the previous experiments, with successive methylation 

of the phenothiazinium chromophore corresponding to increased photosensitizing 

efficacy in both cell lines. Patterns of cellular uptake were also similar although the 

amount of each photosensitizer present in the cells, following the three-hour incubation 

period, varied between the two cell lines and differed also from the previous 

experiments using EMT-6. 

The sites of action of the phenothiazinium photosensitizers in melanoma cells are, as 

yet, unknown. As suggested earlier, they may be various and time-dependent, although 

Link et al. found a fourfold increase in the uptake of radiolabelled MB in melanotic B 16 

melanoma cells compared to the amelanotic sub-line and also reported that radiolabelled 

MB is localised in melanosomes [Link et al., 1996 &1998]. Using the method of Potts 

[1964], the melanin affinities of the photosensitizers were found to follow the order: 

MB>MMB>NMB>DMMB which, taken with the photocytotoxicity data, suggests that 

melanin may have had an inhibitory effect on their photodynamic action. This is in 

agreement with comparative studies utilizing other types of photosensitizer, e.g. 

naphthalocyanines, in melanotic and amelanotic strains [Soncin etal., 1998]. However, 

uptake in the murine melanoma cell line (SK-23) was considerably higher for each of 

the photosensitizers, which contained visibly higher levels of melanin. This suggests 

that melanin is important in cellular uptake, but that intracellular redistribution is 

probable for the Mi3 derivatives. Since cellular uptake data suggest that NMB and 

DMMB exhibit greater uptake in both cell lines than do MB or MMB, it is suggested 

that different sites of action exist for the photosensitizers. Thus, for example, DMMB, 

which showed the least affinity for melanin, might be expected to show cellular 

localisation other than in the melanosomes, e.g. mitochondria as suggested in the 

previous work [Chapter 21. This, coupled with a high photosensi ti zing efficacy, would 

explain the high levels of photocytotoxicity encountered. NMB showed similar melanin 

binding to MIMB [Figure 28] but exhibited higher uptake than the mono-methylated 

derivative in both cell lines and gave the highest yield of singlet oxygen [Section 



2.4.1.21. It was thus more phototoxic than MIvIB. The variation in dark toxicities 

encountered in both cell lines for the different photosensitizers also indicates 

localisation at sites other than melanosomes, which are not vital to cell viability. 

The toxicity levels and ratios encountered in the SK-23 and SK-MEL-28 melanoma cell 

lines were expected to differ from those in the earlier study on a murine mammary 

carcinoma line, EMT-6 [Chapter 2], due to the presence of the photoprotective and 

antioxidant melanin. That the toxicity trends were similar indicates that, with 

phenothiazinium photosensitizers, at least, the protective effect of melanin against 

photodynamic action in cell culture is limited. In addition, cellular uptake of the 

phenothiaziniums by the melanin-expressing cells exhibited a gross correlation with 

melanin content, indicating that the biopolymer may be important in the uptake 

mechanism. This has been demonstrated previously in studies on melanotic and 

amelanotic sub-lines. 

In terms of the possible clinical application of the current work, PDT employing 

phenothiazinium photosensitizers is not suggested procedurally for the removal of 

primary melanoma, since this is routinely performed by excision. However, due to the 

demonstrated efficacy of MB in tracing microsatellites and its use in sentinel lymph 

node tracing, it may be of use in the photodynamic treatment of local metastatic lymph 

infiltration immediately post-surgery, i.e. as an alternative to lymphadenectomy. At 

present, MB is used routinely in various tracing or demarcation procedures, either 

visible or scintillographic, without reported toxicity. The derivatives used in the present 

in vitro study were all more effective in terms of the photodynamic effect and it is thus 

suggested that future clinical developments in this direction may be feasible. 
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CHAPTER FOUR: 

SUBCELLULAR LOCALISATION OF METHYLENE BLUE AND 

ITS DERIVATIVES IN PIGMENTED AND NON-PIGMENTED 

CELLS IN CULTURE 
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4.1 ABSTRACT 

The cationic photosensitizer, methylene blue (MB) has been exploited as an alternative 

agent in clinical PDT with some success. MB is disadvantaged, however, by an 

inherent (dark) toxicity and its rapid reduction in vivo to the neutral leucobase. It was 

found earlier that the derivatives of MB, 1-methyl methylene blue (MMIB), 1,9-dimethyl 

methylene blue (DMMB) and new methylene blue N (NIMB) have increased 

photosensitizing efficacies in the murine mammary tumour cell line (EMT-6), the 

murine melanoma cell line (SK-23) and the human melanoma cell line (SK-MEL-28) in 

culture. These were related to increased resistance to reduction and elevated levels of 

singlet oxygen production by the derivatives. In addition, methyl substitution was 

expected to lead to an increase in the hydrophobicity of the system and indeed this was 

found for the methylated derivatives. Increased hydrophobicity (log P) generally leads 

to improved cellular uptake and possibly alternative intracellular targeting and 

localisation. MB is known to target the nucleus but it was expected that structural 

changes to the derivatives and increased log P would favour mitochondrial targeting. In 

this study, fluorescence microscopy indicated that, upon incubation, DMMIB and NMB 

form a punctate pattern in the cytoplasm of cells, but are absent from the nucleus. 

However, from scanning laser confocal microscopy it was seen that none of the 

photosensitizers was present in the nucleus following a three-hour incubation period. 

Nevertheless, all four photosensitizers rapidly relocalised from the cytoplasm to the 

nucleus upon illumination. In addition, the effect of three of the photosensitizers on 

isolated rat mitochondria was examined. Oxygen utilisation in the presence of the 

photosensitizers followed the order MMB>MB>DMMB. 
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4.2 INTRODUCTION 

Photodynamic therapy (PDT) is dependent upon the administration of a tumour-

localising, photosensitive dye and its subsequent activation by red wavelength light that, 

in the presence of molecular oxygen, produces a cytotoxic effect in targeted (malignant) 

cells. However, the sole photosensitizer currently registered for clinical use, the 

porphyrin-based Photofrin®, is associated with several drawbacks. Most notable are its 

poor light absorption properties at the activating wavelength (-630 nm) and a prolonged 

skin photosensitization, persisting in patients for up to eight weeks post-treatment. The 

predominant mechanism of porphyrin-mediated cell death is believed to be a Type H 

process with the formation of singlet oxygen (102)  and its subsequent action on key 

components of the cell. 

The cationic dye, methylene blue (MB), important primarily as a nuclear stain in 

histology, is also known to have photosensitizing properties [Section 2.21. As a result, 

MB has been tentatively exploited as one of many second-generation photosensitizers in 

clinical photodynamic therapy (PDT). MB has been used to treat carcinoma of the 

bladder [Williams et al., 1989] and inoperable oesophageal tumours [Orth et al., 1995], 

with some success. In a related field, the photosensitizer has been used for the 

elimination of viruses from samples of donated whole blood [Zeiler et al., 19941. MB 

itself is known to target the nucleus of cells and to intercalate with DNA whereupon, 

following illumination, it causes the formation of oxidised guanine residues, notably 8-

hydroxyguanosine, also via the intermediacy of 02 [Tuite & Kelly, 1993]. Despite the 

need for alternative, more efficacious photosensitizers, the use of MB in PDT has been 

sparse, due possibly to its rapid reduction in vivo to the neutral (colourless) leucobase 

and to an inherent (dark) toxicity [Section 2.21. 

Whilst the majority of compounds under investigation as clinical photosensitizers have 

tended to be derivatives of first-generation, porphyrin-based compounds, it is similarly 

possible to produce more efficacious derivatives of second-generation compounds 

(including the cationic dyes) by chemical substitution of the molecule. Since the 

diffusion length of 1 02 is 0.1 zm or less in its intracellular lifetime [Moan, 1990], it is 

reasonable to assume, given an adequate oxygen supply and light intensity, that the site 
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of photodamage will be close to the location of the photosensitizer at the time of its 

irradiation. It is not yet clear whether the total drug distribution to neoplastic tissue or 

its concentration in specific sub-cellular sites is the important factor in the cell death 

mechanism. Nevertheless, it might be expected that the efficacy of PDT could be 

enhanced by the use of photosensitizers that localise within critical components of the 

cell. Several subcellular sites have been identified as major targets for photosensitizing 

drugs, although the nucleus itself is not believed to be a primary target for porphyrin-

based compounds. HpD and Photofrin® are hydrophobic, anionic molecules and 

localise in the mitochondria, endoplasmic reticulum, cytoplasmic and nuclear 

membrane, and perinuclear region of the cytoplasm of cells in vitro and, to a lesser 

extent, in lysosomes or nuclei [Moan et al., 1989]. Many second-generation porphyrin 

drugs with enhanced photosensitizing capabilities show significant differences in their 

patterns of subcellular localisation when compared to Photofrin®. Depending on the 

photosensitizer, overall dose and experimental protocol, photodamage has been 

observed in microtubules, membranous organelles, plasma membrane and the nucleus. 

The synthesis of new, more efficacious photosensitizers has involved huge efforts by 

researchers to identify specific features that might be involved in toxicity. Studies have 

sought to correlate photosensitizer structure with the biodistribution and intracellular 

targeting (and hence photodynamic activity) of a compound, but the picture is 

complicated by the wide variety of photosensitizers, different methodologies, 

experimental conditions and biological systems that have been used. The specific 

localisation and the kinetics of the intracellular distribution of an individual 

photosensitizer depend upon its hydrophobicity, the type and number of its charges, the 

charge-mass ratio, the type and number of ring and core substituents, and its mode of 

entry (diffusion or endocytosis) into the cell [Peng et al., 1996]. 

A determinant of major importance in both cellular uptake and intracellular targeting is 

the hydrophilic/hydrophobic character of a molecule. Hydrophilic photosensitizers are 

generally defined as those having three or more charged substituents. They are freely 

soluble in water at physiological pH. Hydrophobic photosensitizers are those bearing 

no charged peripheral substituents and which have negligible solubility in water or 

alcohol. An increase in the hydrophobicity of the system generally increases the affinity 
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of a photosensitizer for the various lipids encountered (complexed to blood proteins or 

at the cell membrane, for example), improves cellular uptake and alters intracellular 

targeting and localisation. In the case of Photofrin® and similar hydrophobic 

photosensitizers, the 1 02 quantum yield for cell killing is found to be ten times greater 

than that of some hydrophilic compounds [Moan et al., 1987]. Since these particular 

photosensitizers have similar yields of 102,  the data demonstrates the importance of the 

intracellular distribution pattern and the availability of molecular oxygen in PDT. 

However, the situation for hydrophobic photosensitizers is complicated by the fact that, 

due to lack of water solubility, they must be injected into suitable delivery vehicles such 

as liposomes, emulsions or nanoparticles. It has also been observed that the positions of 

the hydrophilic and/or hydrophobic substituents play an important role in the 

localisation of photosensitizers in tumours [Ressler & Pandey, 1998]. For instance, the 

insertion of two polar substituents (such as carboxylate, sulphonate or hydroxyl groups) 

on two adjacent rings of a phthalocyanine-type macrocycle and the consequent presence 

of a hydrophobic matrix on the opposite side of the molecule (two unsubstituted rings) 

makes the photosensitizer an amphiphilic species. Amphiphilic photosensitizers are 

difficult to define precisely but are usually recognized to be compounds with both a 

hydrophilic and a hydrophobic region. Although they generally have no more than two 

hydrophilic substituents, the spacial distribution of these is important, in order for the 

molecule to be soluble in water or alcohol at physiological pH. The photosensitizer is 

then sufficiently water-soluble to allow its systemic injection in vivo, whilst retaining its 

ability to cross the lipid barrier of cellular and/or intracellular membranes and localise at 

intracellular sites [Kessel, 1982]. For porphyrin-based PDT agents, amphiphilic 

character often arises from an asymmetric distribution of charge groups around the 

periphery of the molecule with the region most distant from the charged groups 

becoming the hydrophobic component [Peng et al., 1996]. Photosensitizers of the 

amphiphilic class include two of the most potent PDT agents, mew-

tetrahydroxyphenylchlorin (m-TFIPC) and benzoporphyrin derivative monoacid ring A 

(Verteporfin, BPD-MA). 

The intracellular distribution of a photosensitizer is further influenced by the type and 

number of its charges, and by the charge-mass ratio. Studies of cellular distribution in 

V-79 Chinese hamster cells using the anionic dyes, AIPcS4 and AIPcS3, suggest a 



relationship between the number of negatively charged groups attached to the 

photosensitizing 'core' and the mode of entry into the cell. The exact amount of 

negative charge that prevents diffusion across the cell membrane and allows 

endocytosis to become the dominant mode of entry has been found to be around —2. 

This, in turn, determines the intracellular distribution pattern of the molecule [Paquette 

a al., 1988]. A further study by Woodburn a aL [1991] found that, of a series of 

hydrophobic porphyrin derivatives, bearing either anionic or cationic residues at 

physiological pH, those with a net cationic profile became localised in mitochondria, 

whilst those with net anionic profile localised in lysosomes. As all the anionic 

porphyrins in this second study bore two negative charges, these results are in accord 

with those of the earlier work. Additional factors relate to the consequences of drug-

delivery systems, and their properties. Different anionic photosensitizers do not 

necessarily have the same subcellular localisation pattern due mainly to the fact that 

they have different hydrophobic character. 

Mitochondria are believed to be important targets in PDT-induced cytotoxicity. Studies 

using Photofrin® have demonstrated, both in intact cells and in isolated mitochondria, 

an immediate post-PDT inhibition of respiration and inhibition of electron transport 

components, such as succinate dehydrogenase and cytochrome c oxidase, and 

disturbance of the mitochondrial electrochemical gradient. With PDT using the 

metabolic precursor, 5-ALA [Section 1.5.1], to stimulate production of PPIX by 

mitochondria, mitochondrial damage is most apparent when cells are irradiated soon 

after drug exposure (approximately four hours). Since PPIX can diffuse out of 

mitochondria, photodamage is also found at other sites [Peng a al., 19961. Many 

cationic dyes that have been introduced as photosensitizers for PDT are also found to be 

distributed in mitochondria [Oseroff, 19861. Cationic, hydrophobic compounds (such as 

the kryptocyanine dye, EDKC, and rhodamine 123) accumulate in mitochondria due to 

the highly negative electrochemical potential of the active inner mitochondrial 

membrane. However, some negatively charged (such as Photofrin®) or neutral 

porphyrins (Pc4) also accumulate due, possibly, to binding to specific mitochondrial 

constituents (possibly cardiolipins of the inner mitochondrial membrane). It has been 

shown that those photosensitizers that bind to mitochondria induce apoptosis upon 
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irradiation, whilst those that bind to elements other than mitochondria, kill cells less 

efficiently and by a mechanism not involving apoptosis [Kessel et al., 1997]. 

Four main factors appear to be involved in the uptake of photosensitizers by lysosomes. 

Highly hydrophobic photosensitizers (including Photofrin®, benzoporphyrins and 

phthalocyanines) become more or less solubilised in lipoproteins, particularly low-

density lipoproteins (LDLs) in the serum, and taken into cells by LDL receptor-

mediated endocytosis [Section 1.2.21. LDL catabolism involves the endocytotic 

pathway and lysosomal degradation of the lipoprotein carrier. This implies that 

hydrophobic photosensitizers become associated with the lysosomal membrane during 

this process. Photosensitization of the membrane by subsequent light activation of the 

photosensitizer would likely cause rupture of the membrane with the release of cryptic 

lysosomal hydrolases. In the intracellular space these would cause cell death, but in the 

extracellular matrix they would act as powerful mediators of the inflammatory response. 

Of course, lysosomal enzyme release following cell lysis would be expected irrespective 

of the cellular target of photosensitization. A second class of compounds that tends to 

localise in lysosomes includes the negatively charged and very polar photosensitizers, 

such as aluminium phthalocyanine and the sulfonates of tetraphenylporphine. It is 

believed that, for negatively charged molecules, their anionic character prevents binding 

to the predominant anions in the cell surface coat, thus facilitating cellular uptake. 

Furthermore, the action of organic anion transporters may also play a part. Mono-

aspartyl chlorin e6 (MACE) is a hydrophilic photosensitizer that is reported to localise 

in lysosomes following its ingestion by endocytosis. MACE has four ionizable 

carboxyl groups in an asymmetric arrangement around a central chlorin ring, making it 

sufficiently polar to avoid passive diffusion into the cytoplasm and subsequent 

migration to the mitochondrion [Robert & Berns, 1989]. Representatives of the third 

group of lysosome-locating molecules are lysosotropic photosensitizers, such as the 

Nile Blue derivatives synthesized by Lin ci al. [1991] and a tetraphenylporphine 

derivative linked to chloroquine [Morlière etal., 1990]. These are weak bases that enter 

cells as uncharged species but the proton gradient between the cytosol and the lysosome 

interior permits them to become incorporated as protonated species within the organelle. 

A final method of inducing specific lysosomal targeting is by phagocytosis of 

photosensitizers covalently linked to microspheres [Bachor etal., 1991]. 



As already mentioned, hydrophobic photosensitizers (including Photofrin®) tend to 

target membrane structures, including that of the nucleus, but seldom reach DNA unless 

it is sited close to the nuclear membrane [Moan et al., 1989]. PDT-induced 

photodamage has also been observed in cytoskeletal elements, in particular non- 

polymerised tubulin [Sporn & Foster, 1992]. Subsequent illumination of the 

photosensitizer prevents polymerisation of tubulin, and instead induces the formation of 

micronuclei and giant cells, and the accumulation of cells in mitosis. Alternatively, 

DNA damage may be induced as a consequence of the relocalisation of photosensitizers 

to the nucleus during illumination. Several photosensitizers have been reported to act in 

this manner [Wood etal., 1997; Peng etal., 1991; Berg et al., 1991]. Various types of 

lesions have been reported including single-strand breaks, DNA-protein crosslinking, 

chromosome aberrations and sister chromatid exchanges, although the mutagenic 

potential of PDT varies with photosensitizer and cell line, and also the target gene. It is 

important, therefore, to avoid exposure of normal cells to PDT and to exercise extreme 

caution in the treatment of benign conditions using this regime. 
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The effect of chemical substitution on the photodynamic activity of MB was previously 

investigated by toxicity testing the photosensitizer alongside two commercial (doubly-

methylated), related dyes, 1,9-dimethyl methylene blue (DMJvIIB) and new methylene 

blue (NMB), and a third (singly-methylated), newly-synthesized intermediate, 1-methyl 

methylene blue (MIvIB). It was found that both the photocytotoxicity ,  and dark toxicity 

are significantly enhanced by successive methylation of the parent molecule in non-

pigmented and pigmented cells in culture, and that this corresponds generally to 

increased 102  quantum yields, increased resistance to reduction, increased Log P and 

improved cellular uptake. The increased Log P was not unexpected, since a common 

effect of substitution is to increase the hydrophobicity of a compound, giving it a greater 

affinity for lipid. As with other cationic photosensitizers, lysosomal targeting and 

localisation in extranuclear granules has also been observed with MB. However, it is 

believed that the presence of bulky methyl substituent groups on the three derivatives is 

likely to make DNA intercalation of these molecules highly improbable. Taken with 

their altered physicochemical characteristics, the enhanced toxicities of the derivatives 

may therefore ultimately be due to different intracellular localisation patterns at the time 

of their activation by light. The increases in Log P. which confer greater hydrophobic 

character on the derivatives, together with their positive charge, make mitochondrial 

targeting extremely likely, particularly for the doubly-methylated compounds, DMMB 

and NIvIB. A number of different methods have been used to study the intracellular 

localisation of photosensitizers. For instance, the porphyrin content of specific 

organelles has been examined using a method that combines homogenization and 

ultracentrifugation to produce fractions of nuclear, mitochondrial and microsomal 

material, in addition to a supernatant fraction, that can be individually assessed [Cozzani 

et at, 1981]. Alternatively, there are several studies that have used electron, 

fluorescence and confocal microscopy to provide detailed information of cells exposed 

to light in the presence of photosensitizers. Fluorescence microscopy can be used with 

living cells and has wide applications since most photosensitizers fluoresce. 

Conventional fluorescence microscopy, however, has severe limitations because many 

dyes are rapidly photodegraded by light exposure in the microscope. This present study 

proposed to examine the subcellular localisation of MB and the aforementioned 

derivatives, using both fluorescence and confocal microscopy. In addition, the effect of 

three of the compounds (MB, MMB and DMIMB) on respiration in isolated rat 

mitochondria was examined. 
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4.3 MATERIALS AND METHODS 

4.3.1 Localisation Studies 

4.3.1.1 Fluorescence Microscopy 

EMT-6 cells in 'complete' RPMI 1640 medium [Section 2.3.3.1] were seeded into 35 

mm petri dishes, 2 ml of cell suspension per dish @ 1000 cells per ml, and grown on for 

two days. After two days, the medium was removed and replaced by 2 ml of 

photosensitizer at their respective IC50s. [In the EMT-6 cell line, MB = 18.7 jiM, MIMB 

= 2.2 jiM, DMMB = 0.09 jiM and NMB = 0.39 jiM. In the SK-23 line, MB = 15.2 j.tM, 

MMB = 1.6 j.tM, DMMB = 0.05 jiM and NMB = 0.3 p.M. In the SK-MEL-28 line, MB 

= 21.0 jiM, MMIB = 2.2 jiM, DMMB = 0.01 jiM and NMB = 0.3 jiM]. The cells were 

incubated in the presence of the photosensitizers for three hours. After three hours, 

medium plus photosensitizer was poured off and the cells rinsed twice in PBS. A Leitz 

diaplan microscope with a removable rhodamine filter was used to obtain light and 

fluorescence images in order to gain an indication of intracellular localisation patterns 

for the photosensitizers. 

4.3.1.2 Scanning Laser Confocal Microscopy 

EMT-6, SK-23 or SK-MEL-28 cells were seeded at a cell density of 1 x 10 cells ml' 

into 35 mm petri dishes (Falcon, Fahrenheit Laboratories, Rotherham, U.K.) in RPM! 

1640 medium, supplemented with 10 % (v/v) foetal calf serum, 200 mM L-glutamine 

and penicillin/streptomycin solution (at 1 x 10 units and 10 mg ml', respectively), as 

previously described [2.3.3.1]. Circular glass coverslips, size 0 or 1.5, diameter 22mm 

(Merck), were placed into each petri dish and the cells allowed to attach for three days 

(EMT-6 cells) or four days (SK-23 and SK-MEL-28 cells), whilst incubating at 37 °C, 5 

% CO2: 95 % air. The medium was then aspirated and replaced with medium plus, 

either MB, MMB, DMMB or NMB and incubated for three hours, as previously 

described. Photosensitizers were added to cells at both 5 j.tM concentrations and at their 

IC50 values, also as previously described [Section 2.4.2.2]. Following three hours' 

incubation, the cells were examined with a scanning laser confocal fluorescence 

microscope, using a helium/neon laser at 633 nm. Untreated cells were also examined 

for autofluorescence, under the same conditions. 
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4.3.1.3 Image Processing 

Black and white images produced from the scanning laser confocal microscopy were 

superimposed with colour using the 'Photostyler' computer package. Images were 

converted first to 8-bit greyscale and thence to 256-bit pseudocolour before printing. In 

this way, the order of increasing fluorescence (indicative of increasing concentration) is 

represented by a colour scale such that bluecgreencyellowcredcwhite. 

4.3.2 Effect of Photosensitizers on Mitochondrial Respiration 

4.3.2.1 Preparation of Liver Homogenates 

Liver mitochondria were isolated from male Sprague-Dawley rats into ice-cold isolation 

medium (0.25 M sucrose, 10 mM Tris-HCI, 0.5 mM EDTA, at pH 7.4). The tissue was 

homogenised in fresh, ice-cold, isolation medium with added bovine serum albumin 

(BSA) (5 mg m15,  then centrifuged at 600 g for ten minutes at 4 °C. The supernatant 

was centrifuged at 8000 g for ten minutes also at 4 °C. The resulting pellet was washed 

twice in isolation medium and resuspended in 4 ml of respiratory medium (225 mM 

sucrose, 10 mM KCI, 1 mM EDTA, 10 mM K2HPO4, 5 mM MgCl2, 10 mM Tris-HCI at 

pH 7.4) and left on ice for one hour. 

4.3.2.2 Protein Estimation 

Protein was estimated using a BlO-RAD protein assay kit and BSA as standard. To 

create a calibration curve for BSA, dilutions of BSA standards, (0.2 to 1.6 mg ml' 

protein) were prepared in clean, dry test tubes. The various reagents were added as per 

manufacturers' instructions and the tubes then immediately vortexed. After fifteen 

minutes, the absorbances were read spectrophotometrically at 750 nm. The protein 

concentrations of the various samples were determined using the 'Minitab' computer 

package, by plotting the calibration curve data for BSA and entering the absorbance 

value of each unknown. Absorbance was plotted against protein concentration (mg mF 

I)• 
All data are expressed as mean ± standard error of the mean (SEM). 

4.3.2.3 Mitoehondrial Respiration 

Mitochondrial respiration was measured polarographically using an oxygen electrode in 

a 3 ml water-jacketed chamber maintained at 30 °C. The electrode was set to zero using 



3 ml air-saturated distilled water at 30 °C. This was removed and liver mitochondria (1 

to 2 mg protein) were added to the chamber to a final volume of 3 ml. A substrate, 

(either 50 mM pyruvate/50 mM L-malate or 100 mM succinate/ 500 ng mF' rotenone) 

was added and the respiratory rate recorded as basal respiration. An addition of 100 

nmol ADP was then made and the rapid rate of oxygen utilization that ensued was 

recorded, and used to elicit the coupled respiratory rate. Only healthy, "well-coupled" 

mitochondria were retained in the chamber. The degree of coupling was determined by 

calculating the acceptor control ratio (ACR) for each sample addition made to the 

chamber [See Appendix 2]. ACR values varied even within samples. An ideal ACR 

would be about 4 although values above 2 were considered acceptable in most cases. 

Finally, 10 jil additions of drug (1 mg mF') were made and the respiratory rate 

measured, up to a final concentration of about 50 xM. 

4.3.2.4 Calculation of Data 

The oxygen content of air-saturated water at 30 °C is 230 smol 1.1.  If the oxygen 

electrode is first calibrated with air-saturated distilled water, this fact can be used to 

calculate oxygen utilization for each experiment. Oxygen utilization by the individual 

photosensitizers was calculated as a percentage of the recorded basal mitochondrial 

respiratory rate before additions of ADP or photosensitizer were made. 
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4.4 RESULTS 

4.4.1 Localisation Studies 

The patterns of cellular uptake and intracellular localisation of the photosensitizers, MB, 

MMB, DMMB and NMB at their IC50 values were studied using both fluorescence and 

confocal microscopy. 

4.4.1.1 Fluorescence Microscopy 

Using fluorescence microscopy, the localisation of MB and MMB remained obscure, as 

certain cells appeared to show evidence of nuclear targeting, whilst in others, the 

photosensitizers appeared as a particulate pattern in the cytoplasm [Figure 31a and 31b]. 

There were also areas of dense blue staining and an absence of fluorescence in these 

regions. For DMMB and NMB, however, the pattern of intracellular localisation was 

more defined, with no evidence of nuclear targeting and the photosensitizers appearing 

as a clearly defined punctate pattern within the cytoplasm [Figure 31c and 31d]. The 

images presented are light images of the four photosensitizers incubated at IC50 values 

for three hours with EMT-6 cells. They are generally representative of images also 

taken with SK-23 and SK-MEL-28 cells under the same conditions. 

4.4.1.2 Confocal Microscopy 

Using confocal microscopy and following three hours' incubation, there was no 

evidence of nuclear targeting for any of the compounds tested in any of the cell lines. In 

some cases, it was possible to record a clearly particulate pattern of distribution of the 

photosensitizers within the cytoplasm [Figure 35j]. However, during the process of 

visualisation (i.e. with progressive exposure to the laser beam), all four photosensitizers 

initially became spread more diffusely throughout the cytoplasm and eventually 

relocalised to the nucleus [Figures 32 to 391. When the laser beam was left running in 

between image capture (continuous illumination), progression into the nucleus was 

more rapid than when it was shut down (discontinuous illumination) [compare for 

MIMB, Figure 35h and Figure 37c]. The photosensitizers were also incubated at 

concentrations of 5 xM, in order to establish whether intracellular targeting varied with 

photosensitizer concentration. In fact, there was no difference in the pattern of uptake 
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and subcellular localisation for any of the photosensitizers in any of the cell lines, 

whether incubated at 5 jiM concentrations or at their IC50 values. However, it was 

found that the rate of uptake and progression into the nucleus was more rapid (and the 

fluorescence far greater) at higher concentrations of photosensitizer than at tower 

concentrations [compare for MB, Figure 32a and Figure 34]. 

To test whether the action of the laser beam alone could provoke relocalisation of the 

photosensitizers, the protocol was repeated, but with omission of the incubation 

procedure. In this case, coverslips containing cells of the various lines were loaded into 

the incubation chamber in RPMI 1640 medium and onto the microscope stage. Medium 

containing various concentrations of each photosensitizer allowed to flow into the 

incubation chamber via capillary tubing and with the aid of a syringe. Using this 

method, uptake of the photosensitizers from the surrounding medium and into the cells 

was immediate and clearly visible [Figures 33, 37, 38 and 391. With continuous 

exposure to the laser beam, relocalisation of all four photosensitizers from the 

cytoplasm to the nucleus was rapid, and occurred within minutes of uptake. Again, 

cellular uptake and nuclear relocalisation were more rapid and fluorescence signals 

greater at higher concentrations of photosensitizer. 

The images presented are generally representative of events that were recorded for all 

four photosensitizers in the EMT-6, SK-23 and SK-IvIEL-28 cell lines. However, only 

those results for the melanoma (SK-23 and SK-MEL-28) lines are presented here. The 

clearest images were usually obtained using the SK-23 murine melanoma cell line that 

tends to have a more regular shape and a more distinct and visible profile in culture than 

the SK-MEL-28 line. It was also noted that fluorescence in the SK-23 cell line was 

generally greater than in the human SK-MEL-28 line, possibly confirming earlier data 

that demonstrates greater cellular uptake of the photosensitizers in this line [Section 

3.4.1.4]. 
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Figure 31. Fluorescent images of EMT-6 cells following incubation for three hours with [a] MB, [b] 
MMB, [c] DMMB and [d] NMB at their IC50 values, i.e. MB = 18.7 pM, MMB = 2.2 pM, DMMB = 0.09 
pM and NMB = 0.39 pM. Cellular uptake of MB does not appear to be uniform, with the photosensitizer 
apparent in some cells but absent in others [a]. Intracellular localisation of MB also appears to be random 
with evidence of both nuclear and cytoplasmic targeting. Uptake and distribution of MMB are also 
ambiguous, although much of the photosensitizer appears to be located in the cytoplasm [b]. Aggregation 
by these two photosensitizer molecules seems likely. Uptake of both DMMB and NMB appears uniform 
throughout the cell population and both photosensitizers are well distributed in a punctate pattern 
throughout the cytoplasm. There is no evidence of nuclear targeting [c & d). 
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U] + 5 minutes [k] + 10 minutes 

[a] + 5 minutes 	 [b] + 10 minutes 

[g] + 5 minutes 

[c] + 2 minutes [d] + 5 minutes [e] + 10 minutes 

Figure 32. Subcellular localisation of [a, b] 21 jiM MB, [c-c] 2.2 jiM MMB, [f-h] 0.01 pM DMMB and 

[i-k] 0.3 pM NMB in typical SK-MEL-28 cells using confocal microscopy over a period of 10 minutes 
following 3 hours pre-incubation. Cells were visualised using continuous illumination with the laser 
beam. 
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[hi + 2 minutes 

[d] + 10 minutes 

[c] + 5 minutes 

[e] + 15 minutes 

[a] time zero 

Figure 33. Subcellular localisation of 5 pM MMB in a typical SK-MEL-28 cell using confocal 
microscopy with the flow-through method and continuous illumination with the laser beam. The 
photosensitizer can be seen in the medium at time zero [a] and after 2 minutes [b]. At this point, the 
incubation chamber is flushed through with fresh medium in order to rinse the cells. (Subsequent to this 
experiment, the protocol was carried out with the rinsing step immediately prior to exposure to the laser 
beam). Cellular uptake of MMB is immediate and uptake into the nucleus at a maximum after 2 minutes. 
The nucleus on the right of the image is believed to be that of a second cell lying in a different plane of 
visualisation. 
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[c] + 10 minutes 

[a] time zero 
	

[h] 5 minutes 

Figure 34. Subcellular localisation of 5 i.xM MB in a group of typical SK-MEL-28 cells as shown by 
confocal microscopy following 3 hours pre-incubation and over a period of 20 minutes. The cells were 
visualised using discontinuous illumination with the laser beam. 
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[I] + 10 minutes 

[a] time zero [b] + 5 minutes [c] + 10 minutes 

[g] time zero 

[k] + 5 minutes 

[e] + 5 minutes 

Figure 35. Subcellutar localisation of [a-c] 15.2 pM MB, [d-f] 1.6 pM MMB, [g-i] 0.05 pM DMMB and 
[j-I] 0.3 pM NMB in SK-23 cells, as shown by confocal microcopy following 3 hours pre-incubation. 
The cells were visualised using continuous illumination with the laser beam. 
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[a] + 2 minutes 
	

[b] + 5 minutes 
	

Lc] + 10 minutes 

Figure 36. Subcellular localisation of 15.2 j.tM MB into a typical SK-23 cell over a period of 10 minutes 
using confocal microscopy with a flow-through method and a rinsing procedure. Cells were visualised 
using discontinuous illumination with the laser beam 

[a] + 2 minutes 
	

[b] + 5 minutes 	 [c] + 10 minutes 

Ed] + 15 minutes 	 [e] + 20 minutes 
	

[1] + 25 minutes 

Figure 37. Subcellular localisation of 1.6 jiM MMB into a pair of typical SK-23 cells over a period of 25 
minutes using confocal microscopy with a flow-through method and a rinsing procedure. Cells were 
visualised using discontinuous illumination with the laser beam. 
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[b] + 5 minutes 

[a] + i minute 

[c] + 10 minutes 	 [d] + 15 minutes 

[e] + 20 minutes 
	

[1] + 25 minutes 
	

[gJ + 30 minutes 

Figure 38. Subcellular localisation of 0.05 xM DMMB in a typical SK-23 cell using confocal microscopy 
with a flow-through method and a rinsing procedure over a period of thirty minutes. Cells were 
visualised using discontinuous illumination with the laser beam. 
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[1] + 25 minutes [c] + 20 minutes 

[i] + 40 minutes [h] + 35 minutes 

Figure 39. Subcellular localisation of 0.3 pM NMB in a group of typical SK-23 cells over a period of 
forty minutes using confocal microscopy and a flow-through method with a rinsing procedure. Cells 
were visualised using discontinuous illumination with the laser beam. 
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4.4.2 Effect of Photosensitizers on Mitochondrial Respiration 

4.4.2.1 Protein Estimation 

Mitochondrial protein was determined from the BSA calibration curve and fell within 

the concentration range 0 to 0.6 mg mF' protein [Appendix 31. 

4.4.2.2 Mitochondrial Respiration 

The effect of three of the photosensitizers (MB, MMB and DMMB) on respiration was 

determined in isolated rat mitochondria, using either L-malate/pyruvate or succinate as 

substrates. In the presence of L-malate/pyruvate, additions of MB caused an increase in 

oxygen utilization up to a maximum level of 2.5 x basal rate at approximately 10 jxM 

MB, after which, levels were seen to plateau, then decline. With added MIIvIIB, oxygen 

utilization minored that with added MIS, up to 10 xM MMIS. However, oxygen 

utilization continued to increase to a maximum level of over 3 x basal rate, at a 

concentration of 30 xM 14MB, before declining. In contrast, with added DMItvIB, 

oxygen utilization never rose significantly above the basal rate, and, in fact, declined at 

concentrations over 20 liM DMMB [Figure 40}. Similarly, in the presence of 

succinate/rotenone, oxygen utilization was greatest with added MMB (a maximum level 

of approximately 2.5 x basal rate), approximately twice basal rate with added MIS, and 

only slightly above basal with DMMB [Figure 40]. 
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Figure 40. Effect of photosensitizers on oxygen utilisation in isolated rat mitochondria using [a] L-

malatelpyruvate as substrate Ib] succinate/rotenone as substrate; • = MB, • = MMB, A = DMMB. 
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4.5 DISCUSSION 

Fluorescence microscopy is an adequate method of studying the subcellular localisation 

of PDT photosensitizers, due to the fact that many are reasonably fluorescent in the red 

region of the visible spectrum. Despite this, the images obtained for MB and MMB in 

the EMT-6 cell line using this method are difficult to interpret clearly as, in either case, 

the photosensitizers appear to accumulate in the nucleus of certain cells, yet remain 

cytoplasmic in others. There also appear to be areas of dense blue staining with absence 

of fluorescence due, possibly, to aggregation of the dye molecules. Dye aggregation is 

a problem, particularly at high concentrations of photosensitizer, that reduces the 

efficacy of PDT. MB and MMIB were incubated with the various cell lines at higher 

concentrations than both DMME and NMB, in accordance with their IC50 values. 

However, the fluorescence images for DMMB and NMB are much more conclusive. 

Here, fluorescence microscopy demonstrates consistently that, in EMT-6, SK-23 and 

SK-MEL-28 cells, following three hours incubation at their IC50 values, these two 

compounds are distributed uniformly throughout the cytoplasm as a particulate pattern, 

but are absent in the nucleus. 

Subsequent to this, from images of fluorescence captured using confocal microscopy, it 

is observed that, following three hours' incubation at their IC50 values, none of the four 

photosensitizers, MB, MMB, DMMB and NMB, is located in the nucleus in any of the 

three cell lines, EMT-6, SK-23 or SK-MEL-28. Rather, fluorescence is limited to 

small, subcellular bodies located in the cytoplasm of the various cells. In order to 

ascertain the primary localisation of the photosensitizer prior to light activation, it was 

necessary to capture images without delay, since the laser beam used to excite 

fluorescence in the cells for visualisation purposes, would also initiate the 

photodynamic reaction. Moreover, continued exposure to the laser beam would lead to 

photobleaching of the photosensitizer and a reduction in fluorescence. Another possible 

consequence of light exposure is the redistribution of the photosensitizer from its 

primary localisation in the cell to other cellular components. In fact, soon after 

exposure to the laser beam, the fluorescence signal increased and changed from a 

particulate pattern within the cytoplasm and generally spread diffusely throughout the 

cytoplasm. Within minutes of light exposure, all four photosensitizers were localised 

within the nucleus. Fluorescence signals faded with continued exposure to the laser. In 

116 



order to confirm that nuclear localisation was dependent upon illumination, image 

capture was also later performed without prior incubation of the photosensitizers and by 

using a flow-through method to deliver the photosensitizers to cells that had been 

preloaded onto the microscope stage. It was clearly demonstrated using this method, 

that uptake of the four photosensitizers into the three cell lines is rapid and that nuclear 

localisation of the photosensitizers follows within minutes of light exposure. The 

observed patterns of subcellular localisation were not unexpected since studies by other 

groups of workers have also reported light-induced redistribution of photosensitizers. 

In cervical carcinoma cells (NHIK 3025), for example, light doses that inactivate twenty 

per cent of cells also result in a relocalisation of TPPS4 from lysosomes to the nucleus, 

and of TPPS2 from lysosomes to the cytoplasm in general. This behaviour is attributed 

to photodynamic permeabilization of the lysosomal membrane, thus allowing small 

molecules, including the photosensitizers, to leak out [Berg et al., 1991]. Similarly, 

Peng et al. [1991] observed the light-induced subcellular relocalisation of several 

sulfonated aluminium phthalocyanines in the LOX human melanoma cell line. Whilst 

Al-PcS1 and Al-PcS2 localise diffusely throughout the cytoplasm, Al-PcS3 and Al-PcS4 

exhibit a granular pattern throughout the cytoplasm, which corresponds to the red 

fluorescence of lysosome-located acridine orange. Subsequent laser exposure of the 

cells incubated with high concentrations of Al-PcS3 and Al-PcS4 results generally in a 

relocation of the two photosensitizers to the cytoplasm, with a small fraction taken up 

into nuclei [Peng et al., 1991]. The experiments in the present work were also carried 

out using constant concentrations of photosensitizer (5 isM) to see if different 

concentrations would affect the observed patterns of intracellular targeting. The 

patterns of localisation were in fact the same whether photosensitizers were added at 5 

iiM concentrations or added at their IC50 value. This was true both following the three-

hour incubation procedure and when using the flow-through method of drug delivery. 

However, higher concentrations of the photosensitizers appeared to favour more rapid 

uptake into the cells and to prolong the fluorescence signal. This permitted the capture 

of images over a longer period of time. 

Although all four photosensitizers clearly did not target the cell nucleus prior to 

illumination, it was not possible to confirm their specific intracellular localisation from 

these studies. Their punctate pattern of distribution did, however, suggest that they do 
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become bound to subcellular organelles rather than remaining free within the cytosol. 

To gain insight into the likelihood of mitochondrial targeting by the photosensitizers, 

the effect of three of the compounds on respiration in isolated rat mitochondria was also 

examined. Here, the rates of oxygen utilization, using either L-malate/pyruvate or 

succinate/rotenone as substrates, are different for the three photosensitizers, yet do not 

mirror the pattern of methylation as might be expected. In this case the trend of oxygen 

utilization was DMMB<MB.MMB. The reason for this pattern may be linked to 

changes in hydrophobicity and to the ability of the photosensitizers to be reduced in 

their surrounding media. MB is known to be an artificial electron acceptor which draws 

off electrons from the respiratory chain at a point of interception after Complex I (redox 

potential [E'0] = +0.01). Cycling of electrons between the reduced photosensitizer and 

oxygen at this point would explain the increased oxygen utilization in mitochondria 

with added MB. Furthermore, increased hydrophobicity could also be aiding the 

interaction of MItvlIB with the respiratory chain, thereby increasing the rate of reduction 

of the agent, with concomitant increase in the rate of oxygen utilization, compared with 

MB. The succinate/rotenone system shows exactly the same pattern of oxygen 

utilization as with L-malate/pyruvate. Since rotenone blocks electron transport beyond 

the points of MB and MMB interaction, but before Complex I, oxygen utilization must 

be via interaction of the photosensitizers with oxygen, and not due to use of oxygen by 

the respiratory chain. Since it did not appear possible to assess the direct effect of the 

photosensitizers on oxygen utilization (i.e. respiration) using this system, experiments to 

examine the fourth compound, NMB, were abandoned. 

Although the traditional cationic dye, MB, is known primarily to target the nucleus, the 

localisation studies described above indicate that its derivatives, MIvIIB, and DMMB and 

NMB, are likely to follow different cellular localisation patterns due to the presence of 

substituent methyl moities at various positions of the molecule. The physicochemical 

character of both the doubly-methylated molecules, DMMB and NMB, in particular, is 

indicative of mitochondrial targeting. In fact, it is known that the mitochondria of 

malignant cells preferentially accumulate and retain certain, hydrophobic, cationic 

compounds, such as rhodamine 123 and dequalinium chloride [Oseroff et al., 19861. 

The levels of these compounds accumulated, and their retention times, are much greater 

than those found in the mitochondria of most normal cells. This is likely to be due to 

differences in morphology, membrane and matrix compositions, and to a high negative 
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potential across the mitochondrial membrane. The use of carcinoma cell-specific, 

cationic dyes as photochemotherapeutic agents suggests that mitochondria may 

therefore serve as targets for highly selective photochemotherapy. 

Although these studies failed to establish the primary subcellular localisation of the four 

photosensitizers, it was clear, nevertheless, that, upon illumination, they each become 

redistributed from small subcellular bodies, first to the cytoplasm in general and then 

almost immediately to the nucleus. Since PDT is mainly dependent upon the generation 

of 102  as the damaging species and since singlet oxygen diffuses intracellularly only 

about 0.1 #im in its lifetime [Moan, 1990], the cellular structures close to high sensitizer 

concentration will be preferentially damaged by the activating light. Consequently, the 

sites of photodynamic action of a photosensitizer ought therefore to be closely related to 

its pattern of subcellular/intratumoral localisation. If DMMB and NMB should 

relocalise to the nucleus from mitochondria, then the overall PDT response (and the 

greatly enhanced toxicities of these two agents) may be a combination of both sublethal 

and lethal insults to cells. For instance, gene induction that occurs many hours after 

PDT would be unlikely if the cells had already undergone apoptosis within two hours of 

mitochondrial damage. 
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CHAPTER 5: 

EVIDENCE FOR INDUCTION OF APOPTOSIS BY METHYLENE 

BLUE AND ITS DERIVATIVES IN EMT-6, SK-23 AND SK-MEL-28 

CELLS IN CULTURE 
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5.1 ABSTRACT 

The photosensitizing capabilities of the cationic photosensitizer, methylene blue (MB), 

have been investigated by several groups of workers. However, the potential of MB to 

be used in clinical PDT is limited by an inherent toxicity and by its rapid reduction in 

vivo to the neutral leucobase. The derivatives of MB, however, 1-methyl methylene 

blue (MIV1B), 1,9-dimethyl methylene blue (DMMB) and new methylene blue N (NIMB) 

are found to have increased photosensitizing efficacies compared to MB itself. Several 

factors may be responsible for this. Of particular interest in this study was an increase 

in the hydrophobic character of the derivatives that not only improved cellular uptake 

but was also expected to favour their mitochondrial targeting. The doubly methylated 

derivatives, DMMB and NMB, in particular, were expected to target mitochondria, 

although this was not confirmed during the course of this study. Photosensitizers that 

localise in mitochondria are found to be more efficient inducers of apoptosis than 

photosensitizers that target other subcellular sites. The ability of the photosensitizers, 

MB, MMB, DMMB and NMB, to induce apoptosis in EMT-6, SK-23 and SK-MEL-28 

cells in culture was investigated in this study. From examination of cell morphology, 

by use of the cyanine dye, iC-i, and the use of the FluorAce® Apopain Assay Kit from 

Biorad, it was concluded that apoptosis may be an important cell killing mechanism in 

the photocytotoxicity,  of the photosensitizers, moreso for DMMB and NIMB. 
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5.2 INTRODUCTION 

Photodynamic therapy (PDT) is an alternative treatment regime for malignant and pre-

malignant disease based on the administration of a tumour-specific, photosensitizing 

drug (usually the porphyrin-based Photofrin®) and its subsequent local activation by 

long (red) wavelength light [Section 1.2]. In the presence of molecular oxygen this 

produces a cytotoxic response in targeted cells [Henderson & Dougherty, 1992]. Cell 

killing is brought about mainly via Type II photochemical processes with the generation 

of highly reactive singlet oxygen (102)  and its subsequent lethal action on key cellular 

components [Weishaupt et al., 19761. Responses to PDT vary according to the 

photosensitizer, cell type, illumination conditions and the oxygenation status of the 

tissue. Cellular structures having both high photosensitizer and high oxygen 

concentrations will be vulnerable to photodynamic activity. For energy transfer 

reactions (Type I), the photosensitizer must interact directly with its target [Foote, 1991] 

[Section 1.3]. Similarly, for electron transfer reactions (Type II), the sites of 

photodamage will be close to the location of the photosensitizer at the time of its 

activation by light, because 1 02 has a diffusion distance of up to only 0.1 jim in its 

intracellular lifetime [Moan 1990]. Consequently, it might be expected that the efficacy 

of PDT could be enhanced by the use of photosensitizers that localise within critical 

components of the cell [Section 4.21. Hydrophobicity and charge are important 

determinants of the subcellular localisation of a particular photosensitizer, as too are its 

mode of entry (diffusion or endocytosis) or, in some cases, special delivery system 

(liposomes or antibodies) into the cell. 

PDT-treated cells may undergo a rescue response and/or die by either a necrotic or an 

apoptotic mechanism, depending on the dose, cell line and photosensitizer used [He & 

Oleinick, 1996]. Necrosis is a passive, uncontrolled process involving swelling of the 

cell and its intracellular organelles, loss of membrane integrity, and culminating in cell 

lysis and the generation of a localised inflammatory response [Boobis et cii., 1989]. 

Cells that suffer irreparable damage are more likely to die by necrosis. In contrast, 

apoptosis or 'cell suicide' is a highly regulated, evolutionary conserved mechanism that 

is executed by cellular proteins [Wylie et al., 1980]. Both necrosis and apoptosis can 

occur simultaneously in tissues or cell cultures exposed to the same stimulus LShimizu 
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et al., 1996], but it is often the intensity of the initial insult that decides the prevalence 

of either mechanism. Lesser doses of the same agent that produces necrosis can lead to 

apoptosis [Bonfoco et al., 19951. 

Cells undergoing apoptosis are characterised by distinct morphological alterations, 

including a specific pattern of DNA fragmentation, chromatin condensation, membrane 

blebbing, cell shrinkage and disassembly into membrane-delineated vesicles called 

apoptotic bodies [Arends & Wylie, 1991]. These are subsequently phagocytosed by 

macrophages or neighbouring cells with the lack of an inflammatory response in the 

affected tissue. Apoptotic changes occur as a two-phase (commitment followed by 

execution) process in a predictable, reproducible sequence and are usually complete 

within thirty and sixty minutes. Various death receptors belonging to the tumour 

necrosis factor (TNF) receptor gene superfamily and present on the cell membrane play 

a pivotal role in apoptosis. Death receptors have a characteristic cysteine-rich, 

extracellular domain and an additional homologous cytoplasmic sequence called the 

'death domain' [Ashkenazi & Dixit, 19981. The propensity of death domains to 

associate with one another facilitates both pro- and anti-apoptotic communication 

between death receptors and the cell's apoptotic machinery. 

Genetic regulation of apoptosis has been studied extensively in the nematode, 

Caenorhabditis elegans, since it contains a similar enzymatic system that initiates 

apoptosis upon activation [William & Smith, 1993]. In C elegans, apoptosis is 

dependent upon three specific gene products; Ced-3 and Ced-4 that promote apoptosis 

[Yuan & Horvitz, 1990], and Ced-9 that inhibits it [Hengartner & Horvitz, 19941. Ced-

3 shares homology with the mammalian cysteine protease, interleukin-1-converting 

enzyme (ICE), one of a family of at least fourteen other cysteine proteases that have 

been renamed 'caspases'. Caspases operate as a cascade mechanism and are commonly 

described as the 'executioners' of apoptosis [Thornberry & Lazebnik, 1998]. The only 

Ced-4 homologue so far identified is Apaf-1, involved mainly in caspase activation. 

Ced-9 shares homology with the mammalian Bcl-2 family proteins that are generally 

regarded as central regulators of apoptosis. Bcl-2 proteins integrate signal transduction 

pathways and modulate the apoptotic response to DNA damage. Whilst some Bcl-2 

members serve to inhibit apoptosis (Bcl-2 itself, Bcl-XL, A1IBfl-1, Bcl-w, Nr13 and 

McI-i), others (Bax, Bik, Bak, Bad and Bcl-Xs) are involved in its promotion [Nagata, 
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1997]. Resistance to PDT is demonstrated consistently in cell lines that overexpress 

Bcl-2 [He etal., 1996] 

Cell death mechanisms are commonly associated with mitochondrial damage and loss 

of electron transport, with subsequent decline in levels of AlP [Green & Reed, 1998]. 

Apoptosis, however, is a form of cell death that requires energy [Richter et al., 1996]. 

Consequently, intracellular ATP levels are believed to be a major determinant of the 

mechanism of cell death, since apoptosis is dependent upon high levels of ATP. 

Apoptosis may be induced when ATP levels start to decline, as long as a certain level of 

ATP is maintained to fuel various downstream apoptotic processes such as hydrolysis of 

macromolecules, nuclear condensation and bleb formation. Consequently, although 

levels of ATP have been observed to fall during apoptosis, this often occurs relatively 

late in the process. Thus, although loss of mitochondrial ATP production can kill a cell, 

it is unlikely that this is the mechanism of induction of apoptosis. Only when ATP 

levels are severely depleted, is necrotic cell death induced [Richter et al., 1996; Eguchi 

etal., 1997; Leist etal., 1997]. 

Cell death following PDT was originally believed to be induced solely via a necrotic 

mechanism [Henderson & Dougherty, 1992]. However, evidence continues to 

accumulate that apoptosis also plays a major role in photocytotoxicity. The first 

observations of apoptosis following PDT were made in murine L5178Y (LY-R and LY-

S) cells in vitro [Agarwal etal., 1991] and in RIF-1 tumours in C3H mice in vivo [Zaida 

etal., 1993]. Since then, PDT has been shown to be an efficient inducer of apoptosis in 

various carcinoma cell lines [He et al., 19941, in human squamous epithelia] cells in 

vitro and in biopsies of PDT-treated human skin tumours [Oseroff, 19931. The degree 

of the apoptotic response depends upon the photosensitizer [He et al., 1994], the cell 

line [Lauka et al., 1994] and the doses of PDT [Luo & Kessel, 1997]. Apoptosis 

following PDT with Photofrin® appears to be restricted mainly to lymphoma and 

epithelial cells lines [Dellinger, 1996]. 

The initiation and rate of progression of apoptosis is highly dependent upon the site of 

photodynamic action. Mitochondria are considered to be important targets for PDT- 

induced photodamage [Salet & Moreno, 1990] and photosensitizers that localise in 
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mitochondria are found to be more efficient inducers of apoptosis than photosensitizers 

that target other subcellular sites [Kessel et al., 19971. This is most likely to be as a 

result of the induction of specific signalling pathways. 
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Figure 41. Apoprosis induction via caspase activation for mitochondria-specific and plasma membrane 
bound photosensitizers [Taken from Moor, 20001 

A primary event in PDT following illumination is release of the electron-transfer 

protein, cytochrome c, from mitochondria into the cytosol of damaged cells. This has 

been demonstrated in HeLa cells treated with benzoporphyrin derivative monoacid ring 

A (BPD) [Granville etal., 1998] in L5178-R cells with Pc4 [Varnes et al., 1999] and in 

P388 leukaemia cells using a porphycene monomer or capronyloxy porphycene [Kessel 

& Luo, 1999]. In the latter study, a rapid loss of mitochondrial membrane potential was 

also observed. Collapse of the mitochondrial inner transmembrane potential during 

apoptosis often leads to the opening of a large non-selective, conductance channel 

known as the mitochondrial permeability transition pore (MIP1'P) [Green & Reed, 

1998]. MPTP is located in the inner mitochondrial membrane. It is normally fully 

closed but opens in the presence of high calcium plus oxidants or high phosphate, via a 

conformational change of the adenine nucleotide translocase (ANT) bound to matrix 

cyclophilin-D. Opening of MPTP allows leakage of protons and the equilibration of 
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ions within the mitochondrial matrix and intermembrane space. It is believed that 

calcium release might play a role in the observed loss of cytochrome c [Green & Reed, 

1998]. The H 1  gradient across the inner membrane is rapidly dissipated with 

uncoupling of the respiratory chain and rapid hydrolysis of cellular ATP. Without 

closure, this sequence of events results in necrosis. Apoptosis is more likely to arise 

from transient opening of MPTP that results in a volume dysregulation of mitochondria 

due to the hyperosmolality of the matrix. This causes the matrix space to expand and, 

because the inner membrane has a larger surface area than the outer membrane, this 

swelling eventually causes rupture of the outer mitochondrial membrane with release 

into the cytosol of caspase-activating proteins (including cytochrome c) located within 

the intermembrane space. Reclosure of MPTP maintains levels of ATP. However, it is 

not yet certain whether opening of MPTP is critical in PDT-induced release of 

cytochrome c, since PDT with haematoporphyrin on isolated rat mitochondria has been 

shown to degrade critical histidines with loss of function of MP'FP [Salet etal., 1997]. 

Cytochrome c functions as an early signalling molecule in apoptosis that, along with 

other mitochondrial components (such as procaspase-3 and apoptosis-inducing factor) 

activates caspase 3 via cleavage of CPP32 at the onset of apoptosis [Green & Reed, 

19981. Depending on cell type, it is believed that cytochrome c release causes rapid 

apoptotic cell death involving Apaf-1-mediated caspase activation, or slow necrotic 

demise, due to loss of electron transport, decreased production of ATP and generation 

of oxygen free radicals. (Generation of oxygen free radicals is also increased during 

apoptosis though is likely to be a relatively late event.) In cells where cytochrome c is 

available in excess, apoptosis via caspase activation can occur whilst sufficient amounts 

of cytochrome c remain bound to cytochrome b-cj and cytochrome c oxidase to 

maintain electron transport and ATP production. Alternatively, in cells containing large 

quantities of endogenous caspase inhibitors, cytochrome c release may fail to induce 

caspase-dependent apoptosis and instead necrotic demise may ensue as a result of the 

eventual loss of electron chain transport [Green & Reed, 1998]. Varnes et al., (1999) 

found that cytochrome c release following PDT with Pc 4 caused an inhibition of 

respiration that was reversed on addition of exogenous cytochrome c, implying only a 

subtle effect of PDT on the mitochondrial membrane. The effect of cytochrome c 

release here was an increase in caspase 3 activity. Similarly, Granville et al. (1998) 

found increases in the activity of caspases 3, 6 and 7 following PDT with BPD. 
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Furthermore, this latter study showed delayed activation of caspase 8 that mediates the 

CD95/FAS apoptotic pathway [Ashkenazi & Dixit, 1998], indicating a secondary 

apoptotic mechanism for ensuring cell demise. The caspase 8 substrate, Bid, itself 

known to induce release of cytochrome c, was cleaved by BPD-induced PDT, yet was 

also preceded by cytochrome c release, confirming the secondary role of the caspase 8-

Bid pathway under these conditions [Granville et al., 19991. In a separate study by 

Zhuang et al. (1999), the photosensitizer, Rose Bengal that localises in the plasma 

membrane was found to induce apoptosis by direct activation of caspase 8, with 

subsequent release of cytochrome c and activation of caspase 3. This clearly illustrates 

the importance of photosensitizer localisation at the time of illumination in determining 

ultimately the pathway of cell death. Loss of cytochrome c is prevented by the Bcl-2 

protein, located in mitochondrial membranes, that can impair or prevent the apoptotic 

response to many stimuli [He a al., 1996]. Furthermore, PDT-resistant cells have 

mitochondria that are relatively smaller, stain more densely and display a higher cristae 

density than the parental line [Sharkey et al., 1993]. 

Mitochondrial targeting is not, however, necessarily a prerequisite for the induction of 

apoptosis. Hydrophobic photosensitizers also localise in the plasma membrane and a 

number of signalling pathways can be induced as a result of photodamage to this site 

[Moor, 2000]. The exact roles of these pathways have not yet been elucidated but it is 

believed that inhibition of calcium regulation plays a major role on cell death. The 

activities of certain second messengers are increased following PDT with Photofrin® 

[Agarwal a al., 1993]. Calcium may be responsible for induction of prostaglandin E2 

and leukotriene synthesis that would lead to the increased levels of molecules such as 

phospholipase A2, phospholipase C, cAMP, adenyl cyclase and protein kinase C (PKC), 

that have been observed with PDT. In T24 cells treated with PDT using HPD, 

phospholipases initiate a rescue response [Penning a al., 1993], whilst in L5178 cells 

using PDT with AlPc, phospholipases trigger apoptotic cell death [Agarwal a al., 

1993]. The role of PKC is unclear, although studies using various inhibitors indicate 

that PKC activation initiates a rescue response by cells undergoing PDT-induced 

apoptosis [Zwang a al., 1998; Luo & Kessel, 1996]. Photosensitizers localised in 

lysosomes may trigger cell death either by release of lysosomal enzymes into the 

cytosol or by relocalisation of the photosensitizers to secondary subcellular sites [Peng 
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et al., 19911. Apoptosis induced by photosensitizers localised in lysosomes has been 

reported, but it is a much slower and less efficient process than that induced by agents 

that target mitochondria [Noodt et al., 1999]. Ceramide is a potential mediator of 

apoptosis that is generated from its precursor, sphingomyelin, by a family of 

isoenzymes called sphingomyelinases (Smases). The acid form of Smase (aSmase) is 

found in lysosomes or is secreted into the extracellular space. Apotosis associated 

with rapid generation of ceramide was found following PDT with Pc 4 in LY-R, CHO 

and U937 cell lines, although in RIF-! cells, which also accumulate ceramide upon 

PDT, no apoptosis was observed [Separovic et al., 1997; 1998; 19991. Apoptosis 

following PDT with Pc 4 was also studied in cells deficient in aSMase. Ceramide 

generation (and thence apoptosis) was restored following treatment of the cells with 

bacterial Smase, suggesting that aSmase might be a target for induction of apoptosis 

with Pc 4 [Separov et al., 1999]. The mechanism behind this is not known since Pc 4 

preferentially targets mitochondria, although it might also be present in lysosomal 

membranes. 

Methylene blue (MB) is one of a multitude of agents investigated as alternatives to 

Photofrin®, the sole photosensitizer currently registered for clinical use, that is 

associated with several drawbacks. ME has found success in treating inoperable 

oesophageal tumours [Orth et al., 1995] and carcinoma of the bladder [Williams et al., 

1989], but its own use is limited by its rapid reduction in vivo and by an inherent (dark) 

toxicity [Section 2.1]. The derivatives of MB, 1-methyl methylene blue (MMB), 1,9-

dimethyl methylene blue (DMMB) and new methylene blue N (NMB) have 

significantly enhanced dark and photocytotoxicities in non-pigmented and pigmented 

cells in culture, compared to MB itself [Chapter2; Chapter 3]. These correspond 

generally to increases in singlet oxygen quanta, increased resistance to reduction, 

increased hydrophobicities and improved cellular uptake. It is also believed that the 

derivatives may follow different intracellular localisation patterns to MB and that this 

might be a further contributory factor to the enhanced photodynamic activity of these 

compounds. MB is recognised traditionally as a nuclear stain [Tuite & Kelly, 1993] but 

may also target lysosomes [Santus et al., 1983; Yao & Zhang, 1996] and microtubules 

[Stockart et al., 1996]. The substitution of bulky methyl groups to its structure and the 

increased hydrophobic character of the derivatives are indicative of mitochondrial 
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targeting, although this was not confirmed during this study [Chapter 4]. 

Photosensitizers that localise in mitochondria are rapid inducers of apoptosis upon 

irradiation [Kessel et al., 19971. A hydrophobic derivative of MB, MIBD, is reported to 

localise in mitochondria and to induce cell death by apoptosis [Noodt et al., 1998] and 

the methylene blue analogue, D015, also yields mitochondrial photodamage during 

apoptosis, whilst membrane and lysosomal integrity are maintained [Ball et al., 1998]. 

The aim of this part of the project was to examine the evidence for apoptosis in cultures 

of cells (EMT-6, SK-23 and SK-MIEL-28 lines) incubated with the cationic dyes, NIB, 

MMB, DMMIB and NMB, and subjected to photodynamic treatment. The methods 

chosen for this were microscopic examination of cellular morphology pre- and post-

PDT, fluorometric analysis using the fluorescent dye, JC-1, to detect changes in 

mitochondrial membrane potential, and use of the FluorAce® Apopain Assay for 

detection of caspase 3 activity, (both in cell cultures subjected to PDT). 
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5.3 METHODS & MATERIALS 

5.3.1 Cell Morphology 

Cultures of EMT-6, SK-23 and SK-MEL-28 cells growing in RPM! 1640 culture 

medium and in 35 mm petri dishes were incubated with MB, MMIB, DMMB and NMB 

at their IC50 concentrations. [In the EMT-6 cell line, MB = 18.7 xM, MIrvlIB = 2.2 j.tM, 

DMMB = 0.09 jiM and NMB = 0.39 jiM. In the SK-23 line, MB = 15.2 jiM, MMB = 

1.6 jiM, DMMB = 0.05 jiM and NMB = 0.3 jiM. In the SK-MEL-28 line, MB = 21.0 

jiM, MMB = 2.2 pM, DMMB = 0.01 jiM and NMB = 0.3 jiM]. The cells were 

visualised under a standard light microscope and photographed at 1-hour, 2-hour and 3-

hour intervals, and finally, following a further thirty minute period of illumination. 

5.3.2 Detection of Apoptosis using JC-1 

5.3.2.1 JC-1 

5,5' ,6,6' -tetrachloro- 1,1' ,3,3'-tetraethylbenzimidazolylcarbocyanine 	iodide 	(JC- 1; 

CBIC2(3)) is a green fluorescent dye (supplied as a red orange solid) that is used as a 

fluorescent probe for monitoring mitochondrial membrane potential. iC-i belongs to 

the 'slow' class of cyanine dyes that are hydrophobic, cationic compounds with a 

delocalised positive charge. As such, JC-1 will respond within minutes or seconds to 

changes in membrane potential, mostly in accordance with the Nernst equation. It has 

been known for over fifty years that some of the 'slow' dyes form aggregates in certain 

environments, accompanied by dramatic shifts in both absorption and fluorescence 

maxima, leading to violations of Beer's Law [Jelley, 1937; Scheibe, 1937]. The 

absorption spectrum of a monomer usually consists of a broad peak with a vibrational 

shoulder at the side of the shorter wavelength. This peak is referred to as the M-band 

(for monomer). The absorbance and fluorescence maxima of the monomeric dye 

species are 510 nm and 520 nm, respectively. Dye aggregation may cause a shift of the 

absorption maximum to either a shorter wavelength (called H-aggregates or H-bands, 

for hypsochromic) or to a longer wavelength (called i-aggregates after their discoverer, 

Jelley). Whilst H-aggregates do not emit fluorescence, J-aggregates are often intensely 

fluorescent, a feature that can be exploited for the measurement of membrane potentials. 

J-aggregates have absorption and fluorescence wavelengths that are similar (i.e. 585 
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nm) and this lack of a Stoke's shift is termed 'resonance fluorescence'. The factors 

most important for the formation of i-aggregates in living cells are the concentration of 

the dye, and the pH and ionic strength of the environment [Kay et al., 1964]. JC-i 

forms i-aggregates at an ionic strength and pH that are compatible with the 

intramitochondrial environment, and at a concentration that can readily be attained by 

mitochondria in response to the Nernst potentials. The propensity of cyanine dyes to 

form J-aggregates locally and instantaneously has proved a useful tool in the study of 

cell biology. iC-i is used to detect apoptosis-induced changes in mitochondrial 

transmembrane activity because it exists as a monomer at low concentrations and in 

regions of low membrane potential, and forms J-aggregates at higher concentrations or 

in regions of high membrane potential. iC-i emits either green fluorescence (under 

blue excitation) or red fluorescence (under green excitation), green fluorescence being 

indicative of the uptake of ic-i monomers and red fluorescence indicative of J-

aggregates. Orange fluorescence may be visualised in regions where both green and red 

fluorescence co-exist. The characteristics of iC-i under various conditions were 

examined according to the fluorometric method developed by chen & Smiley (1994). 

Subsequently, ic-i in its monomeric form was added to cultures of cells that had been 

exposed to the photosensitizers, MB, MME, DMMB and NMB, and the fluorescence 

spectra of these cell suspensions also recorded. 

5.3.2.2 Effect of Concentration on the Fluorescence Spectrum of JC-1 

JC-i (10 ig mr', 50 jig ml', 100 jig mr' and 200 jig ml') in 50 mM Tris HCI (pH 8.2) 

containing 1 % DMSO was placed in a 1 cm quartz cuvette, equipped with a magnetic 

stirrer. The fluorescence spectrum of the dye under these conditions was examined in a 

Perkin Elmer LS50B Luminescence Spectrophotometer set to read wavelengths from 

480nm to 640 nm (excitation wavelength: 514 nm, slit width: 5 nm). 

5.3.2.3 Effect of Ionic Strength on the Fluorescence Spectrum of iC-i 

ic-i (iO jig m1 1 ) in 40 % dimethylsulphoxide (DM50) in double distilled water at pH 

7.2 or in i % DM50 in high K buffer (3.6 mM NaCl, 137 mM Kcl, 0.5 mM MgCl2, 

1.8 mM cad2, 4 mM HEPES, i mg ml' dextrose and i % modified Eagles' medium 

amino acid solution (iOO x, GIBC0), pH 7.2) was placed in a i cm quartz cuvette, 

equipped with a magnetic stiffer. The fluorescence spectrum of the dye under these 
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conditions was examined in a Perkin Elmer LS5OB Luminescence Spectrophotometer 

set to read wavelengths from 480nm to 640 nm (excitation wavelength: 514 nm, slit 

width: 5 nm). 

5.3.2.4 Effect of pH on the Fluorescence Spectrum of iC-i 

JC-1 (10 jig ml') in 50 mM Tris-HCI containing 1 % DMSO at pH 7.2 and similarly at 

pH 8.2 (the intramitochondrial pH) was placed in a 1 cm quartz cuvette, equipped with a 

magnetic stirrer. The fluorescence spectrum of the dye under these conditions was 

examined in a Perkin Elmer LS50B Luminescence Spectrophotometer set to read 

wavelengths from 480nm to 640 nm (excitation wavelength: 514 nm, slit width: 5 nm). 

5.3.2.5 Fluorescence Microscopy with JC-1 to detect Apoptosis in Cell Cultures 

EMT6, SK-23 and SK-MEL-28 cells were grown to approximately fifty per cent 

confluence on 12 mm square glass coverslips in 35 mm petri dishes as described in 

Sections 2.2.3.1 and Section 3.2.2.1. Cultures were incubated three hours with the four 

photosensitizers (MB, M1vIIB, DMMB and NMB) at their IC50 concentrations [In the 

EMT-6 cell line, MB = 18.7 jiM, MMB = 2.2 jiM, DMMB = 0.09 jiM and NMB = 0.39 

j.tM. In the SK-23 line, MB = 15.2 jiM, MMB = 1.6 jiM, DMMB = 0.05 jiM and NMB 

= 0.3 jiM. In the SK-MEL-28 line, MB = 21.0 jiM, MMB = 2.2 jiM, DMMB = 0.01 

jiM and NMB = 0.3 jiM]. The flasks were subsequently rinsed twice and replaced with 

fresh medium, then illuminated for thirty minutes with light from a bank of fluorescent 

tubes at a dose of 7.2 J cm 2 . Subsequently, cells were rinsed twice and incubated for a 

further ten minutes with fresh RPMI 1640 containing 10 jig ml' JC-1. Cells were again 

rinsed in fresh culture medium and coverslips of cells mounted onto warmed 76 x 26 

mm glass micro cavity slides filled with fresh culture medium at 37 °C. Cells were 

viewed immediately under a Leitz diaplan microscope using optical rhodamine and 

fluorescein filters. 

5.3.2.6 Fluorometric Determination of Apoptosis in Cell Cultures using JC-i 

EMT6, SK-23 and SK-MEL-28 cells were grown to confluence in 25 cm 2  tissue culture 

flasks as described in Section 2.2.3.1 and Section 3.2.2.1. Cultures were incubated for 

three hours with the four photosensitizers (MB, MMB, DMIMB and NIMB) at their IC50 

concentrations [In the EMT-6 cell line, MB = 18.7 jiM, MMIB = 2.2 jiM, DMMB = 0.09 
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gM and NMB = 0.39 sM. In the SK-23 line, MB = 15.2 j.tM, MMB = 1.6 .tM, DMMB 

= 0.05 jsM and NMB = 0.3 xM. In the SK-MEL-28 line, MB = 21.0 gM, MMB = 2.2 

jsM, DMMB = 0.01 jtM and NMIB = 0.3 jxM]. The flasks were subsequently rinsed 

twice and replaced with fresh medium, then illuminated for thirty minutes with light 

from a bank of fluorescent tubes at a dose of 7.2 J cm 2. Subsequently cells were 

incubated for a further ten minutes with fresh RPMI 1640 containing 10 .tg ml' JC-1. 

Cells were washed three times with and incubated in (5 ml) low C buffer (137 mM 

NaCl, 3.6 mM KCI, 0.5 mM MgC12, 1.8 mM CaCl2, 4 mM HEPES, 1 mg ml' dextrose 

and 1 Sb modified Eagles' medium amino acid solution (100 x, GIBCO), pH 7.2) for ten 

minutes. Cells were then washed three times with (2 ml each) and left in (1 ml) trypsin 

(Sigma) in low C buffer for five minutes. Finally, 0.8 ml of cell suspension was mixed 

with 1.2 ml of low Kbuffer and placed into a quartz cuvette equipped with a magnetic 

stirrer. Fluorescence signals were recorded on a Perkin Elmer LS50B Luminescence 

Spectrophotometer set to read wavelengths from 480nm to 640 nm (excitation 

wavelength: 514 nm, slit width: 5 nm). 

5.3.3 The FluorAce® Apopain Assay 

5.3.3.1 Apopain/Caspase 3 

Apopain/Caspase 3 is derived from the proenzyme CPP32 at the onset of apoptosis. 

Apopain/Caspase 3 exhibits the highest similarity to Ced-3 (C. elegans cell death gene) 

[Section 5.21 in both sequence homology and substrate specificity. Apopain activity 

therefore appears to be a suitable indicator of critical apoptosis biochemistry. Activity 

is monitored in vitro using the fluorogenic peptide substrate carbobenzoxy-Asp-Glu-

Val -Asp-7-ami no-4-tri fl  uoromethyl coumarin (Z-DEVD-AFC), a variation of the 

substrate described by Nicholson et al. [1995]. This peptide-dye conjugate produces a 

blue fluorescence upon exposure to near-UV light. Apopain enzymatically cleaves the 

AFC from the peptide and releases free AFC, which then produces a blue-green 

fluorescence. The AFC substrate is both chromogenic (i.e. yellow-green colour is 

visible to the naked eye) and fluorogenic (detectable at 500 to 550 nm with a 

fluorometer). The reaction is selectively inhibited by the peptide chloromethyl ketone, 

Ac-DEVD-CMK, a potent inhibitor of apopain. 
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5.3.3.2 The FluorAce® Apopain Assay Kit 

The Apopain Assay Kit from Bio-Rad contains reagents for one hundred one ml 

reactions and was used to detect apoptosis in cell cultures subjected to PDT, with some 

minor adjustments to the recommended schedule. After preparation, stock solutions 

were apopain substrate (Z-DEVD-AFC) (4.9 mM in DMSO), apopain inhibitor (Ac-

DEVD-CMK) (4.4 mM in DM50), apopain (120 j.xl in distilled water), 7-amino-4-

trifluoromethyl coumarin (AFC) (200 IIM in DM50), 25x Reaction buffer (250 mM 

PIPES, pH 7.4, 50 mM EDTA, 2.5 % CHAPS, 125 mM DY!'). All reagents were stored 

as instructed and used within six months of stock preparation. 

5.3.3.3 Cell Cultures 

EMT-6, SK-23 and SK-MEL-28 cells were grown in 75 cm 2  tissue culture flasks as 

detailed in Section 2.2.3.1 and Section 3.2.2.1 in order to obtain approximately 10 7  

cells. 

5.3.3.4 Preparation of Cell Extracts 

Floating cells were removed from prepared cultures into 15 ml disposable centrifuge 

tubes, pelletted and the supernatant removed. The attached cells were rinsed twice with 

10 ml PBS (10 mM sodium phosphate, pH 7.2-7.4, 150mM NaCI) and this added to the 

pellet of floating cells in the centrifuge tubes. The cells were re-pelletted and the 

supernatant removed. The attached cells were lysed by adding 500 jsl Apopain Lysis 

Buffer (10mM HEPES, pH 7.4, 2 mM EDTA, 0.1 % CHAPS, 5 mM DYF, 1 mM 

PMSF, 10 .tg ml' pepstatin A, 10 jxg ml' aprotinin, 20 ig m1 1  leupeptin) and 

dislodged by shaking the flasks. Buffer and cell debris were then also transferred to the 

centrifuge tube. The sample was subjected to four or five rapid freeze-thaw cycles by 

transferring successively from dry ice at —80 °C to a 37°C water bath. 

5.3.3.5 Apopain Assay 

Cuvettes were prepared with 40 jsl 25x Reaction Buffer, 10 ptl Z-DEVD-AFC 

(substrate), 100 j.xl of sample (dye-treated cell extract) and made up to 1 ml with 

distilled water. To ensure positive detection of apoptosis, the following controls were 

also run: 
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[a] blank (40 p1 25 x Reaction Buffer, 10 p1 Z-DEVD-AFC, 950 p1 distilled water) 

[b] sample of non-treated cell lysate 

[c] positive control (40 p1 25 x Reaction Buffer. 10 p1 Z-DEVD-AFC, 10 Al apopain and 940 Al 

distilled water) 

[d] negative control (inhibition of apopain activity) (see below) 

Cuvettes containing the blank, positive control, photosensitizer-treated samples and 

non-treated control sample were mixed and the time and fluorescence signal recorded. 

The cuvettes were sealed with Parafilm and incubated at 30 °C. Fluorescence signals 

were recorded at one-hour intervals for three hours on a Perkin Elmer LS50B 

Luminescence Spectrophotometer set to read wavelengths from 510 nm to 550 nm 

(excitation wavelength: 360 nm, slit width: 5 nm). 

5.3.3.6 Inhibition of Apopain Activity (Negative Control) 

To test for interference from non-specific protease activity, samples with and without 

the apopain specific inhibitor, Ac-DEVD-CMK were compared. Cuvettes were 

prepared and, in all cases made up to 990 jil with distilled water, for the blank (40 jil 25 

x Reaction Buffer), sample (40 jil 25 x Reaction Buffer, 100 jil sample) and negative 

control (40 j.tl 25 x Reaction Buffer, 10 uI Ac-DEVD-CMK, 100 j.tl same sample). Any 

activity measured for the negative control would be from enzymes other than apopain. 

The cuvettes were mixed, sealed with Parafllm and incubated at 20 °C for thirty minutes. 

10 jil of substrate (Z-DEVD-AFC) were added to each cuvette, mixed and the 

fluorescence measured and recorded immediately (t=0). The cuvettes were resealed and 

incubated again at 30 °C. Fluorescence readings were taken at thirty-minute intervals for 

two hours. 
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5.4 RESULTS 

5.4.1 Cell Morphology 

There was evidence of cell rounding and shrinkage (characteristic of cells undergoing 

apoptosis) in cultures of the three cell lines, EMT-6, SK-23 and SK-MEL-28, subjected 

to photodynamic treatment with MB, P4MB, DMMB and NMB, compared to controls, 

when visualised under a standard light microscope [Figure 42]. This morphology was 

only evident following illumination of the cells and was not seen immediately following 

the three-hour incubation period with the photosensitizers. Apoptosis was not 

conclusive, however, since cell lysis in cultures was also observed. 

5.4.2 Detection of Apoptosis using JC-1 

5.4.2.1 ic-i 

The characteristics of JC-1 under various conditions were examined using fluorescence 

spectrophotometry. The emission maxima for the JC-1 monomer and the J-aggregate as 

defined by Chen & Smiley (1994) [Section 5.2.1.1] were shifted slightly using this 

particular machine and appeared at 516 nm and 599 nm, respectively. The importance 

of dye concentration and the pH and the ionic strength of the environment on 

aggregate formation were clearly demonstrated using this method [Figure 43]. 

5.4.2.2 Effect of Concentration on the Fluorescence Spectrum of iC-i 

JC-i existed as the monomeric form at a concentration of 10 jig ml'. There was a 

successive increase in J-aggregate formation at concentrations between 50 jig ml' and 

200 jig ml'. J-aggregate formation was strongly favoured at concentrations above 100 

jig ml' [Figure 43]. 

5.4.2.3 Effect of Ionic Strength on the Fluorescence Spectrum of iC-i 

JC-1 remained in the monomeric form in a low ionic environment but formed J-

aggregates in high potassium buffer that has an ionic strength comparable to that of the 

intracellular environment [Figure 43]. 
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Figure 42. Light microscope images of SK-23 cells incubated with DMMB (0.05 jthl) and subjected to 
POT. Images are cells with [a] no photosensitizer, [b] light alone [c] DMMB plus 2-hour incubation, [d] 
DMMB plus 3-hour incubation and [e] DMMB plus 3-hour incubation and 30 minutes illumination. 
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FIgure 43. Effect of [a] pH, [bJ concentration and [c] ionic strength on the fluorescence spectrum of JC- 1. 
For [a] red line is IC-i in 50 mM Tris-HCI containing 1 % DMSO at pH 7.2. Black tine is IC-i in 50 
mM Tris-HCI containing 1 96 DMSO at pH 7.2. As shown, I-aggregate formation is strongly favoured by 
the intramitochondrial pH of 8.2. For [b], for IC-i in 50mM Tris HCI (pH 8.2) containing 1 % DMSO, 
green line is IC-i at 10 jig nir', blue line at 50 jig mr', red line at 100 jig mY' and black line, IC-i at 200 
jig mY'. As shown, I-aggregate formation is highly concentration dependent. For [c], red line is IC-i (10 
jig rn!4 ) in 40 96 DMSO in double distilled water at pH 7.2. Black tine is IC-i (10 jig m11 ) in 1 96 
DMSO in high potassium buffer. I-aggregate formation is favoured by a buffer with ionic strength 
comparable to that of the intracellular environment. 
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5.4.2.4 Effect of pH on the Fluorescence Spectrum of iC-i 

At a pH of 7.2, JC-1 existed mainly as the monomeric species although there was 

evidence of i-aggregate formation. However, J-aggregate formation was strongly 

favoured by a pH of 8.2 that is compatible with the intramitochondrial environment 

[Figure 43]. 

5.4.2.5 Fluorescence Microscopy with iC-i to detect Apoptosis in Cell Cultures 

Cultures of cells from the three cell lines, EMT-6, SK-23 and SK-MEL-28, previously 

exposed to the photosensitizers, MB, MMB, DMMB and NMB, and subsequently 

incubated with 10 sg mr' iC-i were examined using fluorescence microscopy. Using 

this method, regions of both green (the monomeric species) and orange (predominance 

of J-aggregates) fluorescence were detected in all cultures examined including control 

samples. It was impossible using this method to quantify the ratio of the different 

patterns of fluorescence or to establish whether there were any real differences between 

treated samples and controls. Examples of typical images captured both in both treated 

cells and in controls are found in Figure 44, which shows patterns of fluorescence in 

SK-23 cells exposed to NMB. 

5.4.2.6 Fluorometric Determination of Apoptosis in Cell Cultures using JC-1 

In EMT-6 cells, there were no differences in J-aggregate formation between treated 

cells and controls up to two hours of incubation with the photosensitizers [Figure 45a & 

45b]. After three hours, i-aggregate formation was increased in all treated cell samples 

compared to controls [Figure 45c]. Following a further period of illumination of thirty 

minutes, whilst there appeared to be no further increases in J-aggregate formation in 

MB- and MMIB-treated cells, i-aggregate formation in DMMB- and NMB-treated cells 

was significantly enhanced [Figure 45d]. In SK-23 cells, there were no differences in J-

aggregate formation between MB- and MIvIB-treated cells and controls up to two hours 

of incubation with the photosensitizers, yet i-aggregate formation in DMIMB- and 

NMIB-treated cells appeared to be slightly enhanced [Figure 46a & 46b]. After three 

hours, J-aggregation was increased in all treated cell samples except for MB, compared 

to controls [Figure 46c]. Following a further period of illumination of thirty minutes, J-

aggregate formation was enhanced in all treated cell samples, and particularly in 

DMMB- and NMB-treated cells, compared to controls [Figure 46d]. In SK-MEL-28 
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Figure 45. i-aggregate formation in EMT-6 cells following various exposures to phenothiazinium 
photosensitizers, [a] 1-hour incubation, [b] 2-hour incubation. [c] 3-hour incubation, [d] 3-hour 
incubation plus 30 minutes illumination. The results are the mean of two experiments ± SD and are 
expressed as the ratio of J-aggregates to the monomeric species of JC-1. J-aggregate formation occurs in 
response to increases in intramitochondrial membrane potential brought about by events involved in 
apoptotic pathways. 
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Figure 46. i-aggregate formation in SK-23 cells following various exposures to phenothiazinium 
photosensitizers, [a] 1-hour incubation, [b] 2-hour incubation, [c] 3-hour incubation, [d] 3-hour 
incubation plus 30 minutes illumination. The results are the mean of two experiments ± SD and are 
expressed as the ratio of i-aggregates to the monomeric species of JC- 1. i-aggregate formation occurs in 
response to increases in intramitochondrial membrane potential brought about by events involved in 
apoptotic pathways. 
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Figure 47. J-aggregate formation in SK-MEL-28 cells following various exposures to phenothiazinium 
photosensitizers. [a] 1-hour incubation, [b] 2-hour incubation, [c] 3-hour incubation, [d] 3-hour 
incubation plus 30 minutes illumination. The results are the mean of two experiments ± SD and are 
expressed as the ratio of S-aggregates to the monomeric species of JC- 1. J-aggregate formation occurs in 
response to increases in intramitochondrial membrane potential brought about by events involved in 
apoptotic pathways. 
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Figure 48. J-aggregate fomiation in [a] EMT-6 cells, [b] SK-23 cells and [c] SK-MEL-28 cells after I-
hour incubation with phenothiazinium photosensitizers following 30 minutes illumination. The results 
are the mean of two experiments ± SD and are expressed as the ratio of J-aggregates to the monomeric 
species of JC-1. J-aggregate formation occurs in response to increases in intramitochondrial membrane 
potential brought about by events involved in apoptotic pathways. 
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cells, there were no differences in J-aggregate formation between MB-, MMB-, or 

DMMB-treated cells and controls up to two hours of incubation with the 

photosensitizers, yet i-aggregate formation in NMB-treated cells appeared to be slightly 

enhanced [Figure 47a & 47b]. After three hours, J-aggregate formation was increased 

only in DMIIvIB- and NMB-treated cell samples, compared to controls [Figure 47c]. 

Following a further period of illumination of thirty minutes, i-aggregate formation was 

enhanced in all treated cell samples, moreso in MMB- and DMIMB-than MB-treated 

cells, but particularly in NMB-treated cells, compared to controls [Figure 47d]. To test 

whether illumination per se is a determinant in the rate/degree of the apoptotic response, 

cultures of cells subjected to photodynamic treatment after only one hour of incubation 

with the photosensitizers, were incubated with JC-1 as previously described [Section 

5.2.2.6] and examined for J-aggregate formation. In this instance, the rate (and, in some 

cases, the degree) of J-aggregate formation was significantly enhanced in all treated cell 

samples in the three cell lines, compared to controls [Figure 48a, 48b, 48c]. 

5.4.3 Detection of Apoptosis using the FluorAce® Apopain Assay Kit 

5.4.3.1 Apopain Assay 

Apopain/Caspase 3 activity was detected in all treated cell samples after three hours of 

incubation with the photosensitizers followed by thirty minutes illumination, but not in 

controls. The pattern of apopain activity was MBcMMBcDMIvIBcNMIB in all three 

cell lines. In EMT-6 and SK-23 cells, activity was greatest between one and two hours 

following preparation [Figures 49a & 49b], whilst in SK-MEL-28 cells activity was 

greatest between two and three hours following preparation [Figure 49c]. Enzyme 

activity increased steadily in the positive control but not in a linear fashion. 

5.4.3.2 Inhibition of Apopain Activity (Negative Control) 

ApopainlCaspase 3 activity was not detected in any of the treated cell samples that had 

been incubated in the presence of the apopain specific inhibitor, Ac-DEVD-CMK 
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Figure 49. Detection of apoptosis in cultures of [a] EMT-6 cells, [b] SK-23 cells and [c] SK-MEL-28 
cells preincubated with phenothiazinium photosensitizers for three hours followed by thirty minutes 
illumination. Apopainicaspase 3 activity was monitored using the fluorogenic peptide-dye conjugate, Z-
DEVD-AFC, as substrate. Apopain/caspase 3 enzymaticatly cleaves AFC to produce blue-green 
fluorescence that can be monitored fluorometrically at 550 nm. Results are for two experiments, with ® = 
control; fl = MB; x = MMB; x = DMMB; . = NMB; . = positive control. 
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5.5 DISCUSSION 

Evidence for an apoptotic mechanism of cell death was found in cultures of EMT-6, 

SK-23 and SK-MEL-28 cells that had been exposed to photodynamic treatment with, 

either MB, MIIvIB, DMMB or NMB. This evidence came from morphological 

examination of cell cultures, by use of the cyanine dye, JC-1, to detect changes in 

mitochondrial membrane potential, and by monitoring apopain/caspase 3 activity using 

the FluorAce® Apopain Assay Kit from Biorad. 

From examination of cellular morphology using the light microscope, there was no 

evidence for apoptosis prior to illumination, for any of the photosensitizers in any of the 

cell lines. However, following a thirty-minute period of illumination, cell rounding was 

strikingly evident in many cells. Since morphological changes in the cell (seen 

microscopically as cell rounding and nuclear condensation) can be a consequence of 

apoptosis, this suggests that, in the absence of illumination, apoptosis is still incomplete 

following three hours of incubation with the photosensitizers. This was true for all four 

photosensitizers and in all three cell lines. These results are not conclusive since 

observations are subjective and evidence of necrosis (visualised as cell lysis) was also 

present. 

Using iC-i, evidence for apoptosis was detected post-illumination in all cases, but also 

prior to illumination in some cases and in certain cell lines. iC-I is used to detect 

changes in mitochondrial membrane potentials, forming J-aggregates in regions of high 

membrane potentials, this being indicative of apoptotic activity [Chen & Smiley, 1994]. 

High membrane potentials are associated with high intracellular levels of ATP and 

hence apoptosis, since apoptosis is a mechanism that requires energy [Richter et al., 

1996]. Intracellular levels of ATP are believed to be a major determinant of the cell 

death mechanism, acting as a switch in the decision between apoptosis and necrosis 

[Leist et al., 19971. High mitochondrial membrane potentials are clearly, therefore, a 

very early marker for apoptotic events. Here, increases in mitochondrial membrane 

potential were seen to occur as soon as one hour following incubation with NIMB in the 

SK-23 and SK-MEL-28 cell lines. However, increases in mitochondrial membrane 

potential were most apparent following a three-hour period of incubation and were 

particularly pronounced in the three cell lines for DMMB and NMB. In the case of MB 
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and MJvIB in EMT-6 cells, illumination made no difference to the formation of J-

aggregate following the three-hour incubation period, whilst those for DMMB and 

NMIB were greatly enhanced. In SK-23 cells, the ratios were slightly increased for MB 

and MMB but again significantly enhanced for DMMB and NMB. In SK-MEL-28 

cells, only the ratio for NMB was significantly enhanced. When cell cultures were 

illuminated following only a one-hour period of incubation with the photosensitizers, 

increases in mitochondrial membrane potential were detected for all the photosensitizers 

in the three cell lines. 

JC-1 was also used to stain cultures of cells that had been exposed to various periods of 

incubation with the photosensitizers without illumination, and to a three-hour incubation 

period plus thirty minutes illumination, for the purpose of microscopic visualisation. In 

all cases, regions of both green and orange fluorescence were seen to co-exist, and it 

was impossible to assess the ratios of the different fluorescence signals. JC-1 at 10 ltg 

ml has been used to stain a variety of cell types and cell lines in culture and these 

findings are typical of those described by other researchers. In the presence of JC-1, 

mitochondria with low membrane potentials (c 100 my) exhibit green fluorescence, 

whilst mitochondria with high membrane potential (140 to 160 mV) exhibit mostly 

orange fluorescence [Chen & Smiley, 1994]. Different cell lines have mitochondria 

with widely differing membrane potentials. Human bladder epithelial cells, for 

instance, tend to have mitochondria with low membrane potentials, whilst mitochondria 

with high membrane potentials have been found in a human bladder cell carcinoma cell 

line [Reers et al., 1995]. Very high mitochondrial membrane potentials (> 190 mV), 

indicated by red fluorescence, have been detected in cardiac muscle cells incubated with 

JC-1 [Reers et al., 1995], which is not surprising, given the very high metabolic 

requirements of these cells. Most other cell types and cell lines fall between these two 

extremes and have two populations of mitochondria. In addition, many cells in culture 

exhibit both intercellular and intracellular heterogeneity. Not only are there differences 

in fluorescence between individual cells and between the mitochondria of the same cell, 

but even within a single mitochondrion, there may be regions of either only green or 

only orange fluorescence. This implies that different mitochondria in the same cell and 

different regions of the same mitochondrion have different membrane potentials. 
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The FluorAce® Apopain Assay Kit was used subsequent to JC-1 analysis to identify 

apoptosis mainly in cell cultures that had been subjected to a complete photodynamic 

treatment since, using the JC-1 protocol, it appeared that illumination was important in 

enhancing the apoptotic response. Apopain/caspase 3 activity is initiated via cleavage 

of CPP32 at the onset of apoptosis [Green & Reed, 1998] and, as such, is another early 

marker for apoptotic events. Using this method, cultures of EMT-6, SK-23 and SK-

MEL-28 cells that had been incubated for three hours with the four photosensitizers, 

MB, MMB, DMMB or NMIB, followed by thirty minutes illumination, all produced 

evidence of apoptosis. Here, too, the apoptotic response was greatest in DMMB- and 

NMB-treated cells and followed the pattern MB<MMIBcDMMBcNMB in all cases. 

However, these results were difficult to reproduce, and attempts to detect apoptosis in 

non-illuminated cells failed. Moreover, the Apopain® Assay Kit was by far the more 

laborious method and, on reflection, it was probably not suitable for the large amount of 

samples that could have been tested. 

In conclusion, these results strongly implicate the role of an apoptotic mechanism in the 

photocytotoxicity of MB and its derivatives, MMB, DMMIB and NMB in the EMT-6, 

SK-23 and SK-MEL-28 cell lines. There is also evidence to suggest that apoptosis is 

induced even in the absence of illumination in some cases, indicating a subsidiary role 

for the mechanism under these conditions. However, it is also apparent that 

illumination of the photosensitizers, pre-incubated with the various cell lines, enhances 

both the rate and perhaps also the degree of the apoptotic response in these cell lines. 

Apoptosis is more likely to be the predominant mechanism of cell death in DMMB- and 

NMB-mediated photocytoxicity than it is MB- and MMB-mediated photocytotoxicity, 

and may depend on several factors. 

The iniation and rate of progression of apoptosis in PDT is highly dependent upon the 

localisation of the photosensitizer at the time of its activation by light. Photosensitizers 

that localise in mitochondria are more efficient inducers of apoptosis that 

photosensitizers that target other subcellular sites [Kessel et al., 19971. Hydrophobic, 

cationic molecules preferentially target mitochondria [Oseroff, 19861 and it is possible 

that DMMB and NtvIB, in particular, are likely to follow this type of intracellular 

distribution pattern. MB is known to target the nucleus [Tuite & Kelly, 1993], 

149 



microtubules [Stockart et al., 1996] and lysosomes [Santus et al., 1983]. 

Photosensitizers that localise in lysosomes may trigger cell death either by release of 

lysosomal enzymes into the cytosol or by relocalisation of the photosensitizers to 

secondary subcellular sites [Peng etal., 19911. In fact, relocalisation to the nucleus was 

observed for all four photosensitizers in all three cell lines using confocal microscopy 

[Chapter 41. Furthermore, apoptosis induced by photosensitizers localised in lysosomes 

is a much slower and less efficient process that that induced by mitochondrial agents 

and may explain the small detection of apoptosis in MB-treated cells. The induction of 

apoptosis in PDT is also dependent upon the photosensitizer dose [Luo & Kessel, 1997], 

and it must be remembered that DMMIB and NMB exert their lethal photodynamic 

effects at much lower concentrations than do MB and M1vIIB [Chapter2]. Although both 

necrosis and apoptosis can occur simultaneously in cells exposed to the same stimulus 

[Shimizu et al., 1996], the predominant mechanism is usually decided by the intensity 

of the insult, such that lesser doses of the same agent that produces necrosis can lead to 

apoptosis [Bonfoco etal., 1995]. 
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CLOSING DISCUSSION 

151 



CLOSING DISCUSSION 

The initial aim of this project was to assess the effect of chemical substitution on the 

photosensitizing capabilities of the well-known cationic phenothiazinium dye, 

methylene blue (MB). The effect of simple alkylation of the phenothiazinium 

chromophore using MB and two other known biological stains, 1,9-dimethyl methylene 

blue (DMIIvIB) and new methylene blue N (NMB), together with a newly synthesised 

intermediate compound, 1-methyl methylene blue (MMB), was investigated in three 

cell lines. For the work described, the synthesis of MIMB was straightforward. The 

purity of the four photosensitizers was ensured first using thin layer chromatography, 

then the purity of MMB further examined by high performance liquid chromatography. 

The use of a single substance in PDT is clearly advantageous in order to reduce the risk 

of systemic side effects, and because this facilitates mono-substitution of the molecule 

to identify those parts of the molecule that may be involved in toxicity. Purification 

may be difficult if the molecule has two or more peripheral substituents and/or chiral 

centres. 

It was found that MB is inherently toxic to murine mammary (EMT-6), murine 

melanoma (SK-23) and human melanoma (SK-MEL-28) cells in culture. In addition, 

the levels of toxicity of MB in the three cell lines following three hours of incubation 

were significantly enhanced by a period of illumination for a further thirty minutes. 

This was not surprising since MB has already been used experimentally as a 

photosensitizer including, in humans, for the treatment of carcinoma of the bladder 

[Williams ci cii., 19891 and inoperable oesophageal tumours [Orth ci al., 19951. It was 

also found that both the photocytotoxicity and the inherent (dark) toxicity of MB are 

increased by methylation of the molecule. The patterns of toxicity encountered 

corresponded to the degree of methylation and mirrored increased singlet oxygen yields, 

increased hydrophobic character and the increased resistance to reduction of the three 

derivatives. 

The apparent dismissal of MB in mainstream PDT is likely due not only to its inherent 

(dark) toxicity, but also because its photosensitizing capacity is curtailed by its rapid 

reduction in viva to the neutral leucobase. Leuco-MB is colourless and therefore 

incapable of being further activated by light, although reoxidation is possible. 
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Nevertheless, there are many possibilities for overcoming problems associated with the 

various second-generation photosensitizers so far evaluated, since predetermined 

characteristics may be introduced into a photosensitizer molecule by chemical synthesis 

and substitution. Unfortunately, the inherent (dark) toxicity of MB was similarly 

enhanceded by methyl substitution. Nevertheless, it is possible to assess the potential 

clinical usefulness of the photosensitizers by examination of the light: dark differential. 

In fact, the light:dark differential was improved for all the derivatives of MB in all three 

cell lines. In this respect, NMB consistently performed the best, achieving maximum 

photocytotoxicity at concentrations that caused very little toxicity in the dark. The 

problem of dark toxicity could in fact be overcome if, in the case of skin lesions, the 

photosensitizers were incorporated into a topical application. This would have the 

added advantage in that it would reduce the long drug to light interval that is currently 

required with Photofrin® and allow treatment to be carried out on an outpatient basis. 

Several groups of researchers are working to develop new, more efficacious 

photosensitizers for PDT. The photosensitizing capacity of a compound is of course 

important but the success of the regime also requires an optimal interplay among a 

number of several different parameters. For efficient PDT, a photosensitizer should 

possess a large molar extinction coefficient in the red part of the visible spectrum where 

transmission of light through mammalian tissues is most effective. Photofrin®, the sole 

agent currently registered for clinical use, is highly disadvantaged in this respect 

because its maximum absorption peak lies in the blue region of the spectrum at around 

400 nm (the Soret band). For PDT, Photofrin® must therefore be illuminated at its 

weakest absorption band of 630 nm, where its light absorption properties are very poor. 

However, it is possible to overcome this problem by careful manipulation and fine-

tuning of the chemical structure of the molecule. It is found, for example, that the 

inclusion of an extended chromophore or the insertion of additional double bonds, 

enhances molar absorptivity and shifts light absorption bands of second generation 

photosensitizers to wavelengths in the red [Jon, 19921. Light penetration into 

mammalian tissue increases with wavelength and typically doubles between 630 nm and 

750 nm allowing larger tumours to be treated [Wilson et al., 1985]. However, there is 

likely to be a 'photochemical limitation' to the long wavelength for new 

photosensitizers of around 800 nm because of the need to generate significant amounts 
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of singlet oxygen ( 1 02) [Truscott, 1980]. One potential problem with intensely 

absorbing drugs is that the effective depth of light penetration through tissue may 

decrease owing to light attenuation by the photosensitizer itself. [Wilson, 1989]. In the 

case of Photofrin®, its low extinction co-efficient at 630 nm does not really cause any 

important clinical dilemma since it is accompanied by low toxicity. In the case of MB 

and its derivatives, the absorption properties of the photosensitizers are not an issue 

since all four compounds absorb light maximally within the therapeutic window (600 to 

800 nm) for PDT. These are 664 nm for MB, 656 nm for MMB, 648 nm for DMMB 

and 630m for NMB. 

The photosensitizing capacity of a photosensitizer is partly based on its power to 

generate singlet oxygen ( 1 02) that, in turn, is highly dependent on its triplet lifetime (tT) 

in vivo. 'rT is defined as the average time a molecule spends in its first excited triplet 

state and determines the time available for transfer of the triplet state excitation energy 

to molecular oxygen or for redox reactions with other cellular substrates. The slower 

the decay of this triplet state, the more time available for the photosensitizer to interact 

with its environment. It has been shown that the longer 'tT ('rT ~: 500 ns) and the greater 

the triplet state quantum yield, the more enhanced is the photocytotoxic effect of a given 

photosensitizer [Takemura et al., 19891. These findings are consistent with the fact that 

the diverse porphyrins existing in the human body (Fe-, Cu- and Mn-chelating 

compounds), which have very short lifetimes, have never been observed to cause 

sunlight-induced photosensitivity in healthy individuals. Compounds that have a triplet 

state energy lower than the excitation energy of 102  (7900 cni ' ) are generally unable to 

generate 102  because they are unable to transfer their excitational energy to molecular 

oxygen. In order to promote 102  quantum efficiency and therefore a type II mechanism, 

the energy of the first excited triplet state of a photosensitizer should be in the range 

7900 to 18000 cm'. Nevertheless, compounds having a triplet state energy below 7900 

cm', but possessing a high triplet quantum yield and high absorbance in the red, may 

alternatively be effective type I photosensitizers, if they also possess long-lived excited 

singlet and/or triplet states with a strong tendency to induce electron transfer. 

Subsequently, it has been found that porphyrin-type molecules containing a diamagnetic 

central metal ion within the macrocycle have a prolonged 'tT and are the most efficient 

photosensitizers for clinical PDT. Analogous compounds containing a paramagnetic 
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metal ion have a significantly shortened 'tT and are better suited for diagnosis where 

photodamage to tissues must be avoided [Rosenthal & Ben-Hur, 19891. 102  quantum 

efficiency has often been achieved by introduction of the internal heavy atom effect, i.e. 

replacement of an atom in a lead structure with one of higher atomic number. Initially, 

an iodinated analogue of MB was included in the series of photosensitizers that were 

tested for toxicity against the EMT-6 cell line in order to examine here the 'heavy atom' 

effect on MB [Section 2.2]. 4-iodo-MB was synthesised and purified by the UCLan 

Chemistry Department. The results obtained in EMT-6 cells were comparable to those 

for MMB. Unfortunately, purification of subsequent batches proved unsuccessful, so 

further investigations were abandoned. Future studies would prove useful for an 

apparently promising photosensitizer. 1 02 quanta (and hence photosensitizing capacity) 

for the three derivatives used in this study were measured relative to that of MB and 

were found to be elevated in all cases, compared to the parent compound. The three 

derivatives were also more resistant to reduction than is MB, so are likely to be present 

in the cell as the cation, and thus to exert their photodynamic effects, for longer. 

For PDT, it is also advantageous to use a photosensitizer with a high molar extinction 

co-efficient so that a lower drug dose can be used, thus avoiding internal shielding 

effects and reducing systemic toxicity. A lower drug dose is also useful in preventing 

the formation of aggregates at higher concentrations that would significantly inhibit the 

photosensitizing activity. In the case of porphyrins, the insertion of electrically charged 

functional groups protruding from the pyrrole rings, or bulky axial ligands 

perpendicular to the plane of the molecule, generates electrostatic repulsion and steric 

hindrance, thereby reducing the tendency of the drug to aggregate in aqueous milieux 

[Jon, 1992]. In the present work, it was believed that the doubly-methylated 

derivatives, DMMB and NMB, form aggregates at concentrations above 5 jiM. In 

cellular uptake, this manifests as deviations from Beer's Law, and in fluorescent 

imaging, as regions of dense blue staining that are generally accompanied by a lack of 

fluorescence [data not shown]. Nevertheless, for the purposes of PDT, this should not 

be a problem since these two photosensitizers exert cell photokilling at very low 

concentrations (i.e c 1 pM). 
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An essential requirement of an ideal photosensitizer, and one that is lacking in all 

conventional cancer treatments, is efficient and preferential killing of malignant cells. 

For PDT, pure photosensitizers with high specificity for target tissues, have low 

systemic toxicity and may be administered in higher doses without fear of unwanted 

side effects. The potential selectivity of the photosensitizer for malignant tissue can be 

assessed from the ratio of its concentration in the tumour and the tissue from which the 

tumour originates or into which the tumour grows. As with most pharmacological 

approaches, drug specificity can also be achieved by taking advantage of intrinsic 

features of malignant cells that are different from those of their normal counterparts. 

Examples of these that are under investigation for PDT are the incorporation of the 

photosensitizer into serum LDL and the covalent binding of photosensitizers to 

monoclonal antibodies. Malignant tumour cells have cell surface antigens that are 

different from those of normal cells and that can be targeted by monoclonal antibodies 

[Woehrle etal., 1998]. For the present work, it is already established that MB has some 

specificity for tumour tissue. The dye has been used extensively in the demarcation of 

human bladder tumours due to its affinity for the microscopic crystals of stone salts and 

crystalline masses that are commonly found adherent to their surfaces [Fukui et al., 

1983; Gill et al., 1984]. Indeed, it was this specificity that led to its first use as a 

photosensitizer for the treatment of carcinoma of the bladder [Williams a al., 19891. It 

is not known whether the derivatives of MB would have similar specificity for tumour 

tissue in vivo. 

It is important that new systemic drugs should have minimal accumulation in the skin in 

order to avoid the acute cutaneous photosensitivity that is an unacceptable feature of the 

current regime. An ideal anti-cancer drug should, therefore, apart from efficiently and 

selectively targeting tumour tissue, be cleared rapidly from normal tissues and/or 

metabolised to an inactive form following treatment. One of the limitations of MB is its 

rapid reduction in vivo to the inactive form, leuco-MB, and although the derivatives 

demonstrate a greater resistance to reduction, it is unlikely that they would persist 

systemically for as long as does Photofrin®. A photosensitizer that has a high affinity 

for serum proteins involved in transport to the liver is more likely to be cleared rapidly 

from serum and healthy tissues. In general, favourable pharmacokinetic behaviour may 
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be bestowed upon a photosensitizer by increasing its degree of hydrophobicity or by 

imparting amphiphilic properties to the molecule [Kessel, 1982]. An amphiphilic 

photosensitizer is sufficiently water-soluble to allow its systemic injection in vivo, 

whilst retaining its ability to cross the lipid barrier of cellular and/or intracellular 

membranes and localise at intracellular sites [Kessel, 1982]. One effect of methylation 

of the phenothiazinium chromophore was an increase in the hydrophobicity of the 

system. This was not unexpected, since the non-polar character of the methyl group is 

well established, with a guideline figure for Log P supplement of +0.65 for the addition 

of one —CH2- unit [Hansch & Leo, 1979]. An increase in hydrophobicity was expected 

to improve on the cellular uptake of MB and affect the intracellular targeting of its 

derivatives. This was manifest with all three methylated derivatives of MB. 

PDT is a treatment regime that has dual selectivity since it is dependent upon a 

combination of both photosensitizer and light for cytotoxicity. The use of a 

photosensitizer that is non-toxic in the absence of light gives PDT an added advantage 

over other anti-cancer regimes, since then no effect is seen in the presence of either 

photosensitizer or light alone. Unfortunately, MB suffers from an inherent toxicity and 

this problem was not overcome by methyl substitution of the phenothiazinium 

chromophore. Methylation increased both the photocytotoxicity and the dark toxicity of 

MB, and the patterns of toxicity for the four photosensitizers were the same in all three 

cell lines. Nevertheless, the advent of elaborate endoscopic laser systems has made it 

possible to restrict illumination only to the target area. However, since PDT always 

involves taking a margin of surrounding normal tissue, it is important that there is a 

large concentration difference of the photosensitizer between tumour and peritumoural 

tissue and that there is rapid healing of photodamaged healthy tissue. As already 

mentioned, this is possible with MB because the ability of the photosensitizer to act as a 

tumour marker is already established. The potential of the derivatives also to stain 

tumour tissue selectively could form the basis for future studies. As far as illumination 

is concerned, it has been found that irradiation of tissues with wavelengths longer than 

600 nm causes no adverse effect, provided the fluence rate is kept below about 150 mW 

cm 2  to avoid heating of tissue and consequent thermal damage [Jon, 19961. 

The practical use of any drug requires that its mutagenic and carcinogenic properties be 

taken into consideration. PDT with Photofrin® is not believed to be carcinogenic 
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[Gomer et cii., 19881 presumably because, except in a very few exceptional cases [Moan 

et cii., 1980; Evenson et cii., 1982], porphyrin-mediated singlet oxygen damage never 

penetrates beyond the nuclear membrane [Moan a al., 1986]. However, MB is known 

to intercalate with DNA, even prior to illumination [Tuite & Kelly, 1993], and 

mutagenic effects with MB have been found in living systems when cell destruction is 

incomplete [Bellin & Grossman, 1965]. Since most evidence from this project suggests 

that the derivatives of MB localise only within the cytosol (with mitochondrial targeting 

possible, particularly for DMMB and NMB) and show no evidence at all of nuclear 

targeting prior to illumination, then the risk of damage to the DNA of normal cells from 

these photosensitizers ought to be negligible. However, confocal microscopy showed 

that, upon illumination, all four photosensitizers underwent relocalisation to the nucleus. 

Nevertheless, the risk of mutagenic effects in normal tissue from this should be minimal 

since, because PDT is a selective regime, a combination of photosensitizer and light is 

required for toxicity, with no appreciable effect produced from either photosensitizer or 

light alone. 

Ultimately, the aim of this study was to assess the potential of MB and the derivatives, 

MMB, DMMB and NMB to be used in the photodynamic therapy of both non-

pigmented and pigmented lesions. Certainly for cells in culture there was no difference 

in the patterns of toxicity exhibited by the photosensitizers between non-pigmented and 

pigmented cells. In this case, the presence of melanin did not inhibit the photodynamic 

effect. In terms of a clinical application of the current work, PDT employing 

phenothiazinium photosensitizers is not suggested procedurally for the removal of 

primary melanoma, since this is routinely performed by excision. However, due to the 

demonstrated efficacy of MB in tracing microsatellites and its use in sentinel lymph 

node tracing, it may be of use in the photodynamic treatment of local metastatic lymph 

infiltration immediately post-surgery, as an alternative to lymphadenectomy. At 

present, MB is used routinely in various tracing or demarcation procedures, either 

visible or scintillographic, without reported toxicity. The derivatives used in the present 

in vitro study were all more effective in terms of the photodynamic effect and it is thus 

possible that future clinical developments in this direction may be feasible. 
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Appendix 1. Calibration curves for the four photosensitizers, MB, MMB, DMMB and NMB in methanol. 
Each photosensitizer was read at its maximum absorption value in methanol over a range of 

concentrations and each point is the mean of 4 experiments ± SD. 
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Appendix 2. A typical trace from a chart recorder measuring oxygen utilisation in isolated rat 
mitochondria that had been incubated with each of the photosensitizers, MB, MMB, DMMB and NMB. 
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Appendix 3. BSA standard curve. 
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Abstract 

The cytotoxic and photodynamic activities of the commercially-available biological stains methylene blue (MB). 1,9-dimethyl MB 
(Taylor's Blue) and a newly synthesised compound. I-methyl MB, were measured against the murine malnntasy tumour cell line. EMT-6. 
Both 1-methyl MB and 1.9-dimethyl MB exhibited increased dark toxicity with concomitant higher phototoxicity compared LOMB at a light 

dose of 7.2 3 cm 2,  While increasing the light dose as a function of the fluence rate increased the photocytotoxicity 01MB, this had little 

effect on the methylated derivatives. In vitro chemical testing proved that successive methylation rendered the phenothiazinium chromophore 

both more resistant to reduction to its inactive leuco form, and also led to increased levels of singlet-oxygen production, thus providing a 
possible explanation for the increased toxicities of the methylated derivatives. Comparisons are made with the benzolalphenothiazinium 

photosensitizer. ENBS. C) 1997 Elsevier Science S.A. 

Keywords: Methylene blue; Phenothiazinium photosensitizers: Phototoxicily; Dark toxicity 

1. Introduction 

Since the modern development of photodynamic therapy 
has its foundations in porphyrin-derived drugs, there has been 

comparatively little interest shown in other compounds such 

as commercial dyes F I]. Many cationic dyes were tested in 

vivo against animal tumours in the 1940s and exhibited cyto-

toxic effects (2,3]. Dyes such as methylene blue (MB) have 

also received widespread use in vital staining [4]. This, cou-

pled with its use as a commercial ly-available photosensitizer 

in chemical reactions, led to the testing of MB against various 

cell lines as a possible candidate for the photodynamic ther-

apy of cancer (5.6]. The photochemistry of the phenothia-

zinium nucleus has been investigated extensively by several 

groups, particularly in the area of nucleic acid—MB interac-

tions (7). On illumination, intercalated MB is known to cause 

the formation of oxidised guanine residues, notably 8-

hydroxyguanosine, via the intermediacy of singlet oxygen. 

Abbreviations: MB, methylene blue: LMB. leuco methylene blue; MMB. 
I-methy] methylene blue: DMMB. 1,9-dimethyl methylcne blue: DPtBF. 
I ,3-diphenylisobcnzofbran: DM50. ditnethyl sutfoxide; EtNBS, 5-ethyl-
arnino.9.diethylaminobenzo[alphenothiaZinium chloride; M'fl'3-(4,5-di-
mcthyIthiazoI.2_yll.2idiphenyl_2FI_tetraZOlium bromide; PBS. phosphate 
buffered saline 
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Recent research has also suggested the involvement of MB-

induced microtubular photodamage in cell death [8]. In a 

related area, MB is employed in the eradication of viruses 

such as HIV from donated blood (9). 

In terms of its photodynamic action in clinical malignancy. 

MB is utilised locally, mainly against accessible tumours 

such as superficial bladder cancer [10]. Recently, the use of 

MB has also been reported against inoperable oesophageal 

turnours [II]. 
Once in the biological milieu, the metabolism of MB usu-

ally occurs via the reduction of the cation to the neutral Ieu-

cobase (LMB) by standard redox systems [12]. The 

difference in pA', of the two forms is sufficient to cause a 

considerable decrease in DNA binding affinity. Thus MB is 

cationic at physiological p1-1. whereas LMB has a pK of 5.8, 

resulting in only 33% protonation. In addition, LMB in either 

its neutral or its protonated form absorbs only in the ultra-

violet region, thus exhibiting negligible photodynamic activ-

ity in the therapeutic window (600-900 nm). 

Regarding its physicochemical properties, methylene blue 

is hydrophilic and this determines many aspects of its phar-

macology and its intracellular localisation. Because of the 

presence of dimethylamino groups at positions 3 and 7 

(Table I). MB is normally present as a cation under physi-

ological conditions, unlike other commercially available 
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Table I 
Physicochemical data for the photosensitizcrs 

MC2WtSLNM 

R' It9  A,.. Log P. 
b Log!' 

(nm) 

MB H H 656 498 0.443 —0.1' 

MMB Me H 656 478 0.491 +0.7 
DMMB Me Mc 650 4.91 0.536 + 1.0 

EtNBS - - 652 4.84 0.025 + 2.76 

EI2N)OcX24HE, 
+ 

EtNBS 
'Measured in methanol 
hsIng Iet  oxygen quantum yield based on the value for MB given in 

Ref. (191. 
t kcf. [17] gives LogP—O. 	- 

phenothiazinium dyes such as toluidine blue 0 and new meth-
ylene blue N. These dyes contain primary and secondary 
amino functionality respectively which can lead to the for-
mation of neutral quinoneimines by deprotonation, thus 
allowing a greater variety of pharmacologically-active spe-
cies. It is thus unwise to compare these dyes directly, in terms 
of biological activity, with tate derivatives of rnethylene blue 
since, because of the presence of the two tertiary amino 
groups, these are unable to form quinoneimines. 

Novel derivatives of methylene blue are scarce, arising 
mainly from changes in the identity of the amino substituents 
at positions 3 and 7 of the phenothiazine ring [13-15], 
although a pentacyclic analogue derived from a substituted 
tetrahydroquinoline has been prepared and investigated in 
rats [16]. Commercial MB derivatives are available which 
have substituents in alternative positions in the ring, e.g. 
methylene green (4-nitro MB) or Taylor's Blue (1,9-
dimethyl MB) which has been used as a metachromatic stain. 
There is no available literature on the effect of such substi-
tution on the tumour-localising or photosensitizing abilities 
of the resulting compounds to enable quantitative structure-
activity relationships to be derived, although such studies 
have been carried out on a series of benzo[a)phenothia-
zinium analogues [17]. 

lathe present study, the known biological stains methylene 
blue and 1,9-dimethyl methylene blue (Taylor's Blue) have 
been examined, together with a newly-synthesised compound 
linking these two, 1-methyl methylene blue, in orderto inves-
tigate the effect on tumour cell toxicity of simple alkylation 
of the phenothiazinium chromophore. In this way, it was  

intended that the weak electron-releasing effect of the methyl 
group(s) would inhibit the cellular reduction of the chro-
mophore, thus allowing a stronger photosensitizing effect to 
be exerted. 

2. MaterIals and methods 

2.1. Reagents 

• I ,3-Diphenylisobenzofuran (DPIBF). methanol (spectro-
photometric grade) and 1-octanol were purchased from 
Aldrich (Ciillingham. UK) and used without further purifi-
cation. Trypsin, MTT (3- [4,5-dimethylthiazol-2-yl 1-2,5-
diphenyl-211-tetrazolium bromide) and DMSO (dimethyl 
sulfoxide) were obtained from Sigma (Poole, UK).All spec-
trophotometric measurements were carried out on a Hewlett 
Packard 8452A diode array spectrophotometer. The dyes 
were found to obey Beer's law in the concentration range 
lo to 10' M. In addition, the absorption spectra showed 
no change in the pH range I—S. 

2.2. Photosensitizers 

Methylene blue and 1.9-dimethyl methylene blue were 
purchased from Aldrich and were rectystallised from meth-
anol prior t6use. 1-Methyl methylene blue was synthesised 
from NrN-dimethylaniline and 3-( dimethylamino) toluene 
(both Aldrich) using the oxidative method as described by 
Fierz-David [18]. The purity of the photosensitizers was 
ensured by thin layer chromatography (silica gel, eluent 
methanol/chloroform/acetic acid, 85:10:5). The purity of I - 
methyl methylene blue was further examined by high per-
formance liquid chromatography: a 3.3 cm Perkin—Elmer 
RPC-18 short column was employed with 10% (v/v) 
methanol/water as the mobile phase. This gave a single peak 
with the same retention time (0.30 mm) when monitored at 
either 656 nm or 290 nm. Proton magnetic resonance spec-
troscopy (Bruker WM250) gave the following peaks in 020: 
81  (ppm) 1.8 (3H, s, CH 3—Ar), 2.7 (12H, s ECH 3 ] 2N), 
6.2-6.9 (511, m. Ar—H). 

2.3. Sin gler oxygen production 

The three photosensitizers were assayed for efficiency of 
singlet oxygen production using the decolourisation of 1.3-
diphenylisobenzofuran (DPIBF) in methanol. Thus the 
decrease in absorption at 410 nm was monitored spectropho-
tometrically with time as in the method of Cincotta et al. 
[19]. The singlet oxygen yield for MB ('DAMn)  is given as 
0.443 [19]. By assuming that the decrease in absorption of 
DPIBF at 410 nm is directly proportional to its reaction with 
singlet oxygen, the time for a 50% decrease in absorption 
caused by each of the photosensitizers under identical con-
ditions (t I2MBD) thus gives a measure of its photosensitizing 
efficiency. Thus, the time for the DPIBF absorption to 

C. 
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decrease by 50% due to MB photosensitization (t, /2MB) was 
taken as 1.0. To calculate the singlet oxygen yield for the 

methylatedmethylene blue derivatives (4 5 MflD),the follow-
ing formula was used: 

	

'AMBD 	
SMB li/2M8 

'L/2MBD 

2.4. Log)' 

The lipophilicities of the photosensitizers were calculated 

in terms of tog)', the logarithm of their partition coefficients 

between phosphate-buffered saline and 1-octanol. The data 

were calculated using the standard spectrophotometric 

method [201 based on the relationship: 

logp_1og{ 	

vwi 

	

- 	A' Tf 
where A and A' are the absorption intensities before and after 

partitioning respectively, and V. and V. are the respective 

volumes of the aqueous and 1-octanol phases. Determinations 

were repeated five Limes. 

2.5. Cell culture 

The murine mammary tumour cell line (EMT-6) was orig-

inally obtained from Zeneca Pharmaceuticals (Macclesfield, 

Cheshire). Cultures were routinely maintained at 37 °C, 5% 

CO2 :95% air in RPMI 1640 culture medium (Gibco, Life 

Technologies, Paisley, UK), supplemented with 10% (vlv) 

foetal calf serum (MB. Meldrum Ltd., Bourne End, Bucks, 
UK), 200mM glutamine (Sigma) and streptomycin ( 10 000 

p.g mr ')/penicillin (10 000 units mr') (Sigma). 

2.6 Phototoxicity: dark toxicity experiments 

Light from a radial bank of fluorescent tubes (Phillips! 

Thorn, 8 W), with maximum emission in the 600-700 nm 

region which provided a fluence rate of 4 mW cm 2  was 

used to illuminate the cells which had been exposed to the 

various photosensitizers. The light dose was measured with 

a Skye SKP 200 light meter (Skye Instruments Ltd). The 

temperature of the system was monitored constantly during 

irradiation but no heating effect was observed. 

96 well microtitre plates were seeded with 1000 cells per 

well (in 200 pA RPMI 1640) and incubated at 37 °C, 5% 

CO2 :95% air for 2 days. Varying concentrations of each dye 

(0-160 1sM) were added and the cells incubated, as previ-

ously, for 3 h. The medium containing the drug was then 

aspirated and the cells rinsed with 200 pA RPM! 1640, before 

replacing with a further 200 p.l RPM! 1640. Each plate was 

illuminated for 30 min or kept dark. Following this treatment, 

the cells were grown on again at 37 °C, 5% CO2:95% air for 

a further 3 days. To evaluate cell viability and thus calculate 

percentage toxicity, the Ml'!' assay was adapted from Car- 

michael et at. [21]. 25 p.1 MiT (5 mg mr') was added to 

each well and this was incubated at 37 °C, 5% CO,:95% air, 

for 5 h. The medium and MiT were aspirated, taking care 

not to disturb the formazan crystals, leaving approximately 

30 p.1 in each well. 200 pA DMSO were then added to each 

well to solubilise the crystals. The plates were shaken for 10 

min and the absorbance read on a plate reader (Anthos 

HTI II, measuring filter, 540 nm; reference filter, 620 nm). 

2.7. Light dose study 

EMT-6 cells were seeded into 35 mm petri dishes (1000 

cells per ml in 2 ml of cell suspension), then grown for two 

days in RPMI 1640 medium whilst being maintained at 37 °C, 

5% CO 2 :95% air. After two days, the medium was removed 

and replaced by 2 ml of either 12 pM MB, 2.5 jaM MMB or 

0.2 p.M DMMB in RPMI 1640 (i.e. the doses giving 5% dark 

toxicity),with each experimentbeing carried out in triplicate. 

The cells were incubated in the presence of drug for a Further 

3 h. The medium and drug were then removed, thecells rinsed 

with 2 ml of RPM! 1640 and finally 2 ml of medium replaced. 

The cells were illuminated with a fluence rate of either 9.8 

mW cm'. 4.7mW cm 2 , 3.3 mW cm 2  or 2.0 mW cm 2  
for 30 mm (i.e. light dose= 17.6, 8.5, 5.9 or 3.6 1 cm 2  
respectively), then grown as above for a further 3 days. The 

cells in each petri dish were then counted microscopically 

using the improved Neubauer haemocytometer. 

3. Resu!ts and discussion 

Relevant data concerning the physicochemical properties 

of MB, MMB and DMMB are given in Table 1. One effect 

of successive methylation on the methylene blue parent mol-

ecule was to increase the lipophilicity. This was expected, 

since the non-polar character of the methyl group is well 

established. Indeed Hansch and Leo give a guideline figure 

for log? supplement of + 0.65 for the addition of a -Cf-I 2-

unit [221. DMMB exhibited a small hypsochromic shift in 

long wavelength absorption compared to that of MB and 

MMB, and both of the methylated derivatives had slightly 

decreased intensities. However, the three photosensitizers 

absorb strongly in the 'therapeutic window' for PDT. In addi-

tion the methylated derivatives showed increased singlet oxy-

gen yields in the in vitro oxidation of DP!BF (Table 2). 

Table 2 
Relative rates of photosensitized oxidation of DPIBF by MB. MMB and 

DMMB in methanol at 279 K. measured as the decrease in absorption at 

410 nm to half of its original value 

Relativet 1 , 2  for&, 

MB 

MMB 	 0.90 

DMMB 	 0.83 

-1 
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Fig. I. Photocytotoxicity (0) and dark toxicity (•) of MB against the 
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Fig. 2. Photocytotoxicity (0) and dark toxicity (•) of MMD against the 

EMT.6 cell line. Each point is the mean of at least nine experiments. Error 

bars represent SEMs. 

3.1. Dark toxicity/phozotoxicity 

The methylated derivatives were more toxic against EMT-
6 cells under dark conditions than MB (Figs. 1-3). At 7.2 J 
cm 2  the associated phototoxic effects were also far greater, 
unsurprisingly in view of the increased 04  values obtained 
for the methylated derivatives (Table I). In terms of clinical 
application, the greater the ratio of light:dark toxicity, the 
more beneficial the photosensitizer. The IC 50  for methylene 
blue at this light dose was 18.7 p.M (Table 3), with a cone-
sponding dark toxicity of 7.9%. Thus the toxicity ratio 
(light:dark) here was 50:7.9 = 6.3. The corresponding values 
for MMB and DMMB are 11.9 and 17.2 respectively 
(Table 3). In the authors' opinion. IC,, gives a more useful 
clinical indication. For example, the lC value for DMMB 

100 
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Fig. 3, Photocytotoxicity (0) and dark toxicity (N) of DMMB against the 

EMT-6 cell line. Each point is the mean of at least eight experiments. Error 

bars represent SEMs. lnsertshows enlargement of responses at low levels. 

Table 3 

Toxicity data and ligbt:dark ratios for methylene blue and its methylated 

analogues at a light dose of 7.23 cm" 2  

Dose 

(pM) 

% Light 

toxicity 

% Dark 

toxicity 

Light:dark 

toxicity 

MD 18.7 50 7.9 6.3 

MMB 2.20 50 4.2 11.9 

DMMB 0.09 50 2.9 17.2 

MD 37.7 90 27.9 12 

MMB 4.80 90 14.2 6.3 

DM148 0.27 90 21.3 4.2 
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Fig. 4. Photocytotoxicity of the methylene blue derivatives against the EM1'-6 cell line as a lunction of the light dose. Photosensitiact concentration in each 
cast was that giving 5% dark cytotoxicity. Each bar is a mean of ~: 9 experiments. 

on illumination at 7.2 J cm '2  is 0.27 pM, and at this concen-
tration the dark toxicity corresponded to a cell kill of 21.3%, 
giving a ratio of 4.2. The corresponding ratios for MMB and 
MB were 6.3 and 3.2 respectively. 

The IC values for the MB derivatives (Table 3) are sim-
ilarto those exhibited by the benzo [ ajphenothiazinium com-
pounds investigated by Cincotta et al. [23]. For example, 
against EMT-6 cells, the promising photosensitizer EtNBS 
(Table I) gave an IC 50  of 0.1 jaM. This is comparable with 
the value of 0.09 sM obtained in the present work for 
DMMB. Moreover, DMMB gave >90% photocytotoxicity 
at a concentration of 0.2 aM and a light dose of 3.6 cm' 2  
(Fig. 4) which is comparable to the 3.3 J cm 2  employed 
with EtNBS. Although the dark toxicity for EtNBS is report-
edly much lower for a 0.5 paM dose (6% compared to 41% 
for DMMB ),no IC,,n  figure was reported for the phototoxicity 
[231. 

The light dose study alluded to above was carried out at 
photosensitizer concentrations giving 5% dark toxicity 
(Fig. 4). At this concentration, MB did not reach 100% pho-
totoxicity even at the highest light dose used (17.61 cm' 2 ). 
This was, however, considerably less than that used by Canete 
et al. who reported 100% cell death in HeLa cells at 90 J 
cm 2 with 10 p.M MB [24]. The methylated derivatives were 
already close to 100% photocytotoxicity at the original light 
dose used and concentrations giving 5% dark toxicity, so the 
increased light dose made little improvement on the photo' 
toxicity in these cases. However, it was noticeable that the 
phototoxicity of 1-methyl methylene blue decreased sLightly  

at Iightdoses <7.2J cm' 2  (Fig. 4). In termsof the light:dark 
toxicity differential, this was greatest (78:5= 15.6) for MB 
at the highest light dose used (17.6 J cm 2 ). The ratio for 
the monomethylated derivative approached 20 at the maxi-
mum light dose, whilst that for DMMB was = 20 across the 
light dose range. A maximum ratioof 20 (light:dark toxicity) 
may therefore be possible for MB at further increased light 
doses. 

The higher dark toxicities and phototoxicities of the meth-
ylated derivatives may be explained by several factors. 

As mentioned earlier, it is apparent from the literature that 
phenothiazinium photosensitizers and their benzologues are 
prone to cellular reduction. Indeed this may be advantageous 
in the clinic as the rate of reduction of EtNBS in mice is 
reportedly higher in healthy tissue than in tumours, thus 
increasing the apparent tumour selectivity and decreasing the 
probability of skin photosensitization [25]. The in vitro 
reduction of MB, MMB and DMMB has been examined in 
aqueous media using a gold microdisc electrode using the 
method of Svetlicec et al. [26] (data not shown). The rates 
of reduction of the three photosensitizers followed the order: 
MB>MMB>DMMB. 

Thus, from a cellular point of view, it can be argued that 
both MMB and DMMB will be present in their oxidised 
(cationic) forms for a longer period of time than MB, and 
therefore that there will be higher concentrations of the pho-
toactive form of the methylated derivatives present. The 
increased stability to reduction, at least in the in vitro electro-
chemical system used, may be explained by the weak elec- 

f 



238 	 M. Wainwrighx ci at /Journal of Phoroclzernisrry and Phowbiology B: Biology 40(1997) 233-239 

tron-releasing effect of the methyl groups. This would make 

the chromophore more electron rich and thus less amenable 

to reduction. in cell culture this could contribute to the 

increased levels both of dark toxicity and phototoxicity 

exhibited by the methylated derivatives. 

Methylation of the phenothiazinium chromophore resulted 

in considerable increases in the lipophilicity of the system.. 

Both MMB and DMMB have positive log P values, whereas 

that for MB is negative. It has been shown previously in 

(Ibroblasts that vital stains bearing a unipositive charge and 

having 0< log p <5 tend to localise in the mitochondria 

[27]. Methylene blue is thought to localise mainly in the cell 

nucleus [7,28-30]. This could indicate that a different cel-

lular localisation pattern for the methylated derivatives is 

responsible for their greater observed cytotoxicities. 

Increased levels of photosensitizers in the cell due to lower 

reduction rates could also explain the higher dark toxicities 

associated with the methylated derivatives, 

The standard DPIBF oxidation test showed that methyla-

tion of MB increases the efficiency of singlet oxygen pro-

duction (Tables I and 2). Taken with the increasedresistance 

to reduction and the possibility of more critical intracellular 

localisation, this may explain the greater phototoxicity of the 

methylated derivatives against EMT-6 cells relative to that 

of MB. Additionally, the phototoxicity of MB was increased 

by increasing the fluence rate of the light source. It is also 

interesting to note the much greater singlet oxygen efficien-

cies (approximately 20-fold) of the methylene blue deriva-

tives used in the present study compared to that of the 

benzo [a] phenothiazinium derivative, EtNBS (Table I). 

It is not profitable to include ionisation data for MB and 

its methylated analogues as each is fully ionised in the pH 

range 1-8.' Such behaviour separates the current range of 

compounds from other phenothiazinium photosensitizers, 

such as toluidine blue 0, and the benzo[ a ]phenothiaziniurns. 

such as EtNBS (Table 1). Here each structure contains a 

conjugated primary or secondary amino group, which allows 

deprotonation to the neutral quinoneimine species. The pres-

ence of the neutral species as partof an equilibrium may have 

important ramifications in terms of in vitro uptake and in viva 

pharmacology. In this respect, the presence of the tertiary 

dimethylamino groups in positions 3 and 7 of the phenothi-

nine ring system makes the MB system somewhat simpler. 

4. Conclusions 

We have shown that, at a light dose of 7.2 J cm 2, the 

methylation of the established photosensitizer, niethylene 

blue, in position I and/or position 9 of the phenothiazinium 

chromophore leads to increased photocytotoxicity in the 

murine mammary tumour cell line, EMT-6 compared to that 

of MB itself. The ratios for light:dark toxicity were also 

higher at lower light doses for the methylated derivatives and 

their levels of phototoxicity are comparable to that of the 

benzo[ a j phenothiazinium photosensitizer, EtNBS. 

Although chromophore methylation gave no change in the 

degree of ionisation (plC) of the system, it did lead to 

increased lipophilicity, suggesting both potentially different 

intracellular localisation and different uptakes for the deriv-

atives. Both the resistance to reduction of the chromophores 

and the singlet oxygen efficiencies were higher in the meth-

ylated derivatives. On cellular uptake, the lower reduction 

rates are expected to give higher viable concentrations of the 

methylated photosensitizers, and taken with the higher singlet 

oxygen efficiencies, this provides a feasible explanation for 

the much improved phototoxicities encountered, relative to 

methylene blue. The lower reduction rates, together with 

potential variation in intracellular localisation and uptake 

may also explain the increased dark toxicities of the meth-

ylated derivatives. 
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Summary 

The cytotoxicity and photocytotoxicity of methylene blue and several of its 
derivatives against two pigmented melanoma cell lines (SK-23 murine 
melanoma and 5K-Mel 28 human melanoma) were investigated in culture. The 
derivatives were all more effective photosensitizers than methylene blue in both 
cell lines over a range of light dóses (3.6-17.6 J cnr2). The increased activity 
correlated with increased cellular uptake and inherent photosensitizing efficacy. 
The photosensitizers also showed varying levels of interaction with the biopoly-
mer melanin and although this appeared to affect uptake and activity, there 
was no direct correlation with toxicity. 

Key words: Methylene blue derivatives, photosensitizers, photosensitization, 
melanin, melanoma. 	 - 

Abbreviations: MB - methylene blue; LMB- leuco methylene blue; MMB - 1-
methyl methylene blue; DMMB - 1,9-dimethyl methylene blue; NMB - new 
methylene blue; DPIBF - 1 ,3-diphenylisobenzofuran; DM50 - dimethyl sulfox-
ide; lCn - photosensitizer concentration giving n% cell inhibition; -MTT - 344,5-
dimethylthiazol-2-yli-2,5-diphenyl-2l-1-tetrazolium bromide; PBS - phosphate 
buffered saline. 

INTRODUCTION 

Among the various types of skin cancer, 
malignant melanoma poses the greatest risk in 
terms of mortality. The usual treatment for 
malignant melanoma is surgical excision-but 
adjuvant chemotherapy may be employed, par- 

ticularly dacarbazine (DTIC) 2  or limb perfusion 
involving the nitrogen mustards (e.g. melpha-
lan) 3 . Radiotherapy is also an option. 
Depending on the progress of the tumour at 
diagnosis, lymphadenecton-iy may be indicated 
although a more conservative approach to dis-
section may be possible via the use of sentinel 

2 
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node demarcation ". With the traditional thera-
pies there remains the problem of side effects, 
either due to disfigurement in surgery or to sys-
temic toxicity, immunosuppression etc. after 
chemotherapy or radiotherapy. Both in terms 
of morbidity and in patient compliance the 
minimisation of such side effects is obviously 
highly desirable. However, even with the 
increased sophistication of modern cancer 
treatments, the degree of further improvement 
of these therapies is limited, mainly due to a 
fundamental lack of selectivity for tumour tis-
sue. The ongoing search for new drugs and 
novel therapeutic approaches to cancer treat-
ment which offer greater selectivity thus 
remains important. 

The technique of photodynamic therapy 
(PDT) is gaining increasing acceptance in can-
cer treatment, particularly in the area of skin 
cancer, since here light delivery is not problem-
atic as it might be in the case of internal 
tumours. The use of either systemic or topical 
administration of a photosensitizer (or photo-
sensitizer precursor) coupled with superficial 
light delivery has been shown to be successful 
in many cases of basal cell and squamous cell 
carcinoma. 5  The situation is complicated in the 
case of metastasising tumours such as malig-
nant melanoma since it may be difficult to trace 
the secondary foci. Another perceived problem 
with melanoma is the presence of the pigment 
melanin in the tumour cells. Melanin is pro-
duced in cells which require protection from 
light (especially ultraviolet) and since melanin 
absorbs light quite strongly even at long visible 
wavelengths, 6  this might decrease the amount 
of light available to the photosensitizer. In addi-
tion, melanin has antioxidant properties 
which might interfere with the cell killing 
processes involving oxygen radicals which are 
commonly associated with PDT Such protec-
tive effects have been reported against hydro-
gen peroxide and hydroxyl radicals during Rose 
Bengal photosensitization (i.e. Type I photosen-
sitization), 8  whilst the perylenequinone hyper-
icin exhibited significantly higher phototoxicity 
against amelanotic melanoma cell lines than 
against a melanin producing melanoma cell line 
. In order to circumvent any likely effects of 

melanin, the use of long-wavelength absorbing 
photosensitizers - i.e. outside the absorption 
spectrum of melanin - is a logical initial step. 
Thus benzoporphyrin derivative (BPD-MA) is  

reported to be effective in vivo against pig-
mented melanoma in mice, the efficacy being 
increased by pre-illumination with 1064 nm 
(near infrared) light in order selectively to break 
down melanosomes 10  The use of long-wave-
length absorbing photosensitizers alone may be 
insufficient to cause cell death - for example, 
far-red absorbing (776 nm) silicon naphthalo-
cyanine derivatives were also less effective 
against melanotic than amelanotic melanoma 
cell lines 11 

The use of methylene blue and its eon-
geners in clinical PDT remains sporadic, mainly 
because photodynamic therapy has developed 
from porphyrin-derived drugs 12  Logically, the 
widespread application of methylene blue and 
the related phenothiazinium dye toluidine blue 
o in surgical demarcation - e.g. the tracing of 
sentinel lymph nodes ' in addition to their 
widespread use in the clinical staining of carci-
nomata 13  underlines the low toxicity of the 
compounds. The efficient photosensitizing 
behaviour of the phenothiazinium dyes is also 
well established 14  However, in terms of its use 
in clinical malignancy, methylene blue is utilised 
locally, mainly against accessible tumours such 
as superficial bladder cancer 15  and has been 
used against inoperable oesophageal tumours 
16 Along with many drugs containing fused 
heteroaromatic chromophores, methylene blue 
is well known to bind to melanin, 17,18  and in 
recent work, Link et al. reported the use of 
radiolabelled methylene blue as a tracer for 
metastatic melanoma in humans 19 

The authors recently reported the increased 
efficacy of methylene blue derivatives having 
increased chromophore methylation 20  Thus 
the two analogues, having methyl groups at 
positions 1- and/or 9- of the phenothiazmnium 
chromophore, both exhibited increased photo-
sensitizing activities due to increased efficacies 
of singlet oxygen production, and lower rates 
of intracellular chromophoric reduction relative 
to the parent compound. In subsequent work 
on the photobactericidal activities of phenoth-
iazinium species, the related photosensitizer 
new methylene blue N (NMB) exhibited similar 
improvements over the parent compound 
against methicillin-resistant Staphylococcus 
aureus 21  NMB also contains a dimethylated 
phenothiazinium ring system, although the aux-
ochromic amine functionality at positions 3-
and 7- is slightly different from that of methyl- 
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ene blue (Table 1). In each case however, the 
inclusion of extra methyl groups in the chro-
mophore also led to increased lipophilicity, a 
property which is often an important factor in 
drug uptake characteristics. 

Studies on the photodynamic action of 
methylene blue in tumour cells in culture have 
reported various sites of action for the photo-
sensitizer - for example the formation of oxi-
dised guanine residues, notably 8-hydrox-
yguanosine, via the intermediacy of singlet oxy 
gen, supports a DNA-based nuclear mechanism 
14, 22-24 Recent research has also suggested the 
involvement of MB-induced microtubular photo-
damage in cell death 25•  However it may be 
that the site of action is variable, depending 
both on cell type and on the interval between 
photosensitizer administration and illumination. 

Altering the struèture of the methylene blue 
via analogue synthesis should lead to alternative 
localisation patterns, providing the resulting 
physicochemical make-up of the analogue is 
sufficiently different. For example, increased 
lipophilicity in monocationic dyes has been 
shown to alter localisation from mainly nuclear 
to mitochondrial 26 

The present study is an investigation into 
the activity of the phenothiazinium derivatives 
alluded to above against a murine melanoma 
cell line (SK-23) and a human melanoma cell 
line (SK-Mel 28). 

MATERIALS AND METHODS 

Methylene blue, 1,9-dimethyl methylene 
blue and new methylene blue were purchased 
from Aldrich (Gillingham, UK) and recrystallised 
from methanol before use. 1-Methyl methylene 
blue was synthesised from N, N-dimethyl-m-tolu-
idine and N,N-dimethylaniline (both Aldrich) as 
described previously 20  1,3-Diphenyliso-
benzofuran (DPIBF), methanol (spectrophoto-
metric grade) and 1-octanol were purchased 
from Aldrich (Gillingham, UK) and used without 
further purification. Trypsin, MTT (3 - [4,5-
dimethylthiazol-2-yll-2, 5-diphenyl-2H-tetrazoli-
urn bromide) and DMSO (dimethyl sulfoxide) 
were obtained from Sigma (Poole, UK). All 
spectrophotometric measurements were carried 
out on a Hewlett Packard 8452A diode array 
spectrophotometer. The dyes were found to  

obey Beer's law in the concentration range 10 
-10 M. 

The efficiency of production of singlet oxy-
gen of the phenothiaziniums relative to the 
standard, methylene blue, was measured using 
the decolourisation of 1, 3-diphenylisobenzofu-
ran (DPIBF) in methanol. Details of this proce-
cture are given in the earlier paper 20 

The lipophilicities of the photosensitizers 
were calculated in terms of log P, the logarithm 
of their partition coefficients between phos-
phate-buffered saline and 1-octanol. The data 
were calculated using the standard spectropho-
tometric method ,27  again detailed in the previ-
ous work 20 

Cell culture 

The melanoma cell lines (murine SK-23 and 
human 5K-Mel 28) were originally obtained 
from the Cancer Research Campaign. Cultures 
were routinely maintained at 37°C, 5% CO 2  
95% air in RPMI 1640 culture medium (Gibco, 
Life Technologies, Paisley, UK), supplemented 
with 10% (v/v) foetal calf serum (Labtech 
International, Rigmer, East Sussex, UK), 200 
mM glutamine (Sigma) and streptomycin 
(10,000 pg ml't) / penicillin (10,000 units m1 1 ) 
(Sigma). 

Phototoxicity: dark toxicity experiments 

Light from a radial bank of fluorescent tubes 
(Phillips/Thorn, S W), with maximum emission 
in the 600-700 nm region which provided a 
fluence rate of 4.0 mW cm -2 , was used to illu-
minate the cells which had been exposed to the 
various photosensitizers. The light dose was 
measured with a Skye SKP 200 light meter 
(Skye Instruments Ltd). The temperature of the 
system was monitored constantly during irradia-
tion but no heating effect was observed. 

96-well microtitre plates were seeded with 
1000 cells per well (in 200 pl RPMI 1640) and 
incubated at 37°C, 5% CO 2 : 95% air for 3 
days. Varying concentrations of each photosen-
sitizer (0-160 pM) were added and the cells 
incubated, as previously, for 3 hours. The 
medium containing the drug was then aspirated 
and the cells rinsed twice with 200 p1 RPMI 
1640, before replacing with a further 200 p1 
RPMI 1640. Each plate was illuminated for 30 
minutes or kept dark. Following this treatment, 

Ic 
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the cells were grown again at 37°C, 5% CO 2  
95% air for a further 4 clays. To evaluate cell 
viability and thus calculate percentage toxicity, 
the MU assay was adapted from Carmichael 
et a! Z8. 25 0 MU (5 mg mI-1) were added to 
each well and this was inéubated at 37°C, 5% 
CO2  95% air, for 5 hours. The medium and 
MU were aspirated, taking care not to disturb 
the formazan crystals, leaving approximately 
30 p1 in each well. 100 p1 DM50 were then 
added to each well to solubilise the crystals. 
The plates were shaken for 10 minutes and the 
absorbance read on a plate reader (Anthos 
Mliii, measuring filter 540 nm; reference fil-
ter 620 nm). 

Light dose study 

SK-23 or 5K-Mel 28 cells were incubated in 
the normal way with the relevant photosensitiz-
er at a dose giving 15% dark toxicity in the ini-
tial toxicity test. The cells were illuminated with 
a fluence rate of either 9.8 mW cm -2 , 4.7 mW 
cm -2 , 3.3 mW cm -2  or 2.0 mW cm -2  for 30 
minutes (i.e. light dose = 17.6, 8.5, 5.9 or 3.6 
J cm respectively), then grown on as above 
for a further 4 days. Toxicity was assayed as 
above using the MU assay. 

Cellular uptake 

Cultures of SK-23 and SKMEL-28 cells in 
20 ml RPM! 1640 medium were grown to con-
fluence over 5 days in 75 cm 2  culture flasks. 
The medium was then removed and replaced 
by doubling dilutions of each photosensitizer 
(0312 - 5 pM) in 20 ml RPMI 1640 medium 
or by 20 ml RPM! 1640 medium for the con-
trols. The cultures were then incubated in the 
presence of the photosensitizers for 3 hours. 

Medium and photosensitizers were then dis-
carded and The cell monolayers rinsed twice 
with PBS. The cells were trypsinised and count-
ed, then the cell suspensions were centrifuged 
for 10 minutes at 150 g and the supernatants 
discarded. Each pellet was thus rinsed and 
resuspended twice in 2 ml PBS. 1 ml methanol 
was added to each final pellet, mixed and left 
for 10 minutes before centrifugation at 2000 g 
for 30 minutes. The absorbances of the photo-
sensitizers in methanol solution were read spec-
trophotometrically at 664 nm (MB), 650 nm 
(MMB), 648 nm (DMMB) and 630 nm (NMB). 

Melanin binding 

The photosensitizers were assayed for 
melanin binding following the method of Potts 
17 Briefly, the light absorption of 5 jiM solu-
tions of the photosensitizers in buffer were 
measured at the relevant X value. The solu-
tions were then stirred vigorously with 10 jig of 
melanin (Sigma, Poole UK) for 15 minutes, 
centrifuged at 600g and the absorption of the 
supernatants re-read on the spectrophotometer. 
The percentage binding to melanin was thus 
calculated by difference. Measurements were 
carried out four times. 

RESULTS AND DISCUSSION 

The photosensitizers used in the present 
study were selected on evidence obtained in 
earlier work by the authors 20,21  In terms of 
their physicochemical properties, the methylat-
ed derivatives of the lead compound, methylene 
blue, exhibited increased lipophilicities due to 
the extra methyl groups (positive LogP values, 
Table 1), although each of the photosensitizers 
was highly water-soluble. Chromophoric methy-
lation was also found to decrease the reduction 
potential of the resulting compound 20,  the 
reduced (leuco-) form of the phenothiazinium 
being UV-absorbing only and inactive as a pho-
tosensitizer, although reoxidation to the cation 
is possible. Logically, the longer the time spent 
in the cellular milieu as a phenothiazinium 
cation, the greater the potential for photody-
namic damage. In addition to the increased 
Lipophilicities encountered, this suggests that 
the cations might also show a different localisa-
tion pattern to that of methylene blue. 
Chemically, the compounds methylene blue, 
the 1-methyl and 1,9-dimethyl derivatives are 
similar in constitution but in new methylene 
blue the presence of N-ethylamino instead of 
N,N-dimethylamino groups at positions 3- and 
7-of the pheiiothiazinium chromophore facili-
tates deprotdnation at the N-H group, leading 
to a neutral quinoneimine species (Figure 1). 
This can be shown spectrophotometrically in 
alcohol, the maximum absorption wavelength 

'max) 
for the NMB cation being 630 nm at 

neutral pH, the quinoneimine being formed at 
higher pH with the shifting to 540 nm. 
Both cationic and neutral forms exist in equilib- 

L 
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TABLE I - Structures and physicochernical data for the photosensitizers. 

R' 	R9  

Me2N 	

.

Me2  

Me 	 N,1  -am 
EtNH:as 	NqEt 

R' TV ? 	(nm)a Log £ NMB 
Log P % Melanin Binding 

MB H Fl 664 4.98 1.00 -0.10 82.2c 

MMB Me H 656 4.78 1.11 +0.7 71.3 

DMMB Me Me 648 4.91 1.22 +1.0 56.3 

NMB - - 630 4.95 1.35 +1.2 69.6 

a Measured in methanol; b  Singlet oxygen yield based on MB = 1.00; C Literature 17  gives 87%: 

rium ([cation] >> [quinoneimine]) at neutral p1-I, 
allowing the possibility of differing uptake 
mechanisms. The importance of such behav-
iour has been reported previously by Lin et al. 
in their studies on .benzo[a]phenothiazinium 
photosensitizers 29  Such equilibria are not 
formed by the other photosensitizers in the 
present study since the dimethylamino group 
does pot allow deprotonation. 

at, 	 CH, 	 cli, 	 cu, 

Cation 	 QubwTttimirt 

FIGURE 1 - Qulnoneirnine formation in new methylene 
blue. 

As stated previously, the phenothiazinium 
dyes are established as efficient photosensitizing 
compounds. However, this efficiency is affected 
by the substitution pattern in the periphery of 
the chromophore. For example, the presence 
of a fused benzene ring lowers the singlet oxy-
gen efficiency as in the benzo[aphenothiazini -
urn series alluded to above 29  as does the inclu-
sion of arylarnino groups at positions 3- and 7-
in place of alkylamino I . In the current study 
the presence of extra methyl groups in the ring 
system led to increased singlet oxygen efficien-
cies in the spectrophotometric assay employed  

(Table 1). In terms of inherent ability to photo-
sensitize the production of singlet oxygen, as 
measured spebtrophotometrically, the order 
was NMB>DMMB>MMB>MB. 

At the standard light dose of 7.2 J cm -2 , 

each of the compounds exhibited higher photo-
sensitizing efficacies in both melanoma cell 
lines compared to the lead compound, methyl- S  
ene blue (Figures 2 and 3)/Using a series of 
lightdoses, ranging from 3.6-17.6 J cm 2 , and 
photosensitizer concentrations giving 15% dark 
toxicity in the original experiments, methylene 
blue was clearly the least effective photosensi-
tizer in the human melanoma cell line (5K-Mel 
28), and did not in fact achieve a complete cell 
kill even at the highest light dose (Table 2). As 
in the previous cell culture study employing the 
mouse mammary tumour cell line, EMT-6, 
dimethyl methylene blue was highly phototoxic 
at very low concentrations (Figures 2c and 3c). 
The IC 90  values for dimethyl methylene blue 
were 0.1 and 0.4 pimol for the human and 
murine melanoma cell lines respectively, which 
were similar to that for the EMT-6 line in the 
previous study20  and IC90s were achieved at all 
light doses (Table 2). New methylene blue also 
performed well against both melanoma cell 
lines (SK-Mel 28 IC90  = 0.5 Rmol; SK-23 IC90  
= 1.1 smol). Methyl methylene blue was less 
effective in SK-Mel 28 cells than both of the 
dimethylated photosensitizers, but was still con-
siderably more active than methylene blue 
(Table 3). 

Al 
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-el-- light -U-- dark 
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FIGURE 2A - PhotocytEttoxicity (13 and dark toxicity (•) 	FIGURE 2c - Photocytotoxicity (3 and dark toxicity (U) 
of MB against the SK-23 ceD tine. Each point is the mean 	of DMMB against the SK-23 cell line. Each point is the 
of at least 14 experiments. Error bars represent SEMs. 	mean of at least 14 experiments. Error bars represent SEMs. 
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FIGURE 2B - Photocytotoxicity fl and dark toxicity (U) 
of MMB against the SK-23 cell line. Each point is the mean 
of at least 14 experiments. Error bars represent SEMs. 

NMB on SK23 
-a--- light -a-- dark 

C 
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0 	1 	2 	3 	4 	5 	6 
concentration NMB (uM) 

FIGURE 2D - Photocytotoxicity 0 and dark toxicity ) 
of NMB against the 514-23 cell line. Each point is the mean 
of at teast 14 experiments. Error bars represent SEM9. 
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Elfects of MB on SK-MeI-28 cells In culture, n-at least 18 
-€5-- light experiments,-.-- dark experiments. 

IOU—I 

1 90 1 
A 

0 
concentration MB (uM) 

FIGURE 3p. - Photocytotoxicity (0) and dark toxicity (U) 
of MB against the 5K-Mel 28 cell line. Each point is the 
mean of at least 16 experiments. Error bars represent SEMs. 

Eltect of DMMB an Sk-Mel-28 cells in culture, showing 
responses at low levelsi n- at least 14. 
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FIGURE 3c - Photocytotoxicity (H) and dark toxicity (U) 
of DMMB against the 5K-Mel 28 cell line. Each point is the 
mean of at least 14 experiments. Enor bars represent SEMs. 
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FIGURE 3B - Photocytotoxicity [I])  and dark toxicity (U) 
of MMB against the 5K-Mel 28 cell line. Each point is the 
mean of at least 10 experiments. Error bars represent SEMs. 

Effect of MMB on Sk.mel.28 cells In cullurs, n-st least ID. 
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FIGURE 3o - Photocytotoxicity (ED and dark toxicity (U) 
of NMB against the 5K-Mel 28 cell line. Each point is the 
mean of at least 10 experiments. Error bars represent SEMs. 
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TABLE 2 - Photocytotoxicity of the methylene blue derivatives against the SK-23 and SK-Mel 28 cell lines as a 
function of  the light dose. Photosensitizer concentration In each case was that giving 15% dark cytotoxicity. Each 
bar is a mean of 24 experiments. 

% Phototoxicity at light dose 

0 J city 2 	3.6 J cnr2 	5.9 J cur2 	8.5 J cm-2 	17.6 J cm-2  

vs. SR 23 

MB (32 plA) 15.0 53.0 62.0 68.0 81.0 

MMB (2.5 tM) 15.0 50.0 53.0 61.0 60.0 

DMMB (0.6 iiM) 15.0 91.0 91.0 90.0 97.0 

NMB (1.4 RM) 15.0 42.0 73.0 74.0 95.0 

vs. SM Mel 28 

MB (10 M) 15.0 13 14 29 57 

MMB(3jiM) 15.0 44 71 86 94 

DMMB (0.1 siM) 15.0 93 95 97 97 

NMB (1.25 iLM) 15.0 57 92 97 95 

TABLE 3 - Toxicity, phototoxicity and light:dark differential toxicity ratios for the photosensitizers at a light dose 
of 7.2 J Cm'2 . 

SR 23 SK Mel 28 
IC90  Light (jAM) 	% Dark Light: Dark IC90  Light (uM) % Dark Light: Dark 

Toxicity Toxicity Toxicity Toxicity 

MB 	 39.6 17.6 5.1 38.8 80%) 52.6 1,5 

MMB 	5.0 46.0 . 	2.0 9.7 43.2 2.1 

DMMB 	0.4 8.8 10.2 0.1 31.8 2.8 

NMB 	 1.1 11.2 8.0 0.5 12.0 7.5 

SR23 SKMeI28 
lC, Light (jiM) % Dark Toxicity IC50  Light (jiM) % Dark Toxicity 

MB 15.2 7.8 21.0 25.5 

MMB 1.6 7.0 2.2 10.1 

DMMB 0.05 0 	' - - 

NMB 0.3 1.0 0.3 9.1 

In the SK-23 cell line and with lower light 
doses methylene blue and its 1-methyl analogue 
exhibited similar activity (Figures ?a  and  ?b; 

..FabI&2). In addiHon, when tested against the 
5K-Mel 28' human melanoma cell line at the 
standard light dose (7.2 J cm' 2), it was evident 
that the dark (inherent) toxicities of methylene 
blue and 1-methyl methylene blue were appre-
ciable relative to their phototoxicities, even at 
high phototoxicity values. Thus 38.8 jiM meth-
ylene blue caused 80% phototoxicity and  

52.6% dark toxicity, while methyl methylene 
blue at 9.7 l.LM gave 90% photo- and 43.2% 
dark toxicity (Figures 3a and 3b). The corre-
sponding light:dark toxicity ratios were 1.5 and 
2.1. These values were increased at higher 
light doses, moreso for methyl methylene blue 
than for methylene blue, underlining the 
greater inherent photosensitizing efficacy of the 
methylated derivatives (Tables I and 2). 
Methylene blue also exhibited the lowest uptake 

in this cell line (Figure 4a). 
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Uptake of MB and its derivatives Into 
Sk-23 cells. 14-4. 

-ik'- MB 

0 
0 

S 
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concentration (uM) 

FIGURE 4A - Uptake of the photosensitizers into the 
SK-23 melanoma Cell line as a function of photosensitizer 
concentration. 1!] - MB; • - MMB; 0 - DMMB; • - 
NMB. 

Uptake of MB and Its derivatives into 
SK-MEL-28 cells. N=6. 
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FIGURE 4B - Uptake of the photosensitizers into the SK-

Mel 28 melanoma cell line as a function of photosensitizer 
concentration. ±i- MB ;  • - MMB; 0 - DMMB ;  • - 
NMB. 

In the SK-Mel 28 cell line, dimethyl methyl-
ene blue and new methylene blue both exhibit-
ed high levels of phototoxicity at relatively low 
corresponding dark toxicities, thus having high-
er light:dark toxicity ratios than the lead com-
pound, methylene blue. New methylene blue 
was particularly interesting in this respect, hav-
ing by far the highest ratio at 7.5 (Table 3). 
The low dark toxicity of new methylene blue is 
underlined by the greater uptake of this photo-
sensitizer compared to the more dark toxic 
dimethyl methylene blue in the human 
melanoma cell line (Figure 4b). 

The behaviour of the photosensitizers 
against the SK-23 murine melanoma cell line 
was broadly similar to that in the human 
melanoma cell line. At the standard light dose 
methyl methylene blue exhibited higher dark 
toxicity than methylene blue which had a much 
improved light:dark toxicity ratio (5.1, Table 3). 
In this cell line the activity of dimethyl methyl-
ene blue was higher than that of new methyl-
ene blue, although both showed improved 
light:dark toxicities (10.2 and 8.0 respectively, 
Table 3). The relative uptakes of the two pho-
tosensitizers in this cell line were similar at the 
lC90s (Figure 4a). 

The sites of action of the phenothiazinium 
photosensitizers in melanoma cells are, as yet, 
unknown. As suggested earlier, they may be 
various and time-dependent, although Link et 
a?. found a fourfold increase in the uptake of 
radiolabelled methylene blue in metanotic B16 
melanoma cells compared to an amelanotic 
sub-line and also reported that radiolabelled 
methylene blue is localised in melanosomes 30 

Using the method of Potts 1 7  the melanin affini-
ties of the phenothiazinium photosensitizers 
employed in the current study were found to 
follow the order: MB>MMB>NMB>DMMB 
which, taken with the photocytotoxicity data, 
suggests that melanin may have had an 
inhibitory effect on their photodynamic action. 
This is in agreement with comparative studies 
utilising other types of photosensitizer, e.g. 
naphthalocyanines, " in melanotic and amelan-
otic strains. However, uptake in the murine 
melanoma cell line (SK-23) was considerably 
higher for each of the photosensitizers than in 
the human melanoma cells which contained vis-
ibly lower levels of melanin (Figures 4a and 
4b). This suggests that melanin is important in 
cellular uptake, but that intracellular redistribu- 

I - 
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tion is probable for the methylene blue deriva-
fives 26.  Since cellular uptake data suggest that 
NMB and DMMB exhibit greater uptake in 
both cell lines than do MB or MMB (Figures 4a 
and 4b) it is suggested that different sites of 
action exist for the photosensitizers. Thus, for 
example, dimethyl methylene blue, which 
showed the least affinity for melanin, might be 
expected to show cellular localisation other 
than in the melanosomes - e.g. mitochondria as 
suggested in the previous work 20  This, Coup-
led with a high photosensitizing efficacy would 
explain the high levels of photocytotoxicity 
encountered, even at low light doses. NMB 
showed similar melanin binding to MMB (Table 
1) but exhibited higher uptake than the mono-
methylated derivative in both cell lines and gave 
the highest yield of singlet oxygen. It was thus 
more photocytotoxic than MMB. The variation 
in dark toxicities encountered in both cell lines 
for the different photosensitizers also indicates 
localisation at sites other than melanosomes, 
which are not vital to cell viability. 

In order to investigate this, the cellular local-
isation of each of the photosensitizers was 
examined in both cell lines using fluorescence 
microscopy. However, only new methylene blue 
exhibited any detectable fluorescence, showing 
a diffuse pattern throughout the cytoplasm in 
both cell lines (data not shown). It is suggested 
that the cation-quinoneimine character of NMB 
(Figure 1) could facilitate intracellular distribu-
tion, as has been reported for the related 
benzo[alphenothiazinium photosensitizers 29. 

The toxicity levels and ratios encountered in 
the SK-23 and SK-Mel 28 melanoma cell lines 
were expected to differ from those in the earli-
er study on a murine mammary carcinoma line 
(EMT-6) due to the presence of the photopro-
tective and antioxidant melanin. That the toxic-
ity trends were similar indicates that - with phe-
nothiazinium photosensitizers at least - the pro-
tective effect of melanin against photodynamic 
action in cell culture is limited. In addition, cel-
lular uptake of the phenothiaziniums by the 
melanin-expressing cells exhibited a gross cor-
relation with melanin content, indicating that 
the biopolymer may be important in the uptake 
mechanism. This has been demonstrated previ-
ously in studies on melanotic and amelanotic 
sublines. 

In terms of the possible clinical application 
of the current work, PDT employing pheno- 

thiazinium photosensitizers is not suggested 
procedurally for the removal of primary 
melanoma, since this is routinely performed by 
excision. However, due to the demonstrated 
efficacy of methylene blue in tracing microsatel-
lites and its use in sentinel lymph node tracing, 
it may be of use in the photodynamic treatment 
of local metastatic lymph infiltration immediate-
ly post-surgery i.e. as an alternative to lym-
phadenectomy. At present, methylene blue is 
used routinely in various tracing or demarcative 
procedures, either visible or scintillographic, 
without reported toxicity. The derivatives used 
in the present in vitro study were all more 
effective in terms of the photodynamic effect 
and it is thus suggested that future clinical 
developments in this direction may be feasible. 
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