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1 Introduction

It is known from simple middle school chemistry that reactants react into products
during a chemical reaction. Such a transition is only possible, when the energy of the
reactant configuration exceeds a certain threshold, which, in chemistry, is known as the
activation energy. Fig. 1.1 illustrates a simplified chemical reaction in which a ball, as a
simple example for a reactant, has to overcome a barrier of a certain height in order to
reach the other side of this barrier and become a product. As soon as the reactant’s total
energy exceeds the barrier’s energy, it is able to transition into a product. In this simple
one-dimensional example the maximum of the barrier, i.e. the saddle, clearly separates
reactants from products, meaning if the ball passes the maximum of the barrier, it will
fall down to the product side. When the separation of reactants and products is known,
it is possible to propagate reactants along the reaction coordinate and estimate the flux
of reactants transitioning into products. The calculation of reaction rates and reaction
pathways is the central topic of the Transition State Theory (TST) [1-18].
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Figure 1.1: Simplified illustration of a chemical reaction along the reaction coordinate in
which a ball (reactant) has to overcome the energy of the saddle in order to
become a product.
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1 Introduction

A real chemical reaction usually holds many degrees of freedom. Therefore it is a great
challenge in TST to accurately describe a higher-dimensional system with one direction
"over the saddle” (the reaction coordinate) and many other degrees of freedom (the bath
coordinates). When a chemical reaction is pertubated, i.e. driven by a time-dependent
external force, the potential energy surface of the system will become time-dependent
itself. In reality, such an external force could be the result of a time-dependent elec-
tric field, for example. The separation of reactant and product configurations, which
enables the calculation of reaction rates, is much more complex when the system is high-
dimensional and time-dependent. Previous research of the ITP1 in this field [19-21]
has led to the separation of phase space of periodically driven systems through a time-
dependent hypersurface, the Dividing Surface (DS) [19, 20]. This research has recently
laid the foundation for the computation of reaction rates which are determined by the
flux of reactants through this dividing surface.

Building on the previous research of the I'TP1, this work deals with the task of cal-
culating rate constants for a numerical simulation of reactants crossing the DS in a
two-dimensional time-dependent system. These rate constants depend on multiple as-
pects of the system such as the concrete properties of the external driving as well as the
composition of the propagated ensemble of reactants. The central task of this work is to
determine in what manner the rate constant depends on the specific structure and move-
ment of the potential energy surface. For this purpose, the work aims at the development
of an ensemble that leads to a rate constant that is a reflection of the system’s dynamics,
as well as the development of a uniform procedure that can be used to estimate these
rate constants.

Outline of the thesis

The structure of this work is the following. Chapter 2 provides a brief overview on how
reaction rates are defined and estimated, how the DS is calculated in a one-dimensional
as well as in a higher-dimensional and time-dependent system using neural networks and
lastly it introduces the properties of the system that will be simulated in this work.

Chapter 3 introduces several aspects of the system that impact the reaction rate (in a
sometimes undesired way) and what can be done to estimate a rate that is as accurate
and also as comparable to the rates of other systems as possible.

Chapter 4 starts off with the task of generating an ensemble whose reaction rate does
not depend on its position on the potential energy surface along the reaction coordinate.
Once this ensemble is found, several investigations are performed to estimate its optimal
mean energy in order to obtain reaction rates that mainly reflect the system’s dynamics
and are not a sole property of the ensemble itself. Further, the dependence of the



rate constant on the phase of movement of the system is determined as well as the
rate’s behavior for an increasing number of reactants within the ensemble. Lastly, the
dependence of the rate constant on the structure of the potential energy landscape is
examined.

Chapter 5 introduces an additional ensemble that is generated to increase the number of
the so-called “critical particles” whose reaction rate reflects the dynamic’s of the system
close to the barrier. With this ensemble, several investigations of the previous chapter are
repeated and compared: the dependence of the rate constant on the phase of movement
of the system; the rate’s behavior for an increasing number of reactants within the
ensemble and the dependence of the rate constant on the structure of the potential
energy landscape.






2 Theory

2.1 Computing Rate Constants

The reaction rate of a chemical reaction describes how fast particles react from one side
of the barrier to the other side. In order to estimate this reaction rate, it is necessary to
track the decrease of the number of reactants over time N,(¢) during the simulation. The
number of reactants decreases by one for each reaction from reactant to product. It is
crucial that particles only react once, since it would otherwise lead to an overestimation
of the reaction rate. It is stated in [22] that for a chemical reaction, the number of
reactions decays exponentially with

Nr(t) - Nr(OO) - Nr,O eXp(—k)t) ) (21)

where k denotes the rate constant, NV;(co) is the number of reactants that do not perform
a reaction and NV, is the total number of reactants that react during the simulation. If
the rate constant k£ has a positive value, the number of reactants decays exponentially
in time. Exemplary, an exponential decay of the number of reactants over time due to

Nreact (t)_NOO

>
t
Figure 2.1: Example of an exponential decay of reactive particles over time with a log-
arithmic scale, fitted with an exponential function that leads to the rate
constant k.



2 Theory

the reactions of N, particles is displayed in Fig. 2.1 with a logarithmic scaled y-axis.
The decay is not expected to start right after the start of the propagation, since the
propagated particles need a certain amount of time to reach the barrier. This causes
the curve in Fig. 2.1 to remain constant for a certain transisiton time in the beginning
of the propagation. As soon as the exponential decay starts, the curve is fitted with a
function equal to Eq. (2.1) leading to the reaction constant k.

As mentioned above, the rate constant can only be estimated if the number of reactants
is known over time. The number of reactants decreases with each particle crossing the
DS. To know if and at what time a reaction has happened, it has to be determined
whether a particle is a reactant or a product for each time step of the simulation. This
can only be done when the point of transition from a reactant configuration to a product
configuration is clearly defined. The next section will deal with the task of determining
this point of transition.

2.2 Obtaining the Dividing Surface

This section will give a short outline of all the steps that are taken to obtain the DS in
a one-dimensional system, as well as in a multidimensional time-dependent system.

In a static, one-dimensional Hamiltonian system, the point of transition from a reactant
configuration to a product configuration is given by the maximum of the barrier in
the potential energy landscape. Fig. 2.2 displays a separation of phase space by two
manifolds one of which is the stable manifold VW, and one the unstable manifold W,.
Theoretically, particles that are initialized on a point of the stable manifold reach the
maximum of the saddle exponentially fast and stay on the saddle for an infinite amount
of time. Particles initialized on the unstable manifold show the same behavior when
propagated in backward time. The stable and the unstable manifold intersect at a single
point, called the “Normally Hyperbolic Invariant Manifold” (NHIM). Further information
on the concept of a NHIM can be found in Refs. [23-25]. Its position zxgny marks the
separation between reactants and products for all v,. In Fig. 2.2, this separation of phase
space is displayed as a dividing line (DL). Whether a propagated particle is a reactant
or a product can be determined by comparing its position along the reaction coordinate
xp, to the position xpy, of the dividing line:

xp, < xpr, — particle is a reactant

xp, > xpr, — particle is a product

All particles are initialized in one of the four areas separated by the manifolds in Fig. 2.2.
Area I and IIT are non-reactive, meaning that particles that are initialized in one of the
two areas remain to be reactants or products respectively throughout the propagation.

10



2.2 Obtaining the Dividing Surface

Figure 2.2: Phase space of a one-dimensional static system. W; denotes the stable, W,
the unstable manifold. The cross marks the intersection of these manifolds.
The phase space is separated into the four areas I-IV. The dividing line
DL separates the phase space into a reactant (r < zpp) and a product
configuration (z > zpy,).

Areas Il and IV are reactive areas in phase space. All of the particles initialized in area
IT will eventually transition from a reactant into a product, when being propagated for
an infinite amount of time. The same applies for area IV for propagation in backward
time.

For a time-dependent system, the DL is time-dependent as well. When the saddle
performs an oscillation, so does the DL. However, in a time-dependent system, the
manifolds do not necessarily intersect at the maximum of the saddle. The movement of
a time-dependent DL is detached from the movement of the saddle which is complicating
its calculation. In a one-dimensional system, the position of a time dependent DL is given
by the transition state (TS) trajectory [26-35] which describes the trajectory of a particle
that is bound to the saddle region for all time.

When dealing with a multidimensional time-dependent system, the distinction between
reactants and products is more complex than in the one-dimensional system above. In
a system with n degrees of freedom, there is one reaction coordinate z and n — 1 bath
coordinates that are determined by the structure of the potential energy surface of the
system. The reaction coordinate denotes the unstable direction of the barrier, since
the barrier oscillates along x. The phase space has the dimension 2n, e.g. position and
the respective velocity. In order to divide a 2n-dimensional phase space into a reactant
and a product configuration, the dividing line of the 1D-system extends to a (2n — 1)-

11



2 Theory

dimensional hypersurface, the so-called “dividing surface” (DS) [19, 20]. Particles may
only cross the DS once, since it would otherwise lead to an overestimation of the reaction
rate. Therefore, the DS must be recrossing-free. However, if the system has closed
reactant or product basins, the particles might be reflected globally at the boundaries of
the system which could cause them to react infinite times [36-43]. The global recrossing-
free property of the DS is given by open basins of the system.

This DS is attached to the NHIM which is again the (2n — 2)-dimensional intersection of
the (2n — 1)-dimensional manifolds. For a better visualizaton of the system, the reaction
coordinate can be seen as perpendicular to the NHIM, while the bath coordinates can
be seen as parallel to it. Given a set of bath coordinates and a certain time ¢, the
position (z,v,) of the NHIM can be calculated by using for example the Lagrangian
Descriptor (LD) [19, 44, 45]. An application of the LD-method in the calculation of the
TS-trajectory can be found in [43, 46]. The DS is obtained by extending the NHIM for
all possible values of v,.

The LD-method is one possible way to calculate points on the DS. However, it is stated
in Ref. [21] that this method is quite complex and time-consuming. In this paper it
was shown that using the so-called “Binary-contraction-method” (BC) is a more efficient
method for the task of computing positions on the NHIM. Without the propagation of
particles, it is unknown if and where their trajectories will intersect with the DS. There-
fore, the position of the DS would have to be computed for every trajectory individually,
which is very time-consuming for a propagation of several millions of particles. An ef-
ficient possibility to represent the DS of a moving saddle is was found in [20]. Hence,
several positions of the DS are calculated with the BC-method and then interpolated
using an artificial neural network to obtain a well-defined and continuous DS. The fol-
lowing section will introduce neural networks and how they can be used to interpolate
data.

2.3 Neural Networks

A neural net is inspired by the biological nerve networks of a brain. Just like the
human brain, neural networks learn how to solve problems by comparing them to similar
problems whose solutions are already known. For example, a neural network can learn
to identify human-written digits when provided with a high number of examples that
were already pre-assigned with the respective digit.

Here, neural networks are used to obtain a continuous time-dependent dividing surface.
The previous section already explaines how to compute single positions of the NHIM
out of a given set of bath coordinates and how to obtain the respective dividing surface.
Given the pre-calculated positions for a known set of bath coordinates, the neural net

12



2.3 Neural Networks

is able to learn how to reconstruct these positions as well as how to approximate the
positions for further bath coordinates. Such an interpolation of the NHIM’s positions
is necessary to obtain a well-defined DS that clearly separates particles with arbitrary
trajectories into reactants and products. Neural networks are well suited for this task,
since the input data (here: bath coordinates and time) does not need to be ordered or
have a specific dimension. In addition, neural networks have the ability to smooth and
correct points that differ a lot from the rest of the data.

The following subsections present the general structure of a neural network, as well as
the process of training a neural net for a given set of data.

Structure of a Neural Network

A neural network usually consists out of several layers that each contain several neurons.
The connection of two neurons of neighboring layers transmits an information from one
neuron to the next, just like a synapse in the human brain. Before dealing with the
network as a whole, its most basic component, the neuron, is presented.

71 Neuron ¢
Wi1
. ww: Input |Bias|Activation Output .- i
' Wi T bi a() a (wijxj + bi)
@N
TN

Figure 2.3: Schematic illustration of a neuron, obtained from [47]. The inputs x; are
weighted with w;; and the neuron calculates the output y; for a given bias b
and activation function a.

A neuron alters and transmits information. It has at least one input value and exactly
one output value. Each input has a so-called “weight” w; that determines the importance
of its value to the output of the neuron. Figure 2.3 illustrates the structure of a single
neuron ¢ in a layer [. The bias b determines the likelyhood of a neuron to output large
values for the given weighted inputs. When the weightend sum Zf\;l w; x; over N inputs
exceeds this bias, the neuron is more likely to output a value that is large and therefore
of greater importance for the calculation of the neurons in the next layer. To avoid
linear mapping between the input and the output values, the output value is calculated
using an activation function. The output value y; of the neuron is calculated using the
equation [47]

13



2 Theory

N
i=1

In early models of neural networks, the neuron’s output was binary (0 or 1) accord-
ing to whether the weighted sum Zfil w; x; over N inputs exceeded a given threshold
value or not. Such a neuron is called “perceptron” and corresponds to a neuron with
a Heaviside function as the activation function. In the past, networks of perceptrons
did not have a broad area of application, since they do not have the desired ability to
learn autonomously. A learning algorithm alters specific parameters in order to correct
a wrong output. The network can correct such a wrong output when a slight variation
of the weights or biases leads to a slight change of the output value. Since a percep-
tron can only produce output values of 0 or 1, a network of perceptrons is suitable for
mimicing boolean structures but not so much for correcting its own output values. By
modifying a neuron with an activation function that is a smoothed out version of the
Heaviside function, it can have input as well as output values within a whole range of
values determined by a. In general, this activation function is nonlinear. Such a function
can be the reverse tangent, for example.

When solving more complex problems, it is usually necessary to introduce so-called
“hidden layers” of neurons. Figure 2.4 shows the structure of a network with a number
of k hidden layers that has a similar structure to the one used in this work. There are
three input neurons that have a constant output value. There is one output neuron that
provides the final result of the net. All the neurons inbetween the input and the output
neurons are part of a hidden layer. Each output of a neuron in a previous layer is an
input of all the neurons in the following layer. Such networks are called “feedforward”
neural networks, since there are no loops in the network and the output of a neuron is
always fed forward. For example, the input neurons provide the values of y, v, and ¢ for
which the position of the DS shall be calculated. Given these parameters, the output
neuron then provides the position = of the NHIM at which the DS is attached.

Training a Neural Network

The neural network is trained with a set of training-data that contains the pre-calculated
output values for a given set of input values. A cost function

Cl0.5) = 55 D i = 3l 23)
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2.3 Neural Networks

Input Hidden Output
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Figure 2.4: Schematic illustration of a neural network with k& hidden layers. The input
layer constists of three neurons with the constant input values y, vy, t. The
hidden layers each contain several neurons. The output layer constists out
of one neuron with the output value x.

@
—

is introduced that determines the deviation of the training data y to the outputs gy of
the neural net for the same input values z;. The number of training points is given by
n.

To achieve the highest possible accuracy, the cost function must be minimized, so that
the prediction of the neural net is as close to the training data as possible. As mentioned
above, the network is able to learn and correct its output values by changing the weight
and bias-parameters. According to Ref. [20], this can be done using the gradient descent
method which repeatedly computes the gradient of the cost function as a function of
the weight and bias parameters and changes these parameters in a way that leads to
a decrease of the cost function until a minimum is found. Every layer and each bias
and weight lead to a different gradient. For the determiniation of all gradients, a back-
propagation algorithm is used. To speed up the procedure of computing the overall
gradient of the cost function, the training data is split into smaller batches of randomly
selected training data. By averaging over the gradients of the small batches, the overall
gradient can be estimated satisfactorily. Such an approach is referred to as a stochastic
gradient descent method. In a so-called “epoche” the complete set of training data is
used once to calculate the cost function’s gradient.

15



2 Theory

Accuracy of the Dividing Surface

Beside the cost function that describes the deviation between the neural network’s out-
put and the data it is trained with, there is another cost function that determines the
deviation between the net’s output and additional data that is not used for training but
for the validation of the network. A low validation cost indicates that points other than
the training data are well approximated by the network. However, if the training cost is
decreasing over several epoches while the validation cost remains constant, the network
is likely to have overfitted the training data, meaning the training data is approximated
with a very high accuracy while other points do not match the desired output. In an
ideal case, the training cost as well as the validation cost decrease monotonously until
the last training epoche is completed, so that the whole DS is approximated as well as
possible.

Another measurement of the accuracy of the DS is the number of re-crossing particles
that occur when an ensemble is propagated. Since the DS ought to clearly separate
possible reactants from products, the occurance of a re-crossing particle indicates a false
or inaccurate approximation of the DS.

2.4 System

2.4.1 Model Potential with a Driven Rank-1 Saddle

The potential energy surface of the system is modeled by a driven rank-1 saddle potential
by

2 2

2
V(z,y,t) = By exp (—a [z — &sin(w, (¢ — to))]2) + % <y — — g arctan(a x))
7r

(2.4)

Along the reaction coordinate x, the potential performs a periodic oscillation with the
angular frequency w, and the amplitude £. The parameter F}, determines the height of a
Gaussian shaped energy barrier in z-direction with the width a. The so-called “barrier-
phase” ty denotes a time shift of its oscillation. The second term of the potential is time-
independent and describes the potential in y-direction. This term is harmonic along the
bath coordinate y and is coupled non-linearly to the reaction coordinate x. As it can
be seen in Figure 2.5, the two minima of the potential are shifted in y-direction. The
parameter § determines the minima’s maximum deviation from y = 0.0. The parameters
wy and a are further parameters to tune the potential.

16



2.4 System

Figure 2.5: Potential defined in Eq. (2.4) for the standard parameters. Darker shades
of blue indicate a low value of the potential whereas bright shades of blue
represent a high value. The red line across the potential’s barrier marks the
minimum-energy-path (MEP).

In a later section, the path of minimum energy over the potential’s barrier will gain
importance. In Figure 2.5 it is displayed as a red line across the barrier. It can be calcu-
lated by derivating the potential’s minimum with respect to y. The following equation
defines this so-called minimum-energy-path, short MEP,

0
a_yv(xvyvt) =0
0 . 2 Wy 2 ~ 2
& —[Epexp(—a(x — Tsin(w, (t —t0))°) + = (y — — g arctan(az))?| =0
8y 2 T
Sy = 2 y arctan(ax) . (2.5)
s
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2 Theory

The standard setting for the potential’s parameters used in this work is

E, =20; a=1.0; T=04; Wy =T; (2.6)
to=0.0; wy = 1.0; y=10; a=20,

if no different parameters are given. Throughout this work, the parameters ty, F,, w,,
2 and g will be varied.

2.4.2 Ensemble

The particles propagated in this work are part of a canonical ensemble. The ensemble
is defined through the following properties: the total number N of particles in it; the
range (r + A,y + A) that restricts the particles’ positions; the value of the Boltzmann’s
constant kgT'; as well as the potential’s values V' (x,y, ty) at the positions of the particles
(x,y) and a barrier-phase of .

The ensemble’s total energy is the sum of kinetic and potential energy and follows a Chi-
squared distribution. The ensemble is generated using a seeded pseudo random number
generator.

For the special case that the ensemble is positioned at a single point on the potential, the
potential energy does not impact the energy distribution within the ensemble by more
than an offset value. For a potential of zero, the probability f(FEi) for an occupied
energy state Fiy is reduced to the Maxwell-Boltzmann-distribution

m 2
2

J(Etot) = vexp (— kBUT) , (2.7)

in which the mass m is assumed to be unity.

According to [19], the trajectories of the particles are calculated using a Velocity-Verlet
integrator with a time-step that is small enough to capture the time-dependency of the
potential.

2.4.3 Neural Net

In Sec. 2.3 the general quantities of a neural network were presented. The specific
network used to interpolate the DS in this work is a “feed-forward” network and contains
four hidden layers consisting out of 40 x 40 x 40 x 10 neurons. The input neurons provide
the values of y, v,, and t for which the position of the NHIM shall be calculated. Given

18



2.4 System

these parameters, the output value of the output-neuron is the position x of the NHIM
to which the DS is attached.

To speed up the procedure of computing the overall gradient of the cost function, the
stochastic gradient descent method is used for the training of the network. It is trained
for 50,000 epoches while a single batch contains 1,000 data points.

2.4.4 Fitting procedure

Sec. 2.1 declared what the rate constant is and how it can be estimated through a fit of
the number of reactants over time. In practise, the fitting procedure is not as straight
forward as it seems to be according to Fig. 2.1. For instance, the transition from the
constant number of reactants during the settling time to its exponential decay is much
smoother than it is in Fig. 2.1 and therefore affects a broader range of time. Since one
is not interested in the settling behavior of the system, it is not useful to fit the affected
time range. This decreases the size of the range of time that can be fitted.

Another problem occurs when fitting the curve of N,(t) — N,(oc0) with an exponential
function: reactions at the start of the fit range have a much bigger impact on the rate
constant than reactions at the end of the fit range. In TST one is especially interested in
particles that stay in the saddle region for a long time and therefore react at a later time
of the reaction. Hence, the fit-function is chosen to be a linear function k - ¢ that fits the
logarithmic of the number of reactants log(N, — N,(00)) over time, so that reactions at
the beginning and at the end of the fit range are equally impacting the rate constant.

19






3 Numerical Estimation of Rate
Constants

In a numerical simulation, the rate is influenced by various aspects, like the size of the
ensemble, the distinction between reactant and product and the fitting procedure that is
used to estimate the rate. This section will present some of these aspects and display in
what way and to what degree they influence the rate and what can be done to estimate
the rate as accurately as possible.

3.1 Recrossing Particles

It is an important requirement for the dividing surface to be recrossing-free. This means
that if a particle crosses the DS it can only do so once and not multiple times, in
order to prevent an overestimation of the reaction rates. However, this requirement is
not entirely fullfilled for all propagations. Numerically, as well as depending on precision
there is almost always a small number of recorssing particles counted. Hence, the number
of recrossings represents a measurement of the accuracy of the dividing surface. Since
the DS is represented by a neural net, the aim is to develop a net that provides a DS
that is as free of recrossings as possible. This section will show the impact of a large
number of recrossing particles on the estimation of the rate constant.

Figure 3.1 shows two plots of the population of reactants over time for two propa-
gations of the same ensemble while using different neural nets as a representation of
the dividing surface. Both ensembles propagated contain 10° particles positioned at
(x,y) = (—0.60,—0.56) and have kgT) = 1.0. Their propagation starts at a barrier-
phase of tg = 0.0. In the first system there are 433 recrossing particles while there are
only 6 in the second system. The net of the second system is used for all propagations
performed in this work, see Chapter 2.3. The flat section of the curve in Fig. 3.1 at
times from ¢ = 2.0 to ¢t = 3.0 in the first system indicates the occurance of recrossings in
this interval of time. Most of the particles either react very quickly over the barrier or
are reflected immediately. But some particles stay in the saddle region for longer times
before they leave again to the reactant or product side. Such particles are referred to as
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Figure 3.1: Number of reactants over time for a propagation of the same ensemble, but
with a different representation of the NHIM via different neural networks.
Left: poor neural network with 370 recrossings while propagating the ensem-
ble; right: good neural network with only 6 recrossings

critical particles. These particles are most relevant in the determination of the rate con-
stants, since they are heavily influenced by the system’s dynamics. For the first system,
it is not possible to estimate the reaction rate of particles that react between t = 2.0
and t = 3.0, since the related curve does not provide information about the actual rate
in this interval of time. In addition, the course of the number of particles over time can
not be fitted over a wide range of time because of the pertubation of the curve that is
induced by recrossing particles. For the estimation of the reaction rate it is essential to
have a wide fit-range that especially includes reactions at the end of the overall reaction.
Rates for systems with a high number of recrossing particles are therefore more prone to
uncertainties than systems with only very few recrossings. A number of six recrossings
in an ensemble of 10° particles does not have a significant impact on the rate and does
not lead to distortions. Hence, neural networks with a very low number of recrossings
should be used to obtain the DS.

22



3.2 Fit-Range

3.2 Fit-Range

The rate is estimated by calculating the parameter of a fit-function while the function
itself is prone to uncertainties. The size as well as the location of the fitted range usually
has to be chosen individually to match the course of the number of reactants over time
as precisely as possible. Within one plot of the number of reactive particles over time,
there are various time-ranges that are smooth and wide enough to provide a clear rate
constant of the particles that react in the respective range. Fig. 3.2 shows three reaction
rates over different values of the ensemble’s kgT: the biggest and smallest rate that
are estimated by fitting different ranges of time, as well as the rate that is obtained
by fitting over the longest range of time possible while still matching the curve closely.
When fitting over different ranges of time, the fit-ranges contain reactions of different
kinds of particles. Roughly speaking, particles that react within the same small range
of time have a similar initial kinetic energy and therefore react with a constant rate.
Particles that react at a time much sooner or later than the particles mentioned above
have a different initial kinetic energy and possibly a different rate as well. Fig. 3.3 shows
a plot of the number of reactive particles over time, fitted with the three different fit-
ranges for kgT' = 7.0. It is striking, that only a small difference in the fit-curve’s gradient
leads to a big difference in the respective reaction rate.

The data in Figure 3.2 displays the following relation: The higher the value of kgT', the
more these rates deviate from one another. In an ensemble with a high temperature
kgT, the distribution of the kinetic energy is broader than that of an ensemble with a
small value of kgT'. Given an ensemble that contains particles whose kinetic energies
differ from each other on a bigger scale, the rates are more likely to differ for different
fit-ranges as well.

For an ensemble with a kg7 = 1.0 the smallest rate that can be estimated is k£ = 3.188
whereas the largest rate is k = 3.396. When analysing rates of an ensemble with this
energy it should be considered that the rates might have a deviation of approximately
Ak = 0.2 due to a different fit-range.

In order to be able to compare reaction rates for various propagations it is ideal to choose
the same value of kgT" as well as a similar fit-range.
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Figure 3.2: Most accurate, largest and smallest reaction rate that can be fitted vs. the
ensemble’s temperature. Ensemble is initially positioned at x = —0.2 with
10° particles in a static system.
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Figure 3.3: Plot of the number of reactive particles over time, fitted in three possible
ranges that lead to the most accurate, the largest and the smallest reaction
rate. Ensemble is initially positioned at z = —0.2 with 10° particles and a
temperature kg7 = 7.0 in a static system.
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3.3 The Barrier-Phase

3.3 The Barrier-Phase

In a time-dependent periodically driven system, the barrier as well as the DS perform an
oscillation along the z-axis while the particles are propagated. The system can be started
at arbitrary phases ty of the oscillation within one period length. For standard settings
the period length is T'= 2.0. According to Table 3.1, the reaction rate of the propagated
particles depends on the inital phase of the barrier. Further details of this relation are
examined in Sec. 4.2. The following calculations compare the variance of the rate when
averaged over 24 different barrier-phases and when averaged over only 8 barrier-phases
chosen equidistantly in a full period T'. These 8 barrier-phases are highlighted in blue
in Tab. 3.1.

Table 3.1: Reaction rate k and the
respective initial phase
of the barrier ¢,

to k kE—k
0.0 |3.586 | 0.400 o= | LS -
0.1 |3.545| 0.368 n <

0.2 |3.408 | 0.231
0.25 | 3.356 | 0.179
0.3 |3.312| 0.135

0.4 |3.047 | -0.130 1
0.5 |2.897 | -0.280 Tall = A | 5 2(/% —3.177)°
0.6 | 2919 | -0.258 i=

0.7 | 2935 | -0.241 = 0.205
0.75 | 2.938 | -0.239

0.8 | 2981 | -0.196

0.9 | 2965 | -0.212

1.0 |3.010 | -0.167 i

1.1 | 3.027 | -0.150 Outne = | 5 > (ki = 3.195)?
1.2 |3.076 | -0.101 i1

1.25 | 3.060 | -0.117 = 0.206

1.3 | 3.147 | -0.030
1.4 |3.071 | -0.106
1.5 | 3273 | 0.096
1.6 | 3.264 | 0.087
1.7 13330 | 0.153
1.75 | 3.341 0.165
1.8 [3.304 | 0.128
1.9 [ 3452 | 0.275
average rate: k = 3.177
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The data in Table 3.1 refers to the rates of an ensemble initially positioned at (x,y) =
(—0.60,—0.56) and with kg7 = 1.0. The system is dynamic and the potential’s param-
eters are set to the standard values.

The respective variance of the rates differs by only 0.01. For ensembles with different
properties, the course of the dependence of the rate on the barrier’s phase can vary. In
order to be able to calculate reaction rates that can be compared for different systems,
one can average each rate for different initial phases of the respective barrier. When
averaging over 24 instead of only 8 barrier phases, the difference in the rate is 0.2. Av-
eraging over a bigger number of barrier-phases generally gives an average rate with a
higher accuracy. To obtain reaction rates of a system with various initial barrier-phases,
the simulation has to be reapeated for each setting. For the sake of saving disk space
and computational time, we from now on only average over 8 barrier-phases (referred
to as the “average rate”), as the variance still is not very different from the 24 sample
cast.

3.4 Dividing Surface of a Static System

When starting a propagation of particles at different initial barrier-phases in a static
system (& = 0.0) one expects to obtain the same reaction rate for all phases, because
the phase-variation has no effect on the potential V'(x,y,t), since

2
Yy
2

2

2
V(z,y,t)s—00 = By exp(—a[r — 2 sin(w, t)]*) + £ [y — = garctan(a z)]
T
2

garctan(az))®

W2
= By exp(—az®) + Ly — =

2 T
(9V(:1:, Y, t)fc:0.0

ot =0

However, the rates slightly differ from one another. Table 3.2 presents the reaction
rates of a static system for the ensemble of the previous section for 8 different barrier-
phases equally distributed within one period of the barrier’s oscillation. The following
calculation determines the rate’s variance.
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Table 3.2: Reaction rate k for the
respective initial phase
of the barrier ¢,

to k k—k
0.0 | 3.056 | 0.011
0.25 | 3.032 | -0.013
0.5 | 3.053 | 0.008
0.75 | 3.033 | -0.012
1.0 | 3.059 | 0.014
1.25 [ 3.034 | -0.011
1.5 | 3.06 0.014
1.75 | 3.035 | 0.010

average rate: k = 3.045

Q
Il
| =
.MOO

H
I
—

(ki — 3.045)2

= 0.012

The variance of the rate is 0.012, which is six percent of the rate’s variance for a dynamic
system and therefore relatively small. When starting the propagation at a barrier-phase
of tg, the DS will be evaluated from that time onwards. In a static system for which the
amplitude of the barrier’s oscillation is set to zero, this is the only impact a different
initial barrier-phase has. Since the DS is interpolated by the neural net, if the DS changes
in time the interpolation of the neural network has to be assumed to be inaccurate. When
looking at a dynamic system, the deviation of the rates due to this inaccuracy has to be
added to the deviation due to the barrier’s movement.

However, this additional deviation can be eluded when there is simply no time range
given for the interpolation of the DS by the neural network.

3.5 Effects of the Ensemble’s Size

According to Sec. 2.4, the total energy of the ensembles used in this work usually follows
a Maxwell-Boltzmann distribution. The kinetic and potential energies of a particle are
obtained by sampling the outputs of a random-number generator according to the distri-
bution. The random-number generator requires an arbitrary number for initialization, a
so-called “seed”. This seed can be varied for each propagation. Changing the seed leads
to a slightly different energy distribution of the ensemble’s particles. The deviation of
two ensembles that are generated with a different seed can be expected to converge to
zero for a large number of particles. The standard ensemble in this work contains a total
number of 10° particles. Since this is a high amount of particles it seems unlikely to
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Figure 3.4: Number of reactive particles over time for two ensembles generated with a
different seed fitted with the same range from ¢ = 1.5 to t = 2.5. Left:
ensemble generated with a seed S = 13. Right: ensemble generated with a
seed S = 100.0.

observe any differences of ensembles with a different seed. However, when propagating
various ensembles that solely differ in the value of the seed that was used to generate
their energy distribution, the reaction rates as well as the number of recrossing particles
can differ. For a seed of 50 there are 3 recrossing particles whereas there are 6 for a
seed of 13. Table 3.4 displays the reaction rate of an ensemble for 12 different seeds. In
the first column, the fit-range in the plot of the number of reactants over time remains
unchanged for all seeds. The reaction rate fluctuates by up to 0.394. The variance of
these rates is

12

1
Ouniform = E Z(kl - 3608)2 =0.094

i=1

A variance of oypiform = 0.094 that is solely due to a variation of the seed, is a reflection of
the system’s sensitivity to small deviations in the ensemble and therefore underlines the
critical behavior of and on particles staying in the saddle region for longer times. Fig. 3.4
shows two plots of the number of reactive particles over time, fitted with the same fit-
range for two ensembles that were generated using a different seed. One can observe
slight differences in the course of the two curves that lead to a significant difference in
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3.5 Effects of the Ensemble’s Size

Table 3.3: Reaction rate k fitted with a uniform and an adjusted fit-range for an ensemble
generated with a seed S.

S | k for a uniform-fit-range | k for adjusted fit-ranges
4 3.564 3.564
10 3.527 3.527
13 3.817 3.646
20 3.563 3.563
30 3.570 3.570
40 3.719 3.629
50 3.621 3.621
60 3.632 3.632
70 3.591 3.636
80 3.612 3.612
90 3.661 3.661
100 3.423 3.581
k = 3.608 k = 3.603

the reaction rates. It should be noted that the number of particles that react within
the fit-range and therefore determine the rate hardly make up 1% of the total number
of particles in the ensemble. Despite the fact that the distribution of these particles
varies for different seeds, the overall distribution could still be seen as independent of
the seed. By adjusting the fit-range in a way that the fit matches the curve of the
number of reactive particles over time as closely as possible, one can counteract the
seed’s impact on the rates. The third column in Table 3.3 displays the reaction rate
obtained by individually adjusting the fit-ranges of plots in which the deviation of the
fit with the uniform fit-range and the curve itself was clearly visible. The following
calculation determines the variance of the rates for adjusted fit-ranges:

112

Oadjusted = E Z(kl — 3603) = 0.039

i=1

The variance of the rates is less than half the variance obtained for fitting all plots with
the same fit-range. When comparing reaction rates of different systems in this work the
seed remains unchanged. However, to actually decrease the statistical error, it would be
best to simulate with a higher number of particles and especially increase the number of
reactions that are taken into account for the fit. Since this would make the simulation
much more time consuming, it was not possible to increase the number of particles in
this work.
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4 Calculating Reaction Rates with a
Suitable Ensemble

4.1 Obtaining a Suitable Ensemble

The reaction rate regarding the barrier’s dynamics ought to be independent of the en-
semble’s properties such as its position in the two-dimensional (z, y)-space. However,
this independence can not be observed for every ensemble. In this chapter it is clarified
for what kind of ensemble this requirement is fulfilled and for what kind it is not.

The first ensemble that is investigated has a fixed position on the z-axis but is expanded
in y-direction. For numerical reasons, the values of y are restricted to a range from -10
to 10. The ensemble’s position can be visualised as a slice of particles in y-direction.
Both velocities v, and v, are also restricted to a range from —10 to 10 and the value of
kgT is set to 3.0.

Fig. 4.1 displays the averaged reaction rate of the above mentioned ensemble at different
positions along the z-axis. From x = —0.5 to x = 0 the rate increases exponentially and
is almost constant for positions from x = —2.0 to x = —0.4. In order to identify the cause
of this exponential dependence, the energy distributions of the ensemble at the different
initial positions are examined. The total energy of an ensemble at a given x-position is
the sum of the kinetic and the potential energy of its particles. The potential energy for a
particle at a certain position is given by the energy of the potential at this position. The
potential is not constant along the z-axis and has a high increase for values from z = —1
to x = 0. An ensemble at z = —0.1 has a remarkably higher potential energy than it
does at x = —2.0. The potential energy of a particle determines its likelihood to react.
When it is rather low it is only possible for particles with a high kinetic energy to cross
the dividing surface and react. As a consequence, the share of reactive particles in the
ensemble at x = —0.1 is approximately 33 % whereas the percentage of reactive particles
is only 13 % in the ensemble at x = —2.0. One of the graphs in Fig. 4.2 shows the share
of the number of reactive particles in the ensemble that is expanded in y-direction for z-
positions from —0.1 to —2.0. The effect of the high increase of the potential’s energy on
the number of reactive particles is clearly visible in a range from x = —1 to x = 0. Later
in this section it will be clearified whether this relation could be the cause of the rate’s
increase for z-positions closer to the barrier. Regardless of the difference in the potential
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Figure 4.1: Averaged rates of the reaction of an ensemble expanded in y-direction and
kgT = 3.0 located at different initial positions in z-direction. The data is
fitted with an exponential function. The potential is time-dependent with
the standard parameters.

energies of ensembles positioned along the z-axis, they all have the same overall kinetic
energy which otherwise could have an effect on the rate. Within an ensemble the kinetic
energy of a particle does in fact depend on its potential energy which changes along the
y-axis. Particles that are positioned further away from the position that has the lowest
potential energy have a much higher potential energy than the ones close to it due to
how the potential is defined. Due to the distribution of the total energy, particles with a
high potential energy are more likely to have a small kinetic energy. The higher the value
of kgT', the bigger the amount of particles positioned at y-positions with high potential
energies. As a kg7 of 3.0 is relatively big, the accurance of these kinds of particles
can not be neglected and must be kept in mind. When propagating particles with an
initial position at a high potential energy, they are likely to perform oscillations along
the parabolic potential in y-direction. For the cases in which the particles have a positive
initial velocity it is possible to cross the dividing surface. It can be assumed that they
cross with a high velocity after accelerating during their oscillation in y-direction. Since
the rate is a quantity of how fast a particle crosses the dividing surface, this behavior
would lead to an increase of the rate. The closer such an ensemble is positioned to
the barrier’s top, the smaller the velocity in positive z-direction must be in order for
particles with a high potential energy to react. Therefore, there are more particles that
lead to an increase of the rate for ensembles with z-positions closer to zero. This relation
is consistent with what is observed in Fig. 4.1.

In order to confirm the hypothesis about particles with high potential energies, another
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Figure 4.2: Share of the number of reactive particles N, in two ensembles each con-
taining Ny = 10° particles vs. the ensembles’ respective positions along the
z-axis. Blue: ensemble with a temperature kg7 = 3.0 and an expansion in
y-direction; Orange: ensemble with a temperature kg7T' = 1.0 positioned on
a point on the MEP.

ensemble with y-positions within a restricting range of (-0.25, 0.25) is propagated at a
position of x = —0.2 where their effect on the rate is noticable. Having cut out most
of the particles with possibly fast reactions, one expects a decrease of the rate up to
k =~ 3.5, as it is the case for ensembles that are positioned at x = —2.0 to x = —1.5.
Fig. 4.3 shows a plot of the number of reactive particles over time including the fit-
function for an ensemble with a y-value with a restricting range of (—10,10) and an
ensemble with y-values that do not exceed the range (—0.25,0.25). Both ensembles have
initial positions at x = —0.2 and are propagated at a barrier-phase ¢ty = 0.0. It is not
necessary to average over the barrier’s phase for the purpose of comparing the rates
because the ensembles have the same z-position (for further explanation, see Sec. 4.2).
The rate of the ensemble with a larger y-range has a reaction rate of £ = 4.022 whereas
the one with the much smaller range has a rate of k£ = 3.563 which is consistent with
what was expected. This leads to the conclusion that the particles located at positions
of high potential energy can in fact react with a high velocity and cause an increase
of the reaction rate. Having particles with velocities higher than a certain value does
not serve the purpose of calculating a reaction rate that is determined by the barrier’s
movement. These particles cross the dividing surface without being affected by the
potential’s dynamics which will be elaborated in the following section. In TST one is
especially interested in the so-called “rare event” in which a particle has just as much
energy as it needs to overcome the barrier. The reaction rate of such particles is the
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Figure 4.3: Plot of the number of reacting particles over time at a barrier phase ty = 0.0
for ensembles with a different expansion in y-direction. Left: Ensemble with
y-positions within a restricting range of (—10, 10); Right: ensemble with a
restricting y-range of (—0.25, 0.25).

crucial rate in TST. Therefore, it is best to position the ensemble at the path of minimum
energy in the potential. For a given x, the corresponding y-position on the MEP which
has the smallest potential energy can be calculated with Eq. (2.5).

Figure 4.4 shows the averaged rates of an ensemble that is positioned along different
x-positions directly on the MEP. The value of kgT is set to 1.0 which leads to a smaller
reaction rate. The cause of this effect will be elaborated in the following section. The rate
in Fig. 4.4 can be seen as constant among all z-positions within the overall imprecision.
Concentrating all of the ensemble’s particles in a single point has clearly eliminated the
rate’s dependence on the ensemble’s position.

Similar to the course of the share of reactive particles of an ensemble expanded in y-
direction in Fig. 4.2, the course of the share of reactive particles of the ensemble on
the MEP also increases expontentially for z-positions near the barrier’s top. The only
difference is that the number of reactants for the ensemble with a kg7 = 1.0 at x = —2.0
is much smaller than for the one with kg7 = 3.0. This effect will be dealt with in the
Sec. 4.1.1 and is not caused by the difference in the y-range but by the difference of
kgT. Hence, it can be assumed that the number of reactive particles is decreasing in a
similar way for both kinds of ensembles. Still, one ensemble has a constant reaction rate
among different z-positions while the other one has rates that depend on its z-position.
Therefore, the decrease of reactive particles in Fig. 4.1 is not likely to be the cause of the
rate’s dependence on z. In conclusion, it seems that the particles with high potential
energies in an ensemble with a large y-range are the sole cause of the rate’s dependence
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Figure 4.4: Averaged reaction rates of the ensemble with kgT = 1.0 located at different
initial x-positions on the MEP. The potential is time-dependent with the
standard parameters.

of the ensemble’s position x. Hence, the ensemble will always be positioned on the MEP
for all following propagations.

4.1.1 Optimization of the Ensemble’s Energy

In order to determine a rate that provides information about the system’s dynamics
close to the saddle, it is necessary to generate an ensemble containing a high amount of
particles that will stay in the saddle region preferably for many oscillations. This section
deals with the task to find the optimal kinetic energy for which the ensemble contains
sufficient share of critical particles.

Particles with a very large kinetic energy compared to the barrier height pass the dividing
surface without being affected much by the dynamics of the potential. As a result, the
reaction rate is mostly a property of the ensemble itself and does not correspond much
to the rate due to the barrier’s composition and movement. In contrast, particles with
a kinetic energy lower than a certain value do not reach the dividing surface and do
not react at all. For this reason, the kinetic energy of an ensemble can not be chosen
arbitrarily.

Figure 4.5 displays the number of reacting particles over time in a static as well as in
a dynamic system. The amplitude of the barrier’s movement in z-direction which is
described by the parameter = is 0.0 for a static system whereas it is 0.4 for a dynamic
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Figure 4.5: Number of reactive particles over time for two different potentials fitted
within the same time-range. Left: static potential with £ = 0.0 and a rate
k = 3.775. Right: dynamic potential with £ = 0.4 and a rate k = 3.774.

system. In both cases the ensemble’s value of kgT" is 4.0, which is far above the barrier
height that has a value of E}, = 2.0. Since the total number of reactants is kept con-
stant, the ensemble has a higher concentration of relatively fast particles and a lower
concentration of slow ones compared to an ensemble with a smaller value of kgT'. Both
ensembles are located at x = —0.2 and on the minimum energy path of the potential.
Fast particles are likely to pass the dividing surface shortly after the propagation has
started. Their reactions are found at the beginning of the overall reaction. Therefore, the
fitting ranges in both plots are not chosen to match the curves as closely as possible but
to give a reaction rate of only the faster particles of the ensemble. The rates displayed
in Fig. 4.5 are equal and do not show a dependence on the potential’s properties. This
coherence indicates that the fast particles of an ensemble with kgT = 4.0 are not affected
by the barrier’s movement, despite having converted kinetic into potential energy while
moving towards the barrier. As it can be seen in Fig. 4.5, the fast particles that react
at the beginning of the overall reaction make up most of the reacting particles. In order
to have a significant amount of critical particles, these particles must as well be slow
enough to be affected by the potential. Consequently, the value of the optimal kg7 must
be smaller than 4.0.

Figure 4.6 shows the reaction rate of the fast particles of the respective ensemble over
values of kgT between 0.0 and 7.0 for a static and a dynamic potential. For kgT" > 1.5 the
two graphs converge into one. The difference in the system’s dynamics does not manifest
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Figure 4.6: Reaction rates of the fastest particles of an ensemble with various values of
kgT for a static and a dynamic potential. The line at kgT" = 1.5 marks the
value of kgT for which the two graphs converge into one.

itself in the reaction rate once kg1 = 1.5 is exceeded. For all values of kg7 < 1.5 the
rates show larger values for a dynamic potential and therefore provide information about
the influence of the barrier’s movement. This dependence of the rates on different sets
of parameters will be confirmed in Sec. 4.4. It should be noted that these rates are not
averaged for various barrier-phases and are not the result of the most accurate fitting,
but of the fitting of the fastest particles and are therefore slighty higher than the rates
obtained via optimal fitting for the same set of parameters.

Figure 4.7 shows the increase of the number of reactants for higher values of kg7 in a
static system. The total number of particles in the propagated ensemble is N = 10°. For
small kgT the share of reactive particles increases rapidly and afterwards converges to
a number slightly above 40 % at kgT = 7.0. Approximately half of the particles have a
velocity in negative z-direction and are not likely to reach the barrier’s top. A percentage
of reacting particles of 40 % means that roughly 80 % of all particles that were initialized
with a positive velocity in xz-direction are reactive particles. At the much smaller value
of kgT = 1.0 the percentage of the above mentioned particles is around 60 %. For the
purpose of obtaining a smooth plot of the reactive particles over time that leads to a
clear reaction rate, this is a sufficient share of reactive particles.

In conclusion, an ensemble with kg7 = 1.0 contains a high amount of critical parti-
cles while still having an adequate percentage of reacting particles. For all following
calculations in this chapter, the value of kgT" will be set to 1.0.
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Figure 4.7: Share of reactive particles Nyeact. in the ensemble containing Ny particles vs.
the value of kgT' for a static system.

4.2 Dependence of the Rate on the Barrier-Phase

When calculating reaction rates that reflect the system’s dynamics, one has to take into
consideration that these rates are influenced by the barrier’s movement at the time at
which the individual particles react. This section deals with the question of how the
barrier’s phase influences the reaction rate as well as the number of reacting particles.
The barrier-phase t refers to the phase of its oscillation at which the propagation of the
particles starts. The relation between barrier-phase and reaction rate will be examined
for two ensembles on the minimum-energy-path with a kg7 = 1.0. One ensemble is
positioned at x = —0.4 whereas the other one is positioned at x = —0.8. The parameters
of the potential are set to the standard values with a period length of T" = 2.0.

The upper plot in Fig. 4.8 displays the dependence of the rate on the barrier’s phase
for both ensembles as well as the respective averaged rate over all phases. The fitting
range of the exponential decay of reactive particles for the ensemble at + = —0.4 is
t = (0.8, 1.8). For the ensemble at x = —0.8 this range is set to be t = (1.2, 2.2). As
it was shown in Sec. 4.1, given an ensemble at the minimum-energy-path, the different
positions of the ensembles do not influence the average rate in a significant way. Here,
the average rates only differ from each other by a value of 0.01, which is significantly
smaller than the other errors discussed in Chapt. 3 and can be neglected. However, for
different phases within one period of the barrier’s oscillation, the rates differ up to a
value of 0.75. Both ensembles show a similar pattern in the dependence of the rate on
the barrier’s phase. They are relatively big for initial phases tq at the beginning and
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the end of a period and have a minimum inbetween. The minima of both ensembles are
at a barrier-phase of ty; = 0.8. However, the range in which the rates are smaller than
the average rate is broader for the ensemble at + = —0.4 and the center of this range is
at approximately ¢ = 1.1, whereas it is at ¢ = 0.9 for the ensemble at x = —0.8. This
shift of 0.2 indicates that the particles that are taken into account fitting the rate need
a time of roughly 0.2 to move from z = —0.8 to x = —0.4. Therefore, the mean velocity
of the particles starting at x = —0.8 can be estimated to be v = 2.0. It should be noted
that the velocity can not be seen as constant because the particle’s kinetic energy is
converted into potential energy as they move towards the barrier’s top.

In order to determine what causes the correlation between the reaction rate and the
barrier’s phase, a connection between the rate and the phase of the dividing surface at
the moment of reaction must be found. The barrier is in phase with the dividing surface
but has a bigger amplitude. Since the dividing surface is attached to the NHIM, it is
moved along with the NHIM’s oscillation. Fig. 4.9 displays the oscillation of the NHIM
for two periods.

First, the DS’s movement for the initial barrier-phase that leads to the minimum rate
is analysed. As mentioned above, for the ensemble at x = —0.4 the minimum rate is
at to = 0.8. In this case, the fitting of the rate starts at a time of t = 0.8 + 0.8 = 1.6.
The particles that react at the beginning of the fitting range at 1.6 cross the dividing
surface when it is at the reversal point of its oscillation and has an amplitude of —0.13.
The particles that react at the end of the fitting range at ¢ = 2.6 at which the dividing
surface is at the reversal point at z = +0.13. Particles that react within this fitting
range react while the DS is constantly moving away from them which seems to lead to
a minimum value of the rate. In contrast, when starting the propagation at a barrier-
phase of tg = 1.8, the particles resposible for the rate react at times from ¢ = 2.6 to
t = 3.6. In this range of time the DS is moving towards the particles (highlighted in
red in Fig. 4.9). In this case the reaction rate is above the average rate. Through the
comparison of the DS’s movement for the minimum and maximum reaction rate, it can
be assumed that the DS’s direction of movement has a direct impact on the rate. The
cause of this impact is likely to be the different relative velocities of the DS and the
particles. When the barrier is moving away from the particles, the relative velocity is
small and vice versa. Since the rate is a quantity of how fast the particles cross the DS,
it is proportional to their relative velocity. The relative velocity is especially big when
the DS has a high velocity towards the ensemble. In addition, particles that react while
the barrier is moving away from them lose more kinetic energy while moving towards
the DS, since the DS has already moved forward as soon as the particles have overcome
the potential energy of their previous position. This is the case because the the DS has
already moved forward as soon as the particles have overcome the potential energy at
their previous positions. As a consequence they have a smaller velocity when reaching
the DS compared to the particles reacting while the barrier is moving towards them.
This increases the effect the barrier’s direction of movement has on the rate.
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Figure 4.8: Upper plot: Reaction rate vs. the barrier-phase for two ensembles initially
positioned at different x.; Lower plot: Number of reactive particles vs. the
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barrier-phase for two ensembles positioned at different x.
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4.2 Dependence of the Rate on the Barrier-Phase
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Figure 4.9: Amplitude of the oscillation of the NHIM for two full periods. Phases in
which the NHIM is moving towards the ensemble are highlighted in red;
phases in which the NHIM is moving away from the ensemble are highlighted
in blue.

As mentioned above, the rate reaches a maximum when the DS is moving towards the
ensemble and minimal when it is moving away from the ensemble. Therefore, one expects
these two contrary effects of the DS’s movement to compensate each other, when the
amount of time spent moving towards the ensemble and away from the ensemble is equal
within the fit-range. However, it can be observed that the impact of the DS’s movement
is mainly determined by its movement at the beginning of the fit-range rather than by
its movement at the end of the fit-range. For expample, for a barrier-phase of ¢y, = 0.3
the particles that react at the beginning of the fit-range react while the barrier is moving
towards them while the particles reacting at the end of the same fit-range react while
the barrier is moving away from them. This circumstance results in a reaction rate
larger than the average rate, which indicates that the rate of the particles reacting at
the beginning of the fit range has a bigger impact on the overall rate. For a barrier-phase
of tg = 1.3 these particles react while the barrier is moving away from them which leads
to a smaller rate. Consequently, the reaction rate for a system that starts at {p = 0.3 is
bigger than the one for a system with ¢y = 1.3.

The lower plot in Fig. 4.8 shows how the barrier’s phase affects the number of reactive
particles in both ensembles. The ensemble that has an initial position of x = —0.4 con-
tains a maximum number of reactive particles of approximately three times the number
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4 Calculating Reaction Rates with a Suitable Ensemble

of the ensemble with an initial position of x = —0.8. Particles that start at + = —0.8
move towards the barrier until they reach x = —0.4 while constantly converting kinetic
energy into potential energy. Thus, only particles with a positive velocity in x-direction
over a certain value are able to reach the DS. Compared to the particles that start at a
position of x = —0.4, these particles make up a smaller share of their respective initial
ensemble. In addition, the ensemble at © = —0.4 is likely to have a broader distribution
of the kinetic energy of the particles that reach the DS compared to the ensemble at
xr = —0.8, since also particles with a relatively small kinetic energy have the ability to
reach the DS. It should also be noted that particles initialized closer to the barrier’s
top have a higher potential energy, making them more likely to have enough energy to
react. This causality explains why the number of reactive particles is much smaller for
an ensemble starting further away from the barrier’s top.

For the ensemble at x = —0.4, the maximum number of reactive particles is reached at
a barrier’s phase of t; = 1.2. The lowest number of reactive particles is at tg = 0.0. In
order to explain this behavior, the barrier’s position and movement to the beginning of
the propagation for the different values of ¢y must be analysed, since roughly 70% to 90%
of all reactants react within a range from ¢ = 0.3 to the start of the fit at t = 0.8. The
particles that react within that range of time are likely to have a higher kinetic energy
than the particles that cross the DS at a later time. Therefore, they are less likely to be
affected by the barrier’s movement as much as the particles that react at a later time.
However, the barrier’s position could have an impact on the number of reactions. For
an initial barrier-phase of around ¢, = 0.0 the distance between the initial position of
the ensembles and the barrier reaches a maximum during the time-range that holds the
most reactions. Here, the number of reactions is minimal. For an initial barrier-phase
of around ¢y, = 1.0 the barrier is closest to the initial position of the ensemble during
that range of time. Another factor with the ability to influence the number of reactions
is the position of the ensemble on the barrier for different barrier-phases. For an initial
barrier-phase of tg = 1.2 the barrier is closer to the ensemble than it is for a barrier-
phase of £y = 1.0 which leads to a high potential energy of the particles and makes them
more likely to react. This could be a possible cause for the shift of the maximum to
the barrier-phase of 1.2. The time-range that holds the most reactions for the ensemble
at © = —0.8 is from 0.5 to 1.0. This shift of 0.2 from the respective time range of the
ensemble at x = —0.4 leads to a shift of 0.2 of the minimum to a value of t, = 1.8.

4.3 The Ensemble’s Total Number of Particles

As it was already observed for different seeds of the random number generator used to
generate an ensemble in Sec. 3.5, a small number particles in an ensemble is prone to
errors. When the propagated ensemble contains a larger amount of particles, the plot of
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Figure 4.10: Averaged rate k vs. the total number of particles in the ensemble Ny for a
time-dependent and a static potential.

the number of reactions over time is less sensitive to fluctuations and leads to a clearer
estimation of the reaction rate. Since each particle’s trajectory must be evaluated sep-
arately in order to obtain the number of reactive particles over time, the computation
time increases approximately linearly with the number of propagated particles. There-
fore, it is favorable to propagate the least amount of particles while still obtaining a
clear reaction rate with only a small deviation due to fluctuations. Figure 4.10 shows
the averaged reaction rate for an increasing number of particles in the ensemble within a
range from N = 10% to N = 107 for systems with a static as well as a dynamic potential.
Due to physical limitations of the ITP1 workstations, it is not possible to propagate
N = 10® particles at once. Both graphs in Fig. 4.10 show a convergence of the rate for
an increasing amount of particles. Since the reaction rate is not significantly different
for N = 105 and N = 107 and the computation time is ten times longer for the system
of 107 particles, all of the ensembles propagated in this chapter contain 10° particles.

4.4 Modification of the Potential’s Parameters

In this section, it is investigated how the rate is influenced by the specific structure and
dynamics of the potential. For this purpose, an ensemble on the MEP at x = —0.6 and
with a kgT = 1.0 is propagated. Since, for the purpose of analysing a time-dependent
system, the dynamic properties of the system are of particular interest, the parameters

43



4 Calculating Reaction Rates with a Suitable Ensemble

Z and w, in Eq. (2.4) are varied to change the oscillation of the potential. When varying
these parameters, the aim is to find resonance effects that lead to an increase of the
reaction rate. In addition, the height of the barrier FEj is varied to determine how the
value of the barrier’s maximum energy influences the reaction rate. Lastly, the parameter
y is varied in order to clarify if the distance of the potential’s minima in y-direction has
an impact on the rate.

Preferably, the averaged rate would be estimated for many more values of the param-
eters to get a more accurate impression of the respective parameter’s influence on the
reaction rate. However, for the determination of only a single averaged rate for a specific
parameter value several steps have to be taken: the generation of training-data for the
neural net, the training of the neural net with this training-data, the generation of the
ensemble, the propagation of the ensemble, the estimation of the rate via the fitting
procedure, the averaging of the rate over 8 different barrier-phases. So since the esti-
mation of one averaged reaction rate is quite time-consuming, the averaged rate is only
estimated for 5 to 9 different values of the respective parameters.

Fig. 4.11 shows the course of the reaction rate over the values of F}, from 1.0 to 3.0.
Within the barrier height’s variation range, the average rate increases linearly from
a value of & = 2.1 to a value of k = 4.1. A possible explanation of this behavior
is that only the fastest particles have enough energy to react over a higher barrier,
leading to a reaction rate that is primarily a reflection of the particles high velocity. In
order to verify or falsify this explanation, it needs to be checked whether the number
of reactants decreases for propagations in a system with an increasing barrier height or
not. Figure 4.12 displays the share of reactive particles to the ensemble’s total number
of particles, over barrier-phases within one oscillation period for different values of the
barrier height. Each graph has a minimum at the barrier-phase of t; = 0 and a maximum
roughly around the value of ¢y = 1.2 (see Sec. 4.2 for further explanation). For the
smallest tested barrier height of F}, = 1.0, the minimum has the largest value out of all
the minima-values while it also has the smallest maximum-value out of all the maxima-
values. For the largest tested barrier height of F}, = 3.0 this relation is the exact opposite.
The movement of a barrier of a high potential energy seems to have a larger impact on
the amount of reactions than of a smaller potential energy. However, when averaging
over the number of reactions for all barrier-phases, the total numbers of reactions for
the barrier heights F}, = 1.0 and F}, = 3.0 are approximately equal with a deviation of
only 2%. Hence, altough the particles propagated for a potential with a barrier height
of Ey, = 3.0 have to overcome a higher potential energy to react, the number of reactions
is not reduced. Thus, the hypothesis, that only the fastest particles are able to perform
a reaction for large barrier heights is wrong.
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Figure 4.11: Averaged rate k vs. the barrier height E},. The rate increases linearly for
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Figure 4.12: Share of reacting particles over the barrier-phase ¢t for several values of Fj,.
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The number of reactions for different barrier heights can only remain constant if the
particles somehow gain at least the same amount of energy they lose while overcoming
the barrier. Therefore, it can be assumed that the particles gain more energy when
driven by the movements of a system with a higher potential energy than when they
are driven by a system with a low potential energy (small barrier height). This gain of
energy could result in higher velocities of the particles, which inevitably leads to higher
reaction rates.

Fig. 4.13 shows the averaged rate for different values of the barrier’s oscillation frequency
w,. The mean velocity of the barrier is the product of the amplitude and frequency of
its oscillation. Hence, the barrier has a higher mean velocity for increasing values of w,
when the oscillation amplitude  remains constant. However, one does not expect to
observe a dependence of the rate on the mean velocity of the barrier for the following
reason: In Sec. 4.2 it was shown that the rate is partly a reflection of the relative velocity
(UParticle — UBarrier) etween the barrier and the particles at the moments of their reaction.
When the mean velocity of the barrier increases, the relative velocity is expected to
increase whenever the barrier is moving towards the ensemble and to decrease whenever
the barrier is moving away from the ensemble. So when averaging over all barrier-phases,
these effects are expected to compensate each other and should have no impact on the
rate. However, the averaged rates in Fig. 4.13 are not constant for different values of
w,. The rate is maximized for an oscillation frequency of w, =~ 47/3 and decreases
afterwards. The rate’s maximum indicates a kind of “resonance” of the movement of
the particles and the barrier for an oscillation frequency of w, ~ 47/3, leading to an
increase of the reaction rate. It is known that the NHIM is in phase with the barrier
but has a smaller oscillation amplitude. One could suggest a resonance of the NHIM’s
amplitude for w, ~ 47/3 that would lead to a resonance of the rate. However, the
NHIM’s amplitude shows no such maximum but increases linearly for decreasing values
of w,. It remains unclear what causes the rate’s resonance.

Next, the barrier’s oscillation amplitude Z is varied within a range from 0.0 to 0.8, see
Fig. 4.14. Similar to the rates in Fig. 4.13, the averaged rate reaches a maximum and
decreases afterwards. The rate is maximized for an oscillation amplitude of z = 0.2.
For an amplitude of = 0.3, the value of the respective rate interrupts the monotonous
decrease after the maximum was reached. But since the deviation from a monotonous
course is below 0.03, it is likely to be due to the general uncertainty of the rate. The
barrier’s mean velocity also increases linearly with an increasing value of . Since the
barrier’s velocities at the maxima in Figs. 4.14 and 4.13 are not equal, the value of the
oscillation amplitude must have an additional impact on the above mentioned resonance
of the particles and the barrier.
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Figure 4.13: Averaged rate k vs. the oscillation frequency w, of the barrier. The rate
reaches a maximum at w, ~ 4m/3.
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Figure 4.14: Averaged rate k vs. the barrier’s oscillation amplitude #. The course of the
rate has a maximum at = ~ 0.2.
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Figure 4.15: Averaged rate k vs. the deviation of the potential’s minima ¢. The rate
decreases linearly for increasing values of .

Fig. 4.15 shows an approximately linear decrease of the averaged reaction rate for increas-
ing values of the parameter y that determines the deviation of the potential’s minima
from y = 0.0. This behavior could be due to increasing length of the saddle in y-direction
for an increasing value of . When the saddle region is broader, the particles are more
likely to be bound to the saddle region for a longer time which may cause their velocities
to decrease and therefore lead to a decrease of the reaction rate.
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5 Ensemble Positioned Around the
NHIM

In Section 4.1.1 it was stated that reactive particles with a small kinetic energy are
heavily influenced by the potential’s dynamics and therefore have a reaction rate that
is a reflection of the potential’s properties. When generating an ensemble with a small
kinetic energy, the problem of having an insufficient amount of reactive particles arises
which leads to bigger fluctuations due to the value of the seed (see Sec. 3.5), for example.
This chapter deals with the challenge to find an ensemble that has both, a small kinetic
energy and a large amount of reactive particles. Once a new ensemble is introduced, the
potential’s parameters are again varied and the respective reaction rates are calculated
and presented.

5.1 Properties of the Ensemble

Given the ensemble that was propagated in the previous chapter, it was found that only
particles with a kinetic energy above a certain value have enough energy to reach the
DS and react. This is due to the transformation of kinetic into potential energy while
moving up the barrier. When an ensemble has a high potential energy initially, meaning
it is positioned closer to the top of the barrier, the particles need less initial kinetic
energy to cross the DS. An increase of the potential energy while keeping the kinetic
energy constant will indeed increase the number of reactions, but the reacting particles
will also have a higher velocity when they do so. Since the goal is to increase the number
of slow, yet reacting particles, the ensemble must be positioned closer to the top of the
barrier while decreasing the overall kinetic energy. This has to be done in a way that
does not inhibit the slowest particles in the ensemble from reacting under advantageous
circumstances, such as a barrier moving towards the ensemble. Furthermore, when an
ensemble is initialized with a small value of kgT’, the distribution of the particle’s kinetic
energies is more narrow, leading to particles with a more similar and small kinetic energy;,
which provides a higher concentration of critical particles.

Similar to the ensemble used in the previous chapter, the new ensemble is positioned
on the MEP. However, the new ensemble is positioned along the z-axis in a range of
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Ax = £0.2 around the z-position of the dividing surface xpg, which is approximated by
its position for the given values of y = 0, v, = 0 and the respective phase of the barrier
at which the propagation is started. The velocities of the particles are distributed within
a restricting range from v,, = —10 to 10. The value of kg7 is chosen to be 0.2. For
values smaller than kg7 = 0.2 the number of reactants decreases significantly which
indicates that particles at the ends of the z-range are no longer able to reach the DS.
For each initial barrier-phase, the ensemble has to be generated individually, since the
position of the time-dependent DS is different and with it, the z-range changes.

The particles of the ensemble are initialized within the z-range (zps — 0.2, xps—+0.2) as
free particles with the potential set to zero to ensure that the kinetic energy distribution is
not influenced by the different potential energies within the z-range. They are initialized
with positions on the MEP. In order to determine whether a particle crosses the DS, it is
necessary to know on which side of the DS it is positioned at the start of the propagation.
For each particle, the x-position of the DS is determined through the particle’s values of
y and v,. By comparing each particle’s z-position to the respective position of the DS,
the ensemble is split into two ensembles - one, positioned on the left side of the DS and
possibly performing a standard reaction, and another one positioned on the right side
of the DS, possibly performing a reverse reaction. The ensemble positioned at x smaller
than the z-position of the DS is referred to as the ensemble on the “left” side of the DS,
while the other one is refered to as the ensemble on the “right” side of the DS. Ideally,
the two ensembles contain the same amount of particles. However, this is not always the
case when approximating the position of the whole DS with its position for the values
y = 0.0 and v, = 0.0. For an initial barrier-phase of ¢y = 0.5 the left ensemble contains
roughly 33% of all of the initialized particles while the right ensemble contains 67%. For
a barrier-phase of ¢ty = 1.5 these percentages are reversed. This indicates that taking the
position of the DS at the values y = 0.0 and v, = 0.0 as its average x-position, is just
an estimation of its actual position in the x-range of the particles. A possible solution
to this issue will be mentioned in the outlook.

Due to the ensemble’s low value of kg7, the number of reactive particles is expected
to be heavily influenced by the barrier’s movement. The share of reactive particles to
the total number of particles in each ensemble over the initial phase of the barrier is
displayed in Figure 5.1 for both ensembles on the left and right side of the DS. The
system is time-dependent and the potential’s parameters are set to the standard values.
The two ensembles are propagated separately. The graphs show a periodical behavior
of N,/Ny, covering one entire period within one period of the barrier’s oscillation. The
ensemble performing the standard reaction has a maximum share of reactive particles
for an initial barrier-phase of t; = 1.0, whereas the ensemble on the right side of the
DS has a minimum share of reacting particles fot this barrier-phase. This is caused by
the movement of the barrier at the beginning of its oscillation. For a barrier-phase of
to = 1.0, the DS moves towards the left ensemble and away from the right ensemble with
a maximum velocity. In contrast, the DS moves towards the right ensemble and away
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Figure 5.1: Share of reactive particles vs. the phase of the barrier for particles with initial
positions left and right of the dividing surface.

from the left ensemble for barrier-phases close to zero, causing a large share of reactive
particles in the right ensemble and a small share in the left ensemble. Therefore, the
two graphs in Fig. 5.1 are in antiphase. For barrier-phases within one period of the
barrier’s oscillation, the percentage of reacting particles differs from under 10% up to
almost 60% of the total number of particles in the respective ensemble. Considering that
only approximately half of the particle’s velocities are initialized with a direction towards
the barrier, a percentage of almost 60% is a relatively large share of reactive particles.
In addition, given the small value of the ensemble’s kgT', these reactive particles are
likely to have small kinetic energies and are highly influenced by the system’s dynamics.
Therefore, the ensemble introduced in this chapter does indeed provide a larger share of
slow, yet reactive particles than the previously propagated ensemble, but only for certain
values of #y. In contrast, the high dependence of the low-energy ensemble on the barrier-
phase leads to a very low percentage of reacting particles of less than 10% for other values
of typ. When the number of reactants is small, the course of the reactants’ population
over time is more sensitive to fluctuations and the error due to the fitting-procedure
increases. However, whenever one of the two ensembles positioned on the left and right
side of the DS contains a small share of reactive particles at a given barrier-phase, the
other one inevitably contains a large share of reactive particles. When averaging over the
estimated rates of both ensembles, the error due to the fitting-procedure can be slightly
compensated.
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Figure 5.2: Reaction rate vs. the barrier’s phase ¢y for an ensemble performing a stan-
dard reaction (left ensemble) and one performing a reverse reaction (right
ensemble).

Figure 5.2 shows the behavior of the ensembles’ rates for different barrier-phases within
one period of its oscillation as well as the averaged rates over the phases. The maximum
deviation of rates for different ¢ is approximately Ak = 0.3. Compared to a deviation
of up to Ak = 0.7 of the rates of the ensemble propagated in the previous chapter, this
value is relatively low. So although the barrier’s phase has a high impact on the number
of reactive particles for the ensemble introduced in this chapter, the rate seems to be
less affected by this than it was for the ensemble initially positioned further away from
the DS. A possible explanation of this behavior is that particles with a small kinetic
energy are more likely to be moved along with the barrier rather than maintaining the
value and direction of their inital velocity during the reaction. When this happens, the
relative velocity of the particles and the barrier remains at a more constant level, leading
to a more constant reaction rate.

Another factor that could possibly influence the rate is the change in the potential
energies of the particles for different barrier-phases. The position of the DS is not
equal to the position of the barrier for barrier-phases other than t; = 0.0 and t, =
1.0, because it has a smaller oscillation amplitude than the barrier. For these barrier-
phases, the potential is not symmetrical around the DS, like it is around the barrier.
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Since the particles are distributed in a fixed range around the DS and not around the
barrier, the ensembles have a different distribution of the potential energy for different
barrier-phases. However, if a change in the potential energies of the particles lead to a
noticable difference in the rates, the courses of the rates of the left compared to the right
ensemble in figure 5.2 would be periodic as well as in antiphase to each other. Since this
relation can not be observed, it can be assumed that the change in the distribution of
the potential energies does not impact the reaction rates significantly. The reaction rate
of the ensemble performing a standard reaction shows a similar periodic course as the
rates of the ensembles in the last chapter. For the course of the rate of the ensemble that
performs the reverse reaction one would expect to observe the reverse periodic behavior.
Yet, the course of the rate shows no obvious periodicity. The averaged rates of the two
ensembles have a deviation of approximately Ak = 0.07 which is about 2% of the rates’
values and is likely to be due to the general inaccuracy of the fitting-procedure.

5.1.1 The Ensemble’s Total Number of Particles

Similar to Sec. 4.3 of the previous chapter, in this section an appropriate number of
particles contained by the ensemble is determined. Again, the ensemble should contain
the smallest amount of particles possible, while still providing a clear reaction rate whose
accuracy and value is close to that of an ensemble containing a large amount of particles.
Figure 5.3 shows the averaged rate over the number of particles for two systems with a
static and a dynamic potential. The rate is not only averaged over the barrier’s phase
but it is also the mean value of the rates of the right and left ensemble. Both of the
graphs show a convergence for an increasing amount of particles. It is striking that the
graph for the static potential converges starting from a reaction rate that is much larger
than its final value, whereas the graph of the time dependent potential converges starting
from a reaction rate that is only slightly smaller than its final value. Since the rate does
not change significantly from N = 10° to N = 107, the number of particles contained by
the left and right ensemble combined is chosen to be 10° for all propagations that are
performed in this chapter.
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Figure 5.3: Averaged rate vs. the number of particles for a time-dependent and a static
potential.

5.2 Moaodification of the Potential’s Parameters

Similar to Sec. 4.4 in the previous chapter, this section deals with the dependence of the
reaction rate on the potential’s parameters. Again, the parameters Ey,, Z, w, and y are
varied. The only difference is in the propagated ensemble. The ensemble used in this
section is the one that was introduced at the beginning of this chapter.

Figure 5.4 displays the reaction rate over different values of the barrier height within a
range from Fy, = 1.0 to F,, = 3.0. The rate is equal to the mean value of the rates of
the ensemble on the left and that on the right side of the DS, which are additionally
averaged over the barrier-phase. The rate increases linearly from k = 2.2 up to a value
of k = 3.8. This course is very similar to the course in Fig. 4.11 of the ensemble in
Chapt. 4 and is likely to be due to the same cause: particles gain more energy by the
movement of systems with a higher potential energy and therefore react faster. However,
the share of reactive particles in the ensembles behaves differently for different values
of Ey. Figure 5.5 displays the course of the share of reactive particles in the ensemble
performing the reverse reaction, over the inital barrier-phases for all of the tested barrier
heights. Similar to the system in Chapt. 4, the share of reactive particles has a higher
deviation for larger values of F}. Again, the movement of a barrier of larger height
seems to have a bigger impact on the amount of reactions. A difference to the system in
Chapt. 4 occurs when summing over all reactions for the different barrier-phases. The
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Figure 5.4: Averaged rate k vs. the barrier height Fy. The rate increases linearly for
increasing values of Fj,.

number of reactions is not constant for all barrier heights - it decreases for increasing
values of F},. Since the only difference between the system of this chapter to the system
in Chapt. 4 is the ensemble’s position and value of kg7T', one of these properties or a
combination of the two must be causing the different behavior.

As it was observed in Sec. 5.1, the small value of kg7 causes the number of reactions
to be heavily influenced by the barrier’s phase of movement. For increasing values of
Ey in Fig. 5.5, the decrease of the number of reactions for barrier-phases for which the
barrier is moving away from the ensemble is becoming larger than its increase for barrier
phases for which the barrier is moving towards the ensemble. When particles have a low
initial potential energy due to their position in the potential energy landscape, while
also having a small kinetic energy due to the small value of the ensemble’s kgT', they are
less likely to react. Such a particle may perform a reaction when the barrier is moving
towards it, but it is almost impossible for it to react when the barrier is additionally
moving away from it during the reaction. For an increasing barrier height, there are
more particles that have a relatively low potential energy due to the increasing value of
the gradient of the potential within the z-range in which the ensemble is initialized. For
example, for an initial barrier phase of ty = 0.0, at which the barrier and the DS are both
at x = 0.0, particles at the edge of the range have a smaller potential energy compared to
those positioned close to the top of the barrier. The difference of the particle’s potential
energies increases with an increasing height of the barrier, leading to more particles with
a relatively low potential energy compared to the energy of the barrier they need to
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Figure 5.5: Share of reacting particles over the barrier-phase ¢, for all tested values of
Ey,.

overcome in order to react. This causality could be manifested in the smaller number of
reactions for systems with a high barrier.

Another important observation regarding the ensemble’s properties for different values
of the barrier height is displayed in Fig. 5.6. The plot shows the number of particles
contained by the ensemble on the right side of the DS in relation to the total number
of particles that are initialized within the whole range around the DS. In a previous
section it was already mentioned that choosing the average position of the DS as its
position for the values y = 0 and v, = 0 is an overestimation for barrier-phases other
than ty = 0.0 and ¢y = 1.0. For the barrier-phases 0.5 and 1.5, the DS is deflected the
most. This is where the overestimation of the DS’s average position is the greatest and
leads to a maximum deviation of the share of particles contained by the two ensembles
on the left and right side of the DS. The maximum deviation increases for a potential
with an increasingly high value of Ey,. For a barrier height of 3.0 and ¢y = 0.5 the right
ensemble contains 70 % of all particles. Ideally, the left and the right ensemble should
contain the same share of 50 % of all initialized particles. Therefore, it is necessary to
find a solution to the overestimation of the average position of the DS, especially when
propagating the ensembles for potentials with a high value of E},. A possible suggestion
on how to overcome this problem will be mentioned in the outlook.

Fig. 5.7 displays the averaged reaction rate for different oscillation frequencies w, of
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Figure 5.6: Share of particles contained by the ensemble on the right side of the NHIM
over the barrier-phase for all tested values of Ej,.

the barrier. The rate increases for frequencies up to k = 3.07, remains constant until
w, = 4m/3 and decreases afterwards. Similar to the rate’s maximum in Fig. 4.13 in the
previous chapter, the high values of k are assumed to be due to a resonance effect of the
movement of the particles and the barrier.

Fig. 5.7 shows the dependence of the averaged reaction rate on the amplitude  of the
barrier’s oscillation. Unlike in Fig. 4.13 in the previous chapter, the course of the rates
does not reach a clear maximum, but remains constant for values from z = 0.0 to z = 0.4
and decreases afterwards. Hence, the oscillation amplitude does not seem to impact the
reactive behavior of the ensemble that is located in a small range around the DS as much
as the one of the ensemble positioned further away from the DS.

Similar to the results in Fig. 4.15 of the previous chapter, Fig. 5.9 shows the same linear
decrease of the reaction rate for increasing values of the parameter y. This behavior is
likely to be due to the same reason as for the ensemble of the previous chapter: When
the saddle region is broader, the particles are more likely to be bound to the saddle
region for a longer time which may cause their velocities to decrease and therefore lead
to a decrease of the reaction rate.
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Figure 5.7: Averaged rate k vs. the oscillation frequency w, of the barrier. The rate
reaches its highest value of approximately k = 3.07 for frequences from
w; = 0.97 to w, = 47/3 and decreases afterwards.

3.4
3.2
X
X X X X
I 3.0 X
X
2.8
2.6
0.0 0.2 0.4 0.6 0.8
&

Figure 5.8: Averaged rate k vs. the barrier’s oscillation amplitude Z. The course of the
rate is roughly constant for values from = 0.0 to £ = 0.4 and afterwards
decreases for increasing values of 2.
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Figure 5.9: Averaged rate k vs. the deviation of the potential’s minima 7. The rate
decreases linearly for increasing values of .
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6 Conclusion and QOutlook

In this work, it was examined if and how several aspects of the simulated system impact
the value of the rate constant. It was found that the accuracy of the DS, the chosen
fit range for the estimation of the rate constant, the initial phase of movement of the
barrier, as well as the ensemble’s energy distribution are factors that lead to a deviation
of the rate constant. The estimation of the rate constant via a fitting procedure was
found to be prone to uncertainties. For future research it might be beneficial to develop
a new method of estimating the rates, e.g. by calculating the numerical derivative of the
number of reactants over time and determining the rate constant out of it. The impact
of the random-number-generator’s seed calls for the propagation of more particles which
would however increase the computational time of the simulation.

Further, an ensemble with an optimized energy was developed whose reaction rates reflect
the system’s dynamics rather than depending on the ensemble’s properties such as its
position on the Minimum-Energy-Path. When propagating this ensemble, the reaction
rate showed a periodical dependence on the initial barrier-phase. For different positions
of the ensemble on the MEP, this periodical dependence is shifted, while the average
reaction rate for various barrier-phases within one period of the barrier’s oscillation
stays the same. Therefore, the rate constant was usually averaged in order to enable
the comparison of rate constants of different systems. By estimating reaction rates for
an increasing number of reactants within the ensemble, a total number of N = 10° was
found to be a sufficient amount of particles. The rate constant showed a dependence
on all of the potential’s parameters that were varied. An increasing barrier height lead
to a linear increase of the rate constant. For the variation of the barrier’s oscillation
frequency as well as for the variation of the amplitude of the oscillation, the rate was
maximized for a certain value, respectively. This indicates a resonance between the
movement of the barrier and the particles in systems with the respective parameters.
For an increasing distance of the potential’s minima in y-direction, the rate showed a
linear decrease.

Furthermore, the formation of a low-energy ensemble containing a high amount of critical
particles was accomplished. It showed a smaller dependence on the initial barrier-phase
as the previously propagated ensemble. However, it showed a significantly higher depen-
dence of the number of reactive particles on the barrier-phase. Similar to the previous
ensemble, an ensemble containing 10° particles was found to be sufficiently suited for the
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estimation of the rate constant. The rate constant’s dependence on various parameters
of the potential was determined. Similar to the course of the rate of the previous ensem-
ble, the rate showed a linear increase for an increasing barrier height. In addition, the
approximation of the DS’s position that determines the ensemble’s position was found
to be an overestimation whose inaccuracy increased for an increasing barrier height. A
possible solution on how to avoid the issue of approximating the DS’s position could be
the following: First an equidistant grid of bath coordinates is calculated for which the
NHIM'’s position is then estimated. Afterwards, the particles can be placed on this grid
and shifted by a fixed value along the reaction coordinate. Like that, the DS’s position
does not have to be approximated for the generation of the ensemble. Similar to the rate
estimated by propagating the previous ensemble, it reached a maximum for a certain
value of the barrier’s oscillation frequency, indicating a resonance of the barrier’s mean
velocity and the movement of the particles. In contrast, the rate remained constant
for various oscillation amplitudes. An increasing distance of the potential’s minima in
y-direction again lead to a linear decrease of the reaction rate.

Throughout this work, it was possible to determine the dependence of the rate constant
on many different properties of a two-dimensional time-dependent system. Since the
methods used to simulate this system are advanced enough to estimate reaction rates,
the next mayor goal would be to simulate a real system, for instance the isomerization of
LiCN [37-39]. In the distant future, it might even be possible to predict the impact that a
certain external time-dependent field has on a chemical reaction and enable the targeted
manipulation of reaction rates in technical applications through external forces.
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7 Zusammenfassung in deutscher
Sprache

Diese Arbeit befasst sich mit der Bestimmung von Reaktionsraten in einer numerischen
Simulation eines zweidimensionalen und zeitabhéingigen Systems im Rahmen der Tran-
sition State Theory (TST). Insbesondere wird die Reaktionsrate in Abhéngigkeit ver-
schiedener Parameter bestimmt, welche die Struktur der Potentiallandschaft des Systems
definieren.

In TST kann eine solche Reaktionsrate aus dem Fluss von Reaktanden durch eine Trenn-
flache berechnet werden, welche den Phasenraum eindeutig in Reaktandenkonfigura-
tionen und Produktkonfigurationen aufteilt. In vergangener Forschungsarbeit am I'TP1
konnten mehrere Methoden zur Bestimmung einer zeitabhéngigen Hyperflache entwickelt
werden, welche einen mehrdimensionalen und zeitabhédngigen Phasenraum eindeutig in
die beiden Bereiche trennt. Dies ermdglicht die Berechnung von Reaktionsraten in dieser
Arbeit.

Kapitel 2 gibt eine Einfiihrung in die Methoden, welche zur Bestimmung von Reakti-
onsraten, sowie zur Berechnung der Hyperfliche verwendet werden. Zunéchst wird die
Bestimmung der Reaktionsrate anhand einer Fit-Funktion, welche den Verlauf der An-
zahl an reaktiven Reaktanden iiber die Zeit anndhert, vorgestellt. Zur Berechnung der
Hyperfliche wird das Konzept der normal hyperbolischen invarianten Manigfaltigkeit
(NHIM) eingefiihrt, welche die Position der Hyperfliche auf der Reaktionskoordinate
definiert. Zudem wird auf die Bestimmung einer zeitlich und raumlich kontinuierlichen
Hyperflache mittels der Interpolation vieler Datenpunkte durch ein Neuronales Netz ein-
gegangen. In Kapitel 2 findet sich auflerdem eine kurze Vorstellung des, fiir die Simula-
tionen in dieser Arbeit verwendeten, Systems, einschliefllich der Struktur des zeitabhéan-
gigen zweidimensionalen Rang-1 Sattelpotentials, der Art des propagierten Ensembles,
dem Aufbau des verwendeten Neuronalen Netzes, sowie die auf das System angepasste
Ratenbestimmung.

Kapitel 3 legt dar, wie verschiedene Aspekte des Systems den Wert der Reaktionsrate,
teilweise in ungewiinschter Weise, beeinflussen. Dazu wird zunéchst auf den Einfluss von
mehrfach reagierenden Teilchen eingegangen, deren Existenz die Bestimmung der Rate
erschweren. Der Abschnitt zeigt, wie wichtig es ist, ein Neuronales Netz zu entwickeln,
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7 Zusammentassung in deutscher Sprache

welches eine Hyperfliche mit grofler Genauigkeit anndhert. Das, in dieser Arbeit ver-
wendete, Netz zeichnet sich durch die Representation einer Hyperfliche mit einer sehr
kleinen Anzahl an mehrfach reagierenden Teilchen aus. Auch die Wahl des Fit-Bereichs
hat einen groflen Einfluss auf den Wert der Reaktionsrate. Fiir hoherenergetische En-
semble hiangt die Rate verstiarkt vom Fit-Bereich ab. Dieser Abschnitt macht deutlich,
dass es sinnvoll ist, fiir die Simulationen stets Ensemble derselben Energie, sowie einen
dhnlichen Fit-Bereich fiir die Ratenbestimmung zu wihlen. Auch die Phase der Oszilla-
tion der zeitabhéngigen Potentialbarriere beeinflusst die Rate. Um verschiedene Systeme
miteinander vergleichen zu koénnen, wird die Rate fiir gewohnlich iiber 8 verschiedene
Phasen innerhalb einer Periode gemittelt. Es wird auflerdem aufgezeigt, dass es fiir ein
statisches Potential zu einer Unsicherheit der Rate fiir verschiedenen Barrierenphasen
kommt, welche allerdings leicht vermieden werden kann, wenn man die Hyperfliche in
diesem Fall zeitunabhingig interpoliert. Zuletzt wird in Kapitel 3 noch auf den Ein-
fluss des sogenannten ,seeds” des Zufallsgenerators auf die Rate eingegangen, welcher
zur Generierung des Ensembles verwendet wird. Um diese Abhéngigkeit zu vermeiden
sollte eine groflere Anzahl von Teilchen propagiert werden, was aufgrund des hoheren
Zeitaufwands in dieser Arbeit allerdings nicht umgesetzt werden konnte.

Kapitel 4 beschéftigt sich mit der Ratenrechnung mit einem geeigneten Ensemble. Zu-
néchst wird beobachtet, dass die Rate eines Ensembles, welches in y-Richtung ausge-
dehnt ist, eine exponentielle Abhéngigkeit von der Position des Ensembles entlang der
Reaktionskoordinate = aufzeigt. Durch einige Untersuchungen wird ein neues Ensemble
ermittelt, welches auf einem Punkt auf dem Pfad der minimalen Energie im Potential
platziert ist und fiir welches die Abhéngigkeit der Rate von der Position des Ensembles
verschwindet. Anschlieend wird die Energie des Ensembles optimiert. Es zeigt sich, dass
die Rate von Ensemblen mit sehr hoher Energie unbeeinflusst von der Bewegung der Po-
tentialbarriere ist, was nicht dem Zweck dient, Reaktionsraten in Abhéngigkeit zeitlich
getriebener Systeme zu bestimmen. Ist die Energie des Ensembles zu klein, reagieren
signifikant weniger Teilchen, was wiederum die Ratenbestimmung erschwert. Schliellich
wird eine Energie gewéhlt, bei welcher ausreichend viele Teilchen reagieren, sowie die
Rate von der Bewegung des Potentials abhéingt. Anschliefend wird eine periodische Ab-
héngigkeit der Rate, sowie der Anzahl an Reaktionen von der Barrierenphase festgestellt
und Theorien zu deren Ursachen aufgestellt. Eine Bewegung der Barriere entgegen der
Bewegung der Teilchen scheint zu einer hohen Reaktionsrate zu fithren, wiahrend eine
Bewegung in entgegengesetzter Richtung zu einer kleinen Reaktionsrate fithrt. Um die
optimale Anzahl an Teilchen in einem Ensemble zu bestimmen, wird die Reaktionsrate
fiir verschiedene Teilchenzahlen bestimmt. Es zeigt sich eine Konvergenz der Rate gegen
einen festen Wert fiir grofler werdende Teilchenzahlen. Ab einer Teilchenzahl von 10°
stimmt die Rate ausreichend genau mit diesem Wert iiberein, weshalb die Teilchenzahl
des Ensembles fiir alle Propagationen zu 10° gewihlt wird. Zuletzt werden verschiedene
Parameter des Potentials variiert und die jeweilige Reaktionsrate bestimmt. Die Rate
zeigt einen linearen Anstieg fiir eine hoher werdende Potentialbarriere. Fiir die Varia-
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tion der Oszillationsfrequenz der Barriere zeigte sich eine Resonanz der Rate fiir eine
bestimmte Frequenz. Selbiges zeigte sich bei der Variation der Oszillationsamplitude.
Auf die genauen Ursachen dieses Resonanzeffekts konnte nicht geschlossen werden. Fiir
einen grofler werdenden Abstand der beiden Téler des Potentials zeigte die Rate einen
linearen Abfall.

Das Ziel von Kapitel 5 ist die Erhohung der Anzahl an sogenannten kritischen Teilchen
im Ensemble. Die Reaktionsrate dieser Teilchen gibt besonders viel Aufschluss iiber
die Dynamik des Potentials, da sie lange in der Sattelregion verweilen. Dazu wird ein
niederenergetisches Ensemble in einem kleinen Bereich auf dem MEP entlang der Re-
aktionskoordinate um die Position der trennenden Hyperfliche herum positioniert. Das
Ensemble wird in ein Ensemble links und rechts von der Hyperfliche getrennt und die
sich ergebenden Ensembles werden seperat propagiert. Es wird eine kleinere Abhéngig-
keit der Reaktionsrate dieser Ensemble von der Barrierenphase festgestellt. Jedoch zeigt
die Anzahl an Reaktionen, aufgrund der niederen kinetischen Energie der Ensemble, eine
ausgesprochen hohe Abhéngigkeit von der Barrierenphase. Wie fiir das Ensemble in Ka-
pitel 4, zeigt sich eine Anzahl von 10° Teilchen auch fiir dieses Ensemble als ausreichend.
Zuletzt wird auch fiir Propagationen mit dem neuen Ensemble die Abhéngigkeit der Ra-
te fiir verschiedene Potentialparameter untersucht. Die Abhéngigkeit der Reaktionsrate
von der Barrierenhohe, der Oszillationsfrequenz, sowie des Abstands der Téler im Poten-
tial ist, bis auf kleine Abweichungen, dquivalent zu der Abhéangigkeit, welche in Kapitel
4 beobachtet wurde. Fiir die Variation der Oszillationsfrequenz zeigt die Rate allerdings
eine deutlich schwéchere Abhéngigkeit als die Rate fiir das Ensemble in Kapitel 4.

Fiir zukiinftige Untersuchungen in diesem Bereich wére es interessant, die Bestimmung
von Raten in einem realen System zu ermoglichen. Ein solches System wére zum Beispiel
die Isomerisation von LiCN. In ferner Zukunft konnte die numerische Ratenberechnung
in getriebenen Systemen Vorhersagungen fiir reale technische Anwendungen treffen und
die gezielte Beeinflussung des Reaktionsverhalten chemischer Stoffe ermoglichen.
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