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1 Summary

In this dissertation, different capacitor systems are investigated by means of computer

simulations, partly accompanied by results of collaborative projects. The target sys-

tems in this work are Electric Double Layer Capacitors, meant for energy storage ap-

plications and complementing current battery technology. The transition from a circuit

device with capacitance values in the range of pico- to microfarads to applicable charge

storage devices with hundreds of farads requires the use of advanced electrode and

electrolyte materials. This motivates a simulation approach, as the involved physical

processes are governed by the dynamics of highly confined molecules in conducting

materials, which are difficult to describe analytically or to capture with experimental

techniques. Molecular dynamics simulations are a great tool for such problems and

can also be used as a digital microscope able to track the motion of atoms in full detail.

However, the quality of the results obtained by these numerical solvers depends on how

well the involved force fields and algorithms can model the underlying physical system.

Further, the ability to actually propagate the systems in relevant time- and length scales

depends on the computational efficiency of the methods used. Thus, parts of the effort

in this PhD project enters as development, optimization and testing of methods used to

carry out the actual research. The software behind that is ESPResSo– an “Extensible

Simulation Package for Research on Soft Matter”. ESPResSo is mostly developed and

maintained among the staff of the Institute for Computational Physics. Integrating the

developmental work into the open source software project has the advantage that all

progress is conserved for future users.

The basic aim of the simulation studies presented here is to contribute towards a better

understanding of the interplay of carbon electrodes in various geometries with ionic
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Summary

liquid-based electrolytes. A large focus lies on electrode modeling with an applied ex-

ternal voltage and the correct treatment of boundary conditions. How these models and

underlying methods affect the behavior of electrolyte molecules at the solid-liquid in-

terface as well as the performance of the systems as energy storage devices is a central

question of this study.

In Chapter 3, a brief introduction on supercapacitor technology is given. This is

followed by an overview of relevant theoretical concepts in Chapter 4. The simula-

tions are realized with different levels of detail, starting with a simple parallel plate

capacitor with graphene electrodes. This system is treated in Chapter 5, which focuses

on two ways of simulating metallic boundaries: In the constant charge approach, the

electrodes are equipped with a fixed amount of surface charges that represent the fi-

nal charged state of the capacitor. In contrast to that, the constant potential approach

is only given a target potential difference and the surface charges adapt to fulfill the

boundary conditions for the entirety of system charges. We verify the hypothesis that

both methods result in the same average surface charge and that equal results should

be obtained for static observables. Additionally, Chapter 5 investigates the impact of

an atomically structured versus a computationally less expensive, smooth surface. A

laterally averaged interaction potential representing a graphene surface is developed

and the differences of the two electrode models on the interfacial liquid structure is

presented in detail.

Capacitor systems with nanoporous carbide-derived carbon electrodes and various

IL-solvent mixtures are investigated in Chapter 6. The project was initiated during a

research semester at the “Maison de la Simulation” in Saclay (Paris). It was a collab-

oration with the CIRIMAT Laboratory, Toulouse, who provided the experimental data

for the interdisciplinary study. The electrolyte is gradually switched from a pure ionic

liquid to a conventional organic electrolyte solution. The simulation results are in qual-

itative agreement with the accompanying electrochemical measurements of the same

electrolyte species, concentrations and electrodes. The central result of both simula-
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tions and cyclic voltammetry experiments is that the capacitance is not significantly af-

fected by the solvent concentration. On the other hand, diffusion measurements inside

the pores show that the transport dynamics of the electrolyte is drastically increased

upon partial solvation. This suggests that low concentration of ionic liquids perform

better in terms of charging time and show no disadvantage in the capacitance. However,

diluted ionic liquids may have smaller operating voltage windows, so that an optimal

electrolyte composition is a trade-off between power- and energy density.

A third electrode model treated in Chapters 7, 8 and 9 represents a abstracted, ter-

minated slit-like nanopore with a U-shaped cross section. The simulation setup is such

that the geometry parameters of the electrode can be easily adjusted, mainly used to

vary the size and length of the pore. The actual electrode boundary in the simulations

is made up of particles whose charge can fluctuate. The underlying charge induction

algorithm allows to specify the dielectric discontinuity such that the electrodes accu-

rately represent a conducting surrounding. With the superposition of an electric field

that can be rescaled at simulation runtime, it is possible to study the effects of a time-

dependent applied voltage. This setup is introduced and tested in detail in Chapter 7. A

parameter sweep of the pore size, ranging from narrow pores barely accessible for the

model electrolyte to large, open pores, results in an oscillating capacitance. A global

maximum in capacitance is found if the pore size matches the size of the ions, which is

explained by facilitated charge accumulation due to screened electrostatics for strongly

confined charges in a metallic slit. Another interesting result presented in Chapter 7 is

the wetting behavior of the pores depending on the permittivity and concentration of

the model electrolyte.

In Chapter 8, the same slitpore setup is used and compared to Monte Carlo simula-

tions of an infinite metallic slit. This project was a collaboration with Dr. Svyatoslav

Kondrat to study the effects of finite pore size in electric double layer capacitors. A

large effort went into matching and verification of the different simulation methods.

The treatment of the boundary conditions based on charge induction in the molecular
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dynamics simulations and the analytically derived electrostatic interactions used in the

Monte Carlo scheme showed perfect agreement. Overall, the two approaches are quali-

tatively consistent with each other and predict similar charging behavior: The charging

mechanism starts with co-ion desorption until only counterions are left in the pores.

Subsequently, counterion adsorption follows and gets more and more hindered as the

pore becomes fully packed. Although filling up the pores leads to noticeable density

changes in the finite reservoir of the molecular dynamics simulations, this has no effect

on the charging behavior, which is confirmed by maintaining the reservoir density dur-

ing charging. Although the charging behavior is equal in both simulations methods, it

is found that the pore entrance and closing have a strong influence on the ion density

profile along the pore, whereas the density parallel to the pore is sensitive on the wall-

ion force field.

Finally, in Chapter 9 the dynamical charging and discharging behavior in the slit-

pore setup and the effects of different voltage protocols are discussed. For the most

part, a sudden, step-like activation is compared to a linearly increasing voltage ramp.

It is found that the time behavior of the step-voltage charging consists of four distinct

regimes, which include a potential-driven linear regime, a square-root diffusive regime

and two exponential regimes. Further, if the applied voltage is switched on in a step-

like fashion, the simulations reveal the transient formation of a crowded and dilute

electrolyte phase inside the pores. In this out-of-equilibrium state, parts of the co-ions

can be trapped in the rear part of the pore, blocked by the crowded phase of counterions,

leading to correspondingly slow charging. It is shown that this co-ion trapping can be

prevented by applying a slow voltage sweep. In doing so, the overall charging process

is accelerated considerably when an appropriate sweep rate is chosen. A series of sim-

ulations having pores of different length unveils the scaling law of the optimal sweep

rate which allows to estimate the charging behavior of macroscopic pores. In contrast

to the charging time, it is found that discharging cannot be accelerated by a linearly

decreasing voltage, but is fastest when the voltage is switched off abruptly. Again, the
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dependence of the discharge time on the pore length is studied. Based on these find-

ings, strategies for optimal charge-discharge cycles are proposed that could be applied

to more reliable capacitance measurements in cyclic voltammetry experiments.
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2 Zusammenfassung

In dieser Dissertation werden verschiedene Kondensatormodelle mittels Computer-

simulationen untersucht. Zudem fließen Ergebnisse zweier Kooperationsprojekte mit

ein, die im Rahmen der Doktorarbeit durchgeführt wurden. Die vorliegenden Syste-

me gehören zur Klasse elektrischer Doppelschichtkondensatoren, die unter anderem

für Energiespeicheranwendungen verwendet werden. Der Ladevorgang und die Eigen-

schaften dieser Systeme grenzen sich von elektrochemischen Akkumulatoren ab und

können als komplementär zu aktuellen Batterietechnologien betrachtet werden. Die

Energiespeicherung in diesen sogenannten Superkondensatoren basiert in erster Linie

nicht auf Ladungstransfer vom beteiligten Elektrolyt auf die Elektroden, sondern be-

ruht auf Umstrukturierung der Ladungsträger im Elektrolyt an der Grenzschicht zur

Elektrodenoberfläche. Dieser Prozess kann sehr schnell ablaufen und ist reversibel,

daher sind Doppelschichtkondensatoren für Anwendungen geeignet, in denen große

Energiemengen innerhalb kurzer Zeit gespeichert oder freigegeben werden müssen.

Der Übergang von Kondensatoren als Schaltkreiselemente, die üblicherweise geringe

Kapazitätswerte im Bereich von Piko- bis Mikrofarad aufweisen, zu praktisch anwend-

baren Energiespeichern mit mehreren hundert Farad in vergleichbarem Volumen erfor-

dert die Verwendung von fortschrittlichem Elektrodenmaterial und Elektrolyten.

Die beteiligten physikalischen Prozesse motivieren den Einsatz von numerischen

Simulationen: Die Dynamik von Ionen in räumlich stark eingegrenzten, hochporösen

Elektrodenstrukturen ist analytisch nur schwer zu beschreiben, da sie durch die atomis-

tischen Details und die räumliche Ausdehnung der beteiligten Ladungsträger geprägt

ist. Molekulardynamik-Simulationen eigenen sich gut für solche Probleme, da sie die

Trajektorien der Atome in vollem Detail verfolgen können und somit oft ein wertvolles,

11



Zusammenfassung

anschauliches Teilchenbild zu einem gegebenen Prozess liefern. Die Qualität der Er-

gebnisse der numerischen Löser hängt jedoch davon ab, wie gut die beteiligten Model-

le und Algorithmen die zu Grunde liegenden physikalischen Systeme zu beschreiben

vermögen. Ferner müssen die Berechnungen effizient genug sein, um aussagekräftige

Zeit- und Längenskalen erreichen zu können. In einem nicht zu vernachlässigenden

Teil dieser Arbeit floss also auch die Entwicklung, Optimierung und Verifizierung der

verwendeten Methoden ein. Die hierzu verwendete Software ist ESPResSo; das Akro-

nym steht für ”Extensible Simulation Package for Research on Soft Matter “.

ESPResSo wird hauptsächlich innerhalb einer Arbeitsgruppe des Instituts für Com-

puterphysik verwaltet und entwickelt. Die Integration der Entwicklungsarbeit in das

Open-Source-Projekt hat den Vorteil, dass alle Fortschritte für zukünftige Nutzer er-

halten werden.

Das grundlegende Ziel der hier vorgestellten Simulationsstudien ist es, ein besseres

Verständnis über Grenzflächeneffekte von Elektrode und Elektrolyt zu erhalten. Dabei

werden hauptsächlich Kohlenstoffelektroden in verschiedenen Ausprägungen und auf

ionischen Flüssigkeiten basierende Elektrolyte betrachtet. Ein weiterer Fokus liegt auf

Algorithmen zur Simulation von Elektroden mit angelegter externer Spannung und der

korrekten Behandlung der Randbedingungen.

Kapitel 3 stellt Superkondensatoren und deren Anwendungen als Energiespeicher

der Zukunft vor, Kapitel 4 erläutert für die vorliegende Arbeit relevante, theoretische

Konzepte. In den folgenden Kapiteln werden Simulationen mit unterschiedlichem De-

tailgrad und verschiedener Komplexität der Elektroden behandelt. Die geometrisch ein-

fachsten Modelle dieser Arbeit stellen Kondensatoren mit planaren Graphenelektroden

dar. Diese Systeme werden in Kapitel 5 diskutiert, das unter anderem zwei Ansätze zur

Einbindung der Oberflächenladungen an der Grenzfläche berücksichtigt: Beim Ansatz

konstanter Ladung werden die Elektroden schon zu Beginn der Simulation mit der

endgültigen Oberflächenladung des vollständig geladenen Kondensators aufgesetzt.

Der flüssige Elektrolyt strukturiert sich in der Umgebung der Elektroden um, bis sich

12



das entstehende Gegenfeld und das äußere Feld der Oberflächenladungen kompensiert

haben. Diese Überlegung zeigt schon, dass die Dynamik dieser Umstrukturierung bei

festgehaltener Oberflächenladung nicht der physikalischen Realität entsprechen kann,

da in Wirklichkeit ein Teil der Oberflächenladung erst durch elektrostatische Induktion

durch den Elektrolyt zustande kommt. Im Gegensatz dazu wird beim Ansatz konstan-

ten Potentials nur die Potentialdifferenz vorgegeben – die Oberflächenladungen pas-

sen sich entsprechend an, damit die Gesamtheit der Systemladungen die vorgegebene

Randbedingung erfüllt. Auch wenn sich, wie erwähnt, der Ansatz konstanter Ladung

nicht für die Untersuchung des dynamischen Ladeprozesses eignet, resultieren beide

Methoden bei gleicher finaler Oberflächenladung in derselben Elektrolytstruktur, was

durch Simulationen mit beiden Methoden bestätigt wird. Darüber hinaus werden in

Kapitel 5 die Auswirkungen der Graphenstruktur im Vergleich zu einer glatten Ober-

fläche untersucht. Letztere kann durch eine eindimensionale Wechselwirkung beschrie-

ben werden und ist somit rechnerisch einfacher zu realisieren als eine Oberfläche auf

Teilchenbasis. Das Wechselwirkungspotential einer dreilagigen Graphenelektrode wird

durch räumliche Mittelung genähert und die Unterschiede der beiden Elektrodenmo-

delle auf die Flüssigkeitsstruktur im Detail untersucht.

Kapitel 6 behandelt Kondensatorsysteme mit hochporösen Kohlenstoffelektroden

mit unterschiedlichen Mischungsverhältnissen von ionischer Flüssigkeit und organi-

schem Lösungsmittel. Das interdisziplinäre Projekt wurde im Rahmen eines Forschungs-

semesters im ”Maison de la Simulation“ in Saclay (Paris) initiiert. Experimentelle Ver-

gleichsdaten zu den Simulationen wurden durch eine Kooperation mit dem CIRIMAT

Laboratory (Toulouse) erhalten. In der Studie wird die Kapazität des Systems für den

Übergang von einer reinen ionischen Flüssigkeit zu einer verdünnten Elektrolytlösung

untersucht. Die Simulationen zeigen eine qualitative Übereinstimmung zu den elek-

trochemischen Messungen mittels zyklischer Voltammetrie, wobei in beiden Fällen

die gleiche Elektrolytzusammensetzung und Elektrodenkonfiguration verwendet wur-

de. Das zentrale Ergebnis von Simulation und Messung ist, dass die Kapazität nicht
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wesentlich durch die Menge des Lösungsmittels beeinflusst wird. Weiterhin zeigen

Messungen innerhalb des Porenvolumens, dass partielle Solvatation den Ionentransport

deutlich erhöht. Dies deutet darauf hin, dass eine geeignete Verdünnung von ionischen

Flüssigkeiten von Vorteil für die Ladezeiten in Superkondensatoren sein kann, ohne

sich negativ auf die Menge der gespeicherten Energie auszuwirken. Allerdings kann

eine Verdünnung auch die maximal mögliche Betriebsspannung reduzieren, so dass ei-

ne optimale Elektrolytzusammensetzung einen Kompromiss zwischen Leistungs- und

Energiedichte darstellt.

In den Kapiteln 7, 8 und 9 wird ein drittes Elektrodenmodell untersucht. Nach den

vorangegangenen, materialspezifischen Simulationen wird nun ein eher abstrahiertes

Porenmodell verwendet. Elektrode und Gegenelektrode bestehen jeweils aus einer ein-

zelnen Pore mit U-förmigen Querschnitt. Die Computersimulationen sind so gestaltet,

dass einzelne Parameter der Geometrie wie Porenlänge oder Breite der Öffnung einfach

variiert werden können. Die tatsächliche Elektrodenoberfläche ist aus Teilchen mit va-

riabler elektrischer Ladung aufgebaut. Ein iterativer Algorithmus zur Berechnung der

Influenzladung passt die Ladung dieser Teilchen an und realisiert so den dielektrischen

Sprung von Flüssigkeit zu leitendem Material. Die Superposition mit einem elektri-

schen Feld, das während der Simulation reskaliert werden kann, macht es möglich, die

Auswirkung einer zeitabhängigen Potentialdifferenz auf den Ladevorgang zu untersu-

chen. In Kapitel 7 wird das System vorgestellt und getestet. Im gleichen Kapitel wird

auch der Einfluss der Porengröße untersucht. Die Variation reicht von kleinen, für den

Elektrolyten kaum zugänglichen Poren bis hin zu großen, offenen Poren. Die Änderung

der Geometrie resultiert in einem oszillierenden Verhalten der Kapazität. Diese zeigt

ein globales Maximum, wenn die Porengröße in etwa der Größe der Ionen entspricht.

Der physikalische Ursprung dieses Maximums wird dadurch erklärt, dass die effekti-

ve Paarwechselwirkung von Ladungen durch die metallische Umgebung im Vergleich

zum Vakuumfall abgeschwächt wird, was die Akkumulation von gleichnamigen La-

dungen erleichtert und somit die Kapazität erhöht. Ein weiteres interessantes Ergebnis
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aus Kapitel 7 ist das Benetzungsverhalten der Poren in Abhängigkeit der Permittivität

und Konzentration des Modellelektrolyten.

In Kapitel 8 werden die Molekulardynamik-Simulationen der finiten Schlitzpore mit

Monte-Carlo-Simulationen eines periodisch fortgesetzten, folglich infiniten metalli-

schen Schlitzes verglichen. Dieses Projekt wurde in Zusammenarbeit mit Dr. Svya-

toslav Kondrat durchgeführt, der die Ergebnisse der Monte-Carlo-Berechnungen lie-

ferte und wesentlich an der Auswertung beteiligt war. Ein großer Teil des Vergleichs

beinhaltet die Verifikation der verschiedenen Simulationsmethoden. Wie erläutert, wer-

den die Randbedingungen in den Molekulardynamik-Simulationen durch dynamische

Ladungsinduktion auf der Oberfläche erfüllt. Im Gegensatz dazu kann die Elektrosta-

tik der Ladungen in metallischer Umgebung im Modell der infiniten Pore analytisch

formuliert werden. Eine Untersuchung der beiden Ansätze mittels diverser Testfälle

zeigt perfekte Übereinstimmung der elektrostatischen Wechselwirkungen. Insgesamt

stimmen beide Systeme qualitativ überein und führen zu ähnlichen Ionenkonfiguratio-

nen in Abhängigkeit der angelegten Spannung. Eine Untersuchung des Lademecha-

nismus zeigt, dass dieser im Bereich kleiner Spannungen durch die Desorption der

Co-Ionen geprägt ist, bis im geladenen Zustand nur noch Gegenionen in den Poren

zurückbleiben. Anschließend erfolgt die Erhöhung der Porenladung durch Adsorp-

tion weiterer Gegenionen, was durch die zunehmende Dichte in der Pore behindert

wird und den Ladungszuwachs bei weiterer Erhöhung der Spannung abschwächt. Das

Auffüllen der Poren führt zwar in den Molekulardynamik-Simulationen zu merklichen

Dichteänderungen im Reservoir, dies hat aber nur geringen Einfluss auf das Ladever-

halten, was durch erweiterte Simulationen bestätigt wird, welche die Reservoirdichte

während des Ladevorgangs aufrechterhalten. Obwohl das Ladeverhalten in beiden Me-

thoden denselben Verlauf zeigt, wirkt sich der Poreneingang und die Terminierung

stark auf das Ionendichteprofil entlang der Pore aus.

Schließlich wird in Kapitel 9 das dynamische Lade- und Entladeverhalten der Schlitz-

pore und die Auswirkungen von verschiedenen Spannungsprotokollen diskutiert. Für
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Zusammenfassung

das Aufladeverhalten wird ein plötzliches, stufenartiges Anschalten der Spannung mit

einer linearen Spannungsrampe verglichen. Das Zeitverhalten der Ladung innerhalb

der Pore bei abrupter Spannungszufuhr kann durch vier Regime beschrieben werden:

Ein zu Beginn feldgetriebenes, lineares Regime wird zunächst gefolgt von einem diffu-

siven Regime, an das sich dann zwei exponentielle Regime anschließen. Weiter zeigen

die Simulationen, dass sich bei abrupter Spannungszufuhr zwei Phasen in den Poren

ausbilden: Im Eingangsbereich der Pore sammeln sich direkt nach dem Einschalten der

Spannung vermehrt Gegenionen an und die ladungsneutrale Phase im hinteren Teil der

Pore wird verdichtet. Durch diesen Nichtgleichgewichtszustand können Co-Ionen im

hinteren Teil eingeschlossen werden und deren Diffusion aus der Pore wird erschwert.

Dieser Effekt kann zu einer drastischen Erhöhung der Ladezeit führen. Weitere Simu-

lationen zeigen jedoch, dass der gesamte Ladeprozess erheblich beschleunigt werden

kann, wenn eine lineare Spannungsrampe mit entsprechend angepasster Steigung ver-

wendet wird. Der Zusammenhang zwischen optimaler Steigung und Porenlänge wird

durch eine erweitere Simulationsreihe mit verschiedenen Porenlängen ermittelt. Dies

ermöglicht eine Vorhersage der optimalen Steigung der Spannungsrampe für makro-

skopische Systeme. Im Gegensatz zum Aufladeprozess zeigen Simulationen zum Ent-

ladevorgang, dass dieser durch eine linear fallende Spannung nicht beschleunigt wird.

Auch hier wird die Abhängigkeit der Entladedauer von der Porenlänge untersucht. Mit

den Erkenntnissen über die Ladedynamik kann schließlich ein optimaler Spannungzy-

klus angegeben werden, der für zuverlässigere Kapazitätsmessungen mittels zyklischer

Voltammetrie verwendet werden könnte.
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3 Introduction

The optimization of devices for electric energy storage (EES) is of great interest in

the transition from carbon-based fuels to electrical drive, energy recovery or rapid-

charging everyday tools. Ionic liquid (IL) based capacitors belong to a class of energy

storage devices with promising properties to contribute to this transition. They are

known as electric double-layer capacitors (EDLCs) , supercapacitors or ultracapaci-

tors and consist of a liquid electrolyte confined between electrodes of various geome-

tries and materials. In EDLCs, the energy is stored by potential-induced adsorption

of counter-charges on the surface of the electrodes which requests conducting, high

surface area electrode materials to maximize the energy per volume. This suggests the

use of electrodes with subnanometer pores, which show anomalously high capacitance

vales and stored energies [1–4]. The dominant role in this field has been played by

conventional batteries, mainly due to their low production costs, high energy densities

and device optimization with a research background of more than a century. In recent

years however, EDLCs have become increasingly popular on the EES market, finding

their applications in devices that require fast energy intake or delivery. The advance

of this technology was driven by extensive research on enhancing the energy density

of supercapacitors [5–12]. This involves the development and synthesization of Room

Temperature Ionic Liquids (RTILs) which allow high operating voltages as well as op-

timizing porous electrode materials that provide high specific surface areas of more

than 1000m2 g−1.
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3.1 Technology overview

A widely used classification states that even though supercapacitors provide excellent

power densities and cyclability, the stored energies are lower compared to competing

Faradaic energy storage systems [13]. Quantitative estimations report a reduced en-

ergy density of about one order of magnitude compared to batteries [14]. The reason

for this lies in the fundamentally different nature of the storage principle: In batteries,

the energy is stored in the bulk, whereas in EDLCs, it is based on ion rearrangement

on the surface. This difference also explains why EDLCs are superior as a high power

recipient and supplier. The potential-driven accumulation of charge in supercapacitors

ideally involves no chemical reactions, so the charge- and discharge processes are fast

and occur in seconds. For the same reason, the cycle life is remarkably long and the

charging can theoretically proceed undisturbed by electrode restructuring or accumu-

lation of secondary products. However, there is a trade-off involved concerning cycle

life and stored energy: If the applied potential is outside a certain voltage window,

chemical decomposition of the electrolyte takes place, possibly reducing the amount

of surface area and available charge carriers. On the other hand, the energy approxi-

mately scales quadratically with the applied potential, so it is desired to operate EDLCs

at the borders of their decomposition window. Related to the chemical decomposition

is the occurrence of a pseudocapacitance [15]. The charge transfer in Faradaic redox

processes contributes to the capacitance of the devices and is the energy storage prin-

ciple of electrochemical capacitors, also called pseudocapacitors. This effect is part

of the signature in cyclic voltammetry (CV) experiments, causing spikes in the elec-

tric current if a certain voltage is applied. Possible non-reversibility of these reactions

also leads to hysteresis of the CV-curves. A clearly unwanted occurrence of pseudo-

capacitance stems from electrolysis of residual water in the electrolyte, so preferably

pure, water-free RTILs are required. As opposed to this, hybrid capacitors purposely

combine the effects of double-layer- and reversible pseudocapacitance.
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3.2 Room Temperature Ionic Liquids

3.2 Room Temperature Ionic Liquids

Ionic liquids are solvent-free molten salts with a melting point below 100 ◦C and are

used in chemical synthesis and catalysis, separation processes and as electrolytes for

electrochemistry and photovoltaics. To stress the low melting point character, they

are also called Room Temperature Ionic Liquids. RTILs often contain organic, large

molecules with low symmetry in molecular shape and partial charge distribution. The

size and asymmetry leads to packing inefficiency and a reduced melting point com-

pared to salts with inorganic components. A typical feature of IL cations are alkylated

molecular rings with delocalized charges such as imidazole or pyrrolidin. IL anions

often are fluorous like PF6 or BF4. Halide anions are used as well, e.g. HMIM+ Cl−

(1-Hexyl-3-methylimidazolium chloride), despite of the small chloride ion, melts at

−75 ◦C [16]. Because of the diversity of possible combinations leading to the low

melting point behavior, RTILs are also called ‘designer solvents’, referring to their us-

age as dissolvers in chemical processing and the possibility to tune the composition for

the target application.

Another important property of ILs is the generally low volatility [17], although care-

ful distillation is possible [18]. Briefly explained, the predominant long-range Coulom-

bic interaction prevents evaporation and leads to low vapor pressure, which is advan-

tageous for many applications that pose risks of contamination and environmental re-

lease. However, ILs still can be toxic [19] and the frequently used classification as

‘green’ solvents can be doubted, e.g. regarding the fact that specific ILs are also used

to dissolve cellulose [20]. For their application as electrolytes in EDLCs, their high

viscosity and low conductivity is problematic and slows down ion exchange processes

in porous electrodes. In this context, mixtures of different ILs or addition of organic

solvents can be beneficial [21]. Related to this work, it was found that adding acetoni-

trile (ACN) “[. . .]boosts conductivity of imidazolium ionic liquids” [22], which poses

the question if the dilution of pure RTILs has a negative effect on the capacitance in
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nanoporous electrodes. In Chapter 6, this is investigated with MD simulations and ac-

companying experiments of the IL EMIM BF4 with various concentrations of ACN in

realistic nanoporous electrodes. Another IL used in this work is BMIM PF6 in Chap-

ter 5 and 9, a promising electrolyte [23] with a well tested coarse-grained model [24]

applied in various simulation studies [25–28].

3.3 Electrode materials

Primarily, the electrode material in EDLCs should provide a high surface area accessi-

ble to the liquid electrolyte to maximize the stored energy per volume. Widely used are

carbon-based porous materials in various forms such as carbide-derived carbon (CDC),

carbon nanotubes (CNTs) or activated carbon (AC). The latter is largely utilized in

commercial EDLCs, mainly because of the low production cost based on carbona-

ceous, naturally-occurring source materials like wood, nutshells or peat followed by

a chemical or physical activation process. CDCs are derived from carbide precursors

like silicon carbide (SiC) or titanium carbide (TiC). The transformation into a pure,

highly conductive and stable carbon structure can happen e.g. via chlorine treatment.

In this etching process, the temperature of the chlorine gas affects the resulting pore

size distribution. In the MD simulations in Chapter 6, a small scale configuration of a

CDC-800 network with a chlorination temperature of 800 ◦C is applied.

Another promising route towards optimizing supercapacitor performance uses graphene,

which is a highly conductive, atomic monolayer with a hexagonal carbon pattern that

can be obtained by shear exfoliation of graphite. The specific surface area of graphene

is 2630m2 g−1, however a space-filling structure is needed for mechanically stable elec-

trodes [29]. Chapter 5 investigates atomically flat graphene electrodes in a supercapaci-

tor, the impact of the honeycomb structure on the IL structure and compares algorithms

used to model the metallic boundary conditions.
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3.4 Example applications

To arouse interest, some prominent concepts for applications of supercapacitors are

listed below:

• In several countries, electrically powered buses make use of the high power den-

sity by recharging supercapacitor cells during boarding and alighting of passen-

gers at the bus stops [30]. This concept can also be extended to other public

transport systems like tramways or subways [31].

• For an acceptable energy conversion efficiency, regenerative brakes need energy

buffers with high current rating and cycle stability [32]. This can be realized

especially well in the locomotive sector: At track sections with high slopes, su-

percapacitors can buffer the breaking energy of trains going downhill to supply

energy for the uphill direction [33].

• The mechanical properties of carbon-based electrodes encouraged ideas of com-

bining chassis and energy reservoir in electric vehicles [34, 35], reducing weight

and increasing the range of the cars.

• A combination of solar cells, LED lamps and supercapacitors can be used for

street lighting, taking advantage of the long lifetime and thermal stability of the

electrolyte [36].

• Power stabilization for consumer electronics [37] with high fluctuation loads like

photographic flashes can benefit from supercapacitors.

• Flexible electrodes based on composite material combining fabric and conducting

materials like nanowires [38] form wearable supercapacitors [39].
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4 Methods and theories

Many more applications are emerging that exploit the advantages of supercapacitors.

Also, the is an active scientific interest in the topic, driven by the novelty of the field,

the industrial demands and the huge variety of parameters of the two main ingredients:

To a large amount, the details of electrode and electrolyte determine the performance

of the capacitor. Novel porous electrode materials and the possibility to ‘design’ an ap-

propriate electrolyte by combining various RTILs and solvents leads to many possible

electrolyte candidates. Due to this variety, generalized assumptions become useful that

narrow down the choice of materials. This argument also motivates investigations on

less specific model systems, mean field theories and coarse grained approaches.

4.1 Interface theories on the differential capacitance

A fundamental first step towards understanding and optimizing EDLCs is the inves-

tigation of the basic parallel plate capacitor setup. Theories aim for solutions of the

electrostatic potential and the ion concentration profiles across the system and their

dependence on a imposed electrode surface charge or potential. The difficulty of the

theoretical framework in these systems can be found in the nature of the electrolyte:

ILs are dense ionic substances, bulk- or interfacial properties are governed by the in-

terplay of excluded volume and the local electrical field caused by the surrounding

charges. These strong ion-ion correlations lead to oscillating charge density profiles

at the solid-liquid phase boundary that deviate strongly from solutions obtained by a

non-expanded Poisson-Boltzmann approach. More advanced theories split the inter-

facial region spatially into parts that incorporate known physical effects. The famous
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Stern-model for example combines previous work by Helmholtz and Gouy-Chapman.

The former realized that a charged electrode causes a layer of electrostatically attracted

counterions [40], the double-layer of electrode charges and ion charges behaves like a

classical plate capacitor of area A, surface charge Q, Helmholtz potential drop ΔϕH ,

relative permittivity �H of the Helmholtz layer and layer thickness dH , which is given

by the radius of the counterions, leading to the Helmholtz capacitance CH :

CH =
Q

ΔϕH
= �0�H

A

dH
. (4.1)

The complete capacitor system with two electrodes is described by connecting two

Helmholtz layers with individual thicknesses in series. Similar to the theory of De-

bye and Hückel [41], Gouy and Chapman [42] assumed Boltzmann distributed, one

dimensional ion number densities

n±(x) = n0 exp

�−q±ϕ(x)

kBT

�
. (4.2)

with bulk density n0 and ion charges q± and predicted a diffuse ion layer in front of a

single surface with an exponential decay of the electrostatic potential [43]. Assuming

electroneutrality, the surface charge σ is equal to the total ion charge. With the bound-

ary conditions ϕ(0) = U on the surface and ϕ(x) =
dϕ(x)
dx = 0 for x → ∞, Poisson’s

equation can be integrated once to get Gauss’s law

σ =

� ∞

0

ρ(x)dx =

� ∞

0

d2ϕ(x)

dx2
dx = �0�r

dϕ

dx

����
x=0

. (4.3)

This gives an expression for σ(U) which then is used to calculate the differential ca-

pacitance

DC(U) =
dσ(U)

dU
. (4.4)

Equation 4.2 can be expanded to the system’s charge density ρ(x) = q+n++ q−n−, the

differential capacitance according to Gouy-Chapman is then obtained via Equations
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4.3 and 4.4 to

DCGC(U) =
�0�r
λD

cosh

�
qU

2kBT

�
. (4.5)

The expression includes the characteristic (Debye) length of the diffuse layer:

λD =

�
�0�rkBT

2q2n0
. (4.6)

Because of the non-physical asymptotic behavior

lim
|U |→∞

DCGC(U) = ∞ (4.7)

the Gouy-Chapman model loses it’s validity for high potentials. This was resolved by

the idea of Stern, who combined the two results of Equations 4.1 and 4.5 by assuming

a series connection of a Helmholtz- and Gouy-Chapman layer:

DCS(U) =
1

1
CH(U) +

1
DCGC(U)

=
�0�r

dH + λD

cosh
�

xU
2kBT

�
. (4.8)

In the series connection, the smaller contribution dominates the overall capacitance, so

the Gouy-Chapman part only contributes to the total capacitance for small potentials

U in eq. 4.8, which otherwise approaches the constant Helmholtz capacitance. This

behavior still remains questionable, as it means that the capacitor is constantly able to

accumulate charge at increasing potential, where some form of decaying differential

capacitance by saturating ion layers would be expected. So the assumptions included

in the derivation of Equation 4.8 leads to a limited predictive quality of the Stern model

for concentrated electrolytes or ILs. The crucial approximations and problems when

applying the Stern model to EDLCs are the following:

• The mean-field character of the Poisson-Boltzmann approach by Gouy-Chapman

neglects the strong electrostatic ion-ion correlations.
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• Treatment of the ions as point charges without excluded volume, causing theo-

retically infinite ion accumulation at the interface.

• Limited validity of the Debye length for high ion concentrations: A number den-

sity of n0 = 1 nm−1, q = e and �r = 80 used in Equation 4.6 leads to a value of

λD ≈ 2.8 Å, which is smaller than a typical ion in an IL and defies the concept of

a diffuse ion layer.

• Only electrostatic interactions are included in the theories, disregarding chemical

properties like specific ion adsorption onto the surface.

The neglected ion size effect was included in extensions of the Gouy-Chapman

model, famous examples are theories by Bikerman [44], Freise [45] and later Eigen

and Wicke [46]. The common theme is to constrain the total numbers of anions N−,

cations N+, solvent particles NS and the volume of the layer. The mean-field character

of the model persists, but the occupation of the layers is now limited by a finite number

of sites, which is taken into account in the entropic term in the Helmholtz free energy

F = eϕ(N+ −N−)− kBT ln(Ω) (4.9)

with the partition function given by

Ω =
N !

N+!N−!NS !
. (4.10)

Equation 4.10 can be derived by considering the number of combinations of distribut-

ing N+, N− and NS on the N available sites. This splitting of the interfacial layers

in lattice sites each of which can only be occupied by a single particle led to the term

lattice-gas model for this approach. The next steps towards deriving the capacitance is

to calculate the electrochemical potential of the charges species

µ± =
∂F

∂N±
. (4.11)
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In equilibrium, this equals the chemical potential µ∞ in the bulk, where zero potential

ϕ∞ = 0 and equal number of ions N∞
+ = N∞

− = N∞ are set. So using µ∞ = µ± leads

to an expression for the particle numbers N± of the form

N± = N∞ exp

�−q±ϕ(x)

kBT

�
N −N+ −N−
N − 2N∞

. (4.12)

This expression then again can be rewritten for ion concentrations or charge densities

which via Equations 4.3 and 4.4 leads to the Freise-Bikerman [47] differential capaci-

tance

DCFr(U) =

�0�rA
λD

sinh
�

eU
kBT

�

2
�
1 + 4vc∞ sinh2

�
eU

2kBT

�� ·
����

4vc∞

ln
�
1 + 4vc∞ sinh2

�
eU

2kBT

�� (4.13)

with bulk concentration c∞ and ion volume v (equal for all species). Note that the eq.

4.13 in this form is only valid for U >= 0, as the sinh in the first term would lead

to a negative differential capacitance for U < 0, but can be rewritten to provide axial

symmetry for the capacitance. Compared to the U-shaped Gouy-Chapman capacitance

in 4.5, eq. 4.13 now also has a minimum at U = 0 but is followed by two local maxima

and decaying asymptotic behavior. Therefore it is often called camel-shaped capac-

itance and qualitatively matches results of several experiments [48] and simulations

[49]. This shows that incorporating the ion volume has the deciding effect that the dif-

fuse layer cannot infinitely accumulate charges leading to infinite capacitance. If the

ion layer becomes crowded, adding more charges of the same sign is energetically and

entropically unfavorable.

On a similar theoretical foundation, another well-cited publication in the field was

provided by Kornyshev [50], who transferred the theory, originally intended to describe

dilute electrolytes, to ionic liquids. The model now interprets the solvent particles as

voids in the lattice. The derivation and expression for the capacitance is similar to
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Equation 4.13 and reads as

DCKor(U) =

�0�rA
λD

cosh
�

eU
2kBT

�

1 + 2γ sinh2
�

eU
2kBT

� ·

�����
2γ sinh2

�
eU

2kBT

�

ln
�
1 + 2γ sinh2

�
eU

2kBT

�� . (4.14)

It provides insight about the capacitance response for different states of initial occupa-

tion of the lattice using the packing parameter

γ =
2c∞
cmax

, (4.15)

which is the ratio of occupied sites c∞ to maximal available sites cmax. For γ = 1,

all sites are initially occupied and the differential capacitance has a bell-shape with a

single maximum at U = 0. In the lattice picture, this means that the saturation is al-

ready reached for U = 0 and further charge accumulation, which can only proceed via

ion swapping, already has an entropic penalty. Taking γ = 0 means cmax → ∞ which

implies infinite available sites. Consistently, using γ = 0, Equation 4.14 transfers into

the Gouy-Chapman solution (Equation 4.5). At γ > 1/3, the DC shows the already de-

scribed camel-shape with two local maxima, which mark the points in applied potential

where the saturation of the lattice leads to a decreasing capacitance for higher potentials

following approximately an inverse square-root behavior 1/
√
U . This provides a rather

important conclusion for the interpretation of the differential capacitance obtained by

experiments or simulations: A local maximum in the capacitance is connected to a po-

tential induced transition in the interface layers. In the mean-field approach, the origin

of this transition is due to the saturation of the lattice sites, but also other effects like

potential induced molecular rotation or adaption to the surface structure can contribute

to extrema in the differential capacitance [51, 25]. The superposition of several of these

effects finally results in the complex shape of the differential capacitance. There are

two shortcomings of the mean-field theories described so far. First, they do not capture

the effect of oscillating charge density in front of the electrodes which can be observed
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in simulations [52] or atomic force microscopy experiments [53]. Second, ion size ef-

fects going beyond the approximation of symmetric ions are not included. In principle,

the influence of local ion-ion correlations can be formulated in a expanded expression

for the Helmholtz free energy [50]

F = eϕ(N+ −N−) + L+N+ + L−N− + CN+N− − kBT ln(Ω) (4.16)

with expressions L± and C for the local ion (cross-)correlations that could also

include ion size effects. However, the incorporation of these terms doesn’t allow a

simple closed-form solution for the differential capacitance. Classical density funda-

mental theory (DFT) can capture these effects. In a model by Jiang and others [54],

the excluded volume enters via a primitive hard sphere model for the electrolyte and

the charged wall, ion-ion correlation are included using full electrostatic pair inter-

action instead of a mean-field description. The solution is found by minimizing the

corresponding expression for the grand potential with respect to the ion density. The

resulting ion profile shows a oscillating structure and also captures the effect of over-

charged layers where the net charge in the first layer exceeds the surface charge on the

electrode. The DFT approach consistently reproduces the transition from a bell-shaped

to a camel-shaped differential capacitance for decreasing bulk density and also has the

predicted asymptotic behavior of DC(U) ∼ 1/
√
U and is capable of incorporating

different ion sizes (via differently sized hard spheres), which leads to an asymmetric

DC.

4.2 Superionic state

The highest achievable capacitance values have been obtained when the average pore

size matches the size of the desolvated ions [2, 1, 3]. Several MD studies [55–57] have

replicated this experimentally observed capacitance peak in small slitpores. Aside from

the compact filling of space, such an electrode network is also advantageous for like-
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charge ion packing. This is because the effective electrostatic interaction between ions

now includes the induced counter-charges in the surrounding metal, which effectively

reduces the electrostatic interaction compared to the vacuum case [58–60]. This effect

is termed superionic state [61, 62] and gives rise to an increase of the capacitance in

subnanometer pores. The analytical expression for the superionic state is obtained by

evaluating the electrostatic potential of a point charge confined between two infinite,

grounded metal plates separated by distance L in z-direction. The charge at z0 now

creates the potential

ϕ(z, R) =
q

π�0�rL

∞�

n=1

sin
�nπz

L

�
sin
�nπz0

L

�
K0(πnR/L) (4.17)

with zero order modified Bessel functions K0(x). With the asymptotic behavior of

K0(x), which implies lateral distance R from the point charge greater than the plate

separation R � L/π, Equation 4.17 approximately decays exponentially in R. For

numerical applications, this means that the sum in Equation 4.17 only has to be eval-

uated for small values of n to reach good accuracy and the modeling is facilitated by

the short-range character of the interaction. This exponential decay of the electrostatic

interaction of ions in a metallic surrounding also is beneficial for charge accumulation

in EDLCs.

4.3 Constant potential simulations

4.3.1 Planar electrodes: ELCIC

The 2D periodicity of a parallel plate setup with constant potential boundary conditions

needs to be treated appropriately by the electrostatics solver. Here, the 3D electro-

static solver P3M is used alongside with an Electrostatic Layer Correction with Image

Charges (ELCIC). ELCIC can employ metallic boundary conditions or any other di-

electric contrast. [63–65]. This introduces local attraction of charged species towards

32



4.3 Constant potential simulations

the metallic electrodes [66] contributes to the electrode surface charge and causes the

electric field to vanish in the conducting material. However, there exists no reference

potential and the facing electrodes are decoupled. This particular system, metallic

boundaries without the following constant potential correction models unconnected,

ungrounded electrodes. A substitute system would be unconnected metallic spheres in

the limit of r → ∞. Adding the constant potential correction to the algorithm models

grounded electrodes: Considering all charges in the system, the total potential drop

along the z-direction is the superposition of the fluctuating potential caused by the ions

ΔΦion and the electrode charges ΔΦel. It should end up on the given constant potential

drop ΔΦbat of a virtual battery:

ΔΦion +ΔΦel
!
= ΔΦbat. (4.18)

This shows that the ELCIC algorithm has to counter the ion potential and superimpose

the target potential to obtain constant potential boundary conditions. ΔΦion is given by

ΔΦion =

� Lz

0

Ezdz =
1

�L2
Pz (4.19)

with the global dipole moment in z-direction Pz of ion charges i:

Pz =
�

i

qizi. (4.20)

Pz is already calculated by the ELCIC algorithm, so the constant potential correction

comes without additional computational cost. Finally, the superimposed virtual battery

potential ΔΦbat in this case simply results in the force

Fz = q
ΔΦbat

Lz
. (4.21)
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In more complex geometries beyond parallel plates, the resulting field of ΔΦbat has to

be calculated via Laplace’s equation.

4.3.2 ICC*

The Induced Charge Computation (ICC*) algorithm calculates the induced charge on

dielectric interfaces with arbitrary dielectric contrast [67], applied in this work to sim-

ulate curved, metallic electrodes. The interface has to be constructed by placing point

charges qi (called ICC particles) that mimic discrete surface elements with area Ai of

the boundary. Also, a normal vector �ni is associated with the ICC particle, by con-

vention pointing from region 1 with dielectric permittivity �1 to region 2 with �2. The

discretization is based on the concept of a Gaussian pillbox and should be fine enough

that the electric field E1/2 through its caps can be considered homogeneous and the

flux through the sides of the pillbox is negligible. This allows to evaluate the surface

integral of the pillbox, the induced charge then is proportional to the discontinuity of

the electric fields on the caps and can be written as

σi =
�1 �E1�ni − �2 �E2�ni

4π
. (4.22)

With the requirement that region 2 is not accessible by real charges, the fields E1/2 of

a surface element i can be written as the superposition of the field E (generated by the

real charges in region 1 and all other surface elements j �= i) plus the surface charge

contribution of the ith ICC particle σi:

E1/2 = �E ± 2πσi�ni/�1. (4.23)

Combining Equations 4.22 and 4.23 leads to the expression for σi

σi =
�1
2π

�
�1 − �2
�1 + �2

�
�E�ni. (4.24)
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Because �E also depends on all other σj, j �= i, Eq. 4.24 actually is a set of coupled

equations. In the implementation used in ESPResSo, the solution is obtained iteratively

by a successive overrelaxation (SOR) scheme. In each iteration step k, �E is calculated

once by the electrostatic solver and all σk
i are updated according to

σk+1
i = (1− λ)σk

i + λσi. (4.25)

In practice, λ � 1 leads to a quick convergence of the surface charges [67]. Although

possible, using ICC* for planar electrodes is not recommended. It requires additional

charges and includes the computationally demanding part of the recalculation of �E in

each iteration step. The advantage of fast 3D periodic electrostatic solvers in a constant

potential setup can also be obtained by using ELCIC. ICC* is best used for advanced,

non-planar electrode shapes like the slitpore geometry investigated in this work.

4.4 Molecular dynamics simulations with ESPResSo

All simulations except the systems in chapter 6 and the MC results of the cooperation

in chapter 8 were performed with ESPResSo Version 3.3.1, an Extensible Simulation

Package for the Research on Soft matter [68, 69, 66]. The code is maintained and fur-

ther developed at the Institute for Computational Physics, University of Stuttgart and

other contributors of the ESPResSo community. It is “a highly versatile software pack-

age for performing and analyzing scientific Molecular Dynamics many-particle simula-

tions of coarse-grained bead-spring models as they are used in soft-matter research in

physics, chemistry and molecular biology” (https://www.espressomd.org).

The user controls the system setup, interactions, the evolution in time and eventually

analysis and data processing by an external script. In version 3.3.1, the used script-

ing language is TCL, up from version 4.0 it has been switched to the more modern

language Python. ESPResSo itself is written in C++ and allows to include desired

features at compile time for optimal performance.
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5 Electrode structures and boundary

methods in parallel plate capacitors

Parts of the content in this chapter has been published in the following article. My

contributions: Simulations, data analysis and writing.

K. Breitsprecher, K. Szuttor and C. Holm

“Electrode Models for Ionic Liquid-Based Capacitors”

The Journal of Chemical Physics C, 2015, 119 (39), pp 22445-22451

URL: https://doi.org/10.1021/acs.jpcc.5b06046

Figure 5.1: Side view of the planar plate capacitor system in the charged state showing
the three graphene sheets (gray) and the coarse grained electrolyte model
with the three-site BMIM cations (blue) and single-site PF6 anions (red).

Understanding the very basic parallel plate capacitor setup is the starting point for in-

vestigations of more complex electrodes. In this chapter, the focus is on two important

model aspects of capacitor simulations and their effects on the coarse grained ionic

liquid BMIM PF6:

1. Electrode structure: The particle based approach models the explicit atomic

structure of a solid state graphite electrode. This is compared to the approxima-
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5 Electrode structures and boundary methods in parallel plate capacitors

tion of a continuum interface modeled by a one-dimensional interaction potential

i.e. a smooth electrode.

2. Boundary method: The straightforward approach to simulate the charged state

of the capacitor is to simply fix the charges ±Qe on the electrodes. This constant

charge approach however doesn’t take into account the charge fluctuations on

the electrode surface caused by local fluctuations of the ionic liquid. Also, the

total potential drop between the electrodes is a result of the simulation. In the

constant potential setup, a fixed potential between the electrodes is maintained

by fluctuating surface charges.

5.1 Simulation setup

Choosing the canonical ensemble (NVT) for the plate capacitor setup is motivated

by several aspects: Controlling the box volume in a confined system needed for the

isothermal-isobaric ensemble (NPT) is difficult, because the periodicity of a parti-

cles based electrode can not be preserved when increasing the box in xy direction.

Anisotropic box size changes only in z-direction would mean that the electrode par-

ticles exhibit position fluctuations, which are transferred on the interfacial ion layers.

This might be an interesting aspect for simulations of thermal vibrations of the solid-

state electrodes, but would require validation of the pressure control and adaption of

the 2D electrostatic solvers involved. Using the microcanonical ensemble (NVE) in ca-

pacitor simulation under applied voltage results in an unwanted temperature increase

due to resistive heating [70]. The friction term of the Langevin thermostat in the used

NVT ensemble however dissipates this additional energy and maintains the temper-

ature. Throughout the electrode model study in this chapter, a temperature of 400K

was used in the simulations, a compromise between room temperature behavior and

increased ion diffusion for computational efficiency. The downside of the Langevin

thermostat is that it does not preserve the particle momentum. The result is a decor-
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5.1 Simulation setup

related particle motion on timescales of 1/γ. A common argument for this thermostat

method is that the Brownian noise is caused by smaller solvent particles, which are ac-

tually not considered as part of the model. A deeper comparison with the momentum

preserving Nosé-Hoover thermostats concerning the results and computational aspects

can not be provided due to the unavailability of the method in ESPResSo.

The following protocol describes system parameters and a commonly used logical

structure of setting up MD simulations, particularly for ESPResSo (version 3.3.1).

1. The box size is adjusted to obtain a molar volume of 2.247m3 mol−1 for 320 ion

pairs. This results in the correct IL density of 1.38 g cm−3 under normal pressure

conditions at 400K [24]. For the systems with smooth electrodes, a simulation

box size of 30 Å × 30 Å × 126.7 Å is used, the atomic graphene systems has a

slightly adjusted box size of 27.2 Å × 30 Å × 147.83 Å (including space for the

3 graphene layers on each side) to account for the periodicity of the graphene

pattern in the xy-plane.

2. The particles are then randomly distributed in the box, excluding the interface

regions. Several techniques of resolving the initial strong overlap are possible. It

appears that force capping approaches are delicate, as particles may end up on the

wrong side of the boundaries. Here, full forces are applied in the warm-up phase,

but the ion diameter is gradually increased via the Lennard-Jones σ values of the

particles alongside with a strong translational friction and a smaller time step. In

doing so, the particles stay close to their initial random positions and resolve the

overlap with minimal translational and rotational motion.

3. With final interaction parameters set and activated Langevin thermostat, the sys-

tem is equilibrated for 3 ns.

4. For production runs with applied potential or electrode charge, the system is in-

tegrated for simulated times ranging between 12 ns to 18 ns.
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5 Electrode structures and boundary methods in parallel plate capacitors

5.1.1 Electrode interaction models

The two short-range interaction models under investigation are labeled atomic for the

explicit graphene structure and smooth for the unstructured planar Lennard-Jones rep-

resentation. The graphene electrodes consists of three graphite sheets with 308 carbon

atoms each. These are fixed in a hexagonal lattice structure with a C-C bond length of

1.42 Å and plane distances of 3.35 Å. For the carbon short-range interactions, the com-

mon Lennard-Jones parameters σC = 3.37 Å and �C = 0.23 kJ/mol [71] with Lorentz-

Berthelot mixing rules are used.
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Figure 5.2: One-dimensional interaction potentials between electrode and ion. The lat-
erally averaged graphene interaction energy (circles) is best described by a
Lennard-Jones function with fitted exponents (solid line).

To obtain the smooth representation, the short-range interaction of the atomic elec-

trode model is averaged in the xy-plane for several distances from the electrode and
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fitted with different interaction potentials. Figure 5.2 shows the result of the procedure.

A 9-3-Lennard-Jones function [72] fitted via �P and σP

U(z) = 4�P

��σP
z

�9
−
�σP

z

�3�
(5.1)

shows the largest deviation from the target data. Also a Steele potential [73, 74] com-

mon for liquid-surface interactions fitted via �P , σP and ρ

U(z) = 2π�Pρσ
2
PΔ

�
2

5

�σP
z

�10
−
�σP

z

�4
−
�

σ4
P

3Δ(z + 0.61Δ)3

��
(5.2)

cannot capture the averaged atomic structure. It is found that a generic LJ-potential

with non-integer exponents

U(z) = 4�P

��σP
z

�9.32
−
�σP

z

�4.66�
(5.3)

with the parameters σP = 3.58 Å and �P = 24.7 kJ/mol resulted in a precise represen-

tation of the graphene interaction data.

5.1.2 Electrostatic boundary conditions

In the constant charge setup, the electrodes possess the total surface charge density

σtot(ΔΦ) = ±(σind + σbat). (5.4)

σbat is the surface charge density of the capacitor in the vacuum case, σind is the

contribution of the induced charges on the conducting electrodes due to the ions. This

share depends on the actual ion configuration at the interface and is not known a priori.

For a direct comparison, the average surface charge is determined at constant ΔΦ and

used as input for the constant charge simulations. For the constant charge computation,

σind is included in the applied surface charge and no induction method is used in this

setup, equivalently no dielectric contrast is set in the 2D electrostatics solvers.
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5 Electrode structures and boundary methods in parallel plate capacitors

The surface charge can either be modeled explicitly by a charge lattice on the electrodes

or by a simple homogeneous electric field Ez throughout the system. This results in

the force Fz = qEz on the ions and is more efficient in case of planar electrodes, as no

additional explicit charges are needed. To investigate the effect of charge discretization

on the IL ordering in the close proximity of the electrodes, both explicit and homo-

geneous constant charge simulations are carried out. These two setups are compared

against constant potential simulations carried out with the ELCIC method described in

Section 4.3.

5.1.3 Ion model

The IL used in this chapter is the coarse grained model of the imidazole based BMIM PF6

developed by Roy and Maroncelli [75, 24]. It has four sites with different Lennard-

Jones parameters and partial charges which sum up to ±0.78 e. The three-site 1-Butyl-

3-methylimidazolium (BMIM) is modeled by Lennard Jones spheres on the central

imidazole ring, the methyl and the butyl chain with a total mass of 139.23 u. The hex-

afluorophosphate (PF6) is modeled as a spherical particle with a mass of 144.96 u. A

sketch of the original molecule and the individual parameters is shown in Figure 5.3.

5.1.4 Potential contributions

With increasing applied potential, more and more distinct ion layers are forming at the

electrodes. In highly concentrated electrolytes, molten salts or ionic liquids, the effect

of overcharging appears, where the net charge in the first layer exceeds the charge on

the electrodes surface itself. The system ends up in a state with an oscillating charge

density perpendicular to the electrodes with alternating sign of the net charge per layer.

The number of layers depends on the applied potential and the electrolyte. To give an

estimate, atomic force microscopy experiments showed around four distinct adsorbed

electrolyte layers at a gold electrodes with an applied potential of 1V [76]. In these

systems, the term double-layer might be misleading, as it describes the electrode sur-
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5.1 Simulation setup

Figure 5.3: Coarse grained BMIM PF6 model with partial charges and LJ parameters.

face charge on the one side and multiple interfacial layers in the electrolyte. Due to the

parallel plate setup, the potential contributions of the layers involved can be derived

with the one-dimensional Poisson’s equation and charge neutrality arguments: Even-

tually, the charge density oscillations decay to zero at screening length d, completely

screening the electrode charge σtot:

σtot =

� d

0

ρ(z)dz. (5.5)

The value d marks the onset of the electrolyte bulk, where the structuring effect of

the electrodes has receded and the electrolyte is present in its liquid phase. The plate

separation Lz has to be large enough that a certain volume of IL bulk is retained. In the

parallel plate capacitor setup,

L > da + dc (5.6)

with screening lengths da and dc of anode and cathode due to the asymmetry of the ion

species must be fulfilled to avoid overlap of the interfacial structures. In the simulation,
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each applied potential then yields two potential drops ϕ1 and ϕ2 from electrode to the

box center. These can be obtained by integrating twice over Poisson’s equation:

−�0�r∇ϕions(z) =

� z

0

ρ(z�)dz�

−�0�rϕions(z) =

� z

0

� z�

0

ρ(z��)dz��dz�

−�0�rϕions(z) = z

� z

0

ρ(z�)dz� −
� z

0

z�ρ(z�)dz�

=

� z

0

ρ(z�)(z − z�)dz�. (5.7)

The total potential also includes the contribution of the surface charge on the electrodes:

ϕel(z) =

� z

0

Epdz
� =

zσtot
�0�r

(5.8)

which leads to the expression

ϕtot(z) = ϕion(z) + ϕel(z)

= − 1

�0�r

� z

0

ρ(z�)(z − z�)dz� +
zσ

�0�r

= − 1

�0�r

�
z

� z

0

ρ(z�)dz� −
� z

0

z�ρ(z�)dz� − zσ

�
. (5.9)

Now, the individual potential drops U1 and U2 can be evaluated:

U1 = ϕtot(0)� �� �
=0

−ϕtot
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

L

2

� L
2

0

ρ(z�)dz�

� �� �
=σ

−
� L

2

0

z�ρ(z�)dz� − L

2
σ




= − 1

�0�r

� L
2

0

zρ(z)dz (5.10)

U2 = ϕtot

�
L

2

�
− ϕtot(L) = − 1

�0�r

�
Lσ +

� L

L
2

zρ(z)dz

�
. (5.11)
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Note that the electrode at z = 0 was put on a zero reference potential and charge

neutrality in the bulk as in eq. 5.5 was assumed. The total potential drop throughout

the system reads as

ϕtot(L) =
1

�0�r

�� L

0

zρ(z)dz + Lσ

�
(5.12)

where the first term is the potential due to the polarization Pz of the dielectric i.e. the

rearrangement of ions and the second term is the potential caused by the electrode

surface charge. With averaged charge densities from the simulations, Equation 5.12

can now be used to match the constant charge approach with a given σ and the constant

potential approach with given ϕtot(L).

5.2 Results

5.2.1 Capacitance response

A series of simulations in the constant potential setup with different applied potentials

in the range of 0V to 6V is carried out. The differential capacitance (see eq. 4.4)

expressed how the system reacts on the applied potential. It also contains the nonlin-

earity of the electrolyte response. In a linear capacitor, e.g. with a solid dielectric,

the polarization of the individual atoms can be considered linear and the capacitance

is constant. Eventually, this approximation will break down at high voltages, but in an

EDLC the nonlinearity is present at working voltage. DC(U) also includes the asym-

metry of the IL behavior at anode and cathode. Each simulation at a certain initial

(”battery”) surface charge now results in the two pairs +σ, U1 and −σ, U2 determined

by equation 5.10 and 5.11. The differential capacitance is then obtained by numerical

differentiation of σ(U). Here, a noise robust differentiation scheme is used [77]. A

maximum in DC(U) corresponds to the situation, where the polarization response of

the IL is the strongest.
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Figure 5.4: Comparison of the differential capacitance for the various electrode mod-
els. The DC curves match for the electrode boundary conditions used, but
differ for the electrode structure models.

Figure 5.4 compares the resulting DC(U) curves of five electrode models. For the

constant charge and constant potential method, similar results are observed. This is

expected when sampling the ion distribution over sufficient simulation times, as the

differential capacitance is a static quantity. A large difference in DC(U) between those

system classes would indicate that the simulations show non-equilibrium behavior in

the timescale reached by the simulation. In the constant charge setup, the field caused

by the fixed surface charge density is homogeneous, whereas in the constant poten-

tial setup, the induced charges are calculated locally via image charges by the ELCIC

method. However, this discretization in the surface charge should not play a role in the

xy-averaged charge density which is used to calculate DC(U), but it does enforce in-

creased sampling in the constant potential setup as it introduces local potential minima

via the discretized surface charges instead of a smooth charge distribution.
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A more significant difference can be observed comparing the smooth and atomic

electrode structures around 0V with a deviation of about 1 µF cm−2. At higher voltages

|U | > 1.5V, all curves start to align. This indicates that the influence of the atomic

structure is most pronounced at low voltages. The texturing influence by the graphene

electrodes on the arrangement of the adsorbed ions is less important than the structure

imposed by the applied potential in the high voltage regime both for anode and cathode.

However, the differential capacitance for the two system classes differs in location of

maxima and saddle points in the intermediate and low voltage regime. To relate these

characteristic points to voltage induced structural transitions, charge- and mass density

profiles as well as orientation effects are analyzed in the following sections.

5.2.2 Structural effects

In simulations, one can exploit the symmetry of the planar electrode geometry. For the

analysis of the ion structure, it is convenient to use laterally averaged density profiles

ρ(z) with the single remaining dimension z denoting the perpendicular direction from

the electrodes. This kind of data averages over the in-plane ion structure, which is

addressed in section 5.2.3. The focus here lies on structural differences of the atomic

and smooth electrode models. The following Figures 5.5, 5.6 and 5.7 compare profiles

at the interface for three applied potentials 0V, 2.4V and 4.8V. The charge density in

Figure 5.5 and also the mass density in Figure 5.6 show that already at zero potential,

the boundary induces a distinct structure in the IL. Both anode and cathode have a

positively charged first layer at 0V, which is attributed to the to the larger size of the

BMIM cation and the depletion of the smaller anion. With increasing voltage, more

and more pronounced oscillations in the charge density appear.
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Figure 5.5: Charge densities at the electrode interface for the structural models at dif-
ferent applied potentials. The adsorbed first layer is slightly more pro-
nounced in case of explicit graphene electrodes.

An important observation is that the first peak, referred to as the first layer, increases

the most if a potential is applied. This means that the majority of the ion restructuring

takes place directly at the electrodes. The effect of the smooth and atomic electrode

structures on the charge density is twofold: (i) In case of the atomic electrode, the first

layer is more pronounced. This enhanced ion adsorption on the structured surface is

attributed to the larger surface area of the structured electrode. (ii) The peaks of the

primary layers slightly do not match for the two models. On the smooth surface, the

ion layer is shifted towards the electrode for both BMIM and PF6 by about 0.3 Å at

4.8V. The shift gets larger for higher potentials and is also visible in the mass densities

in Figure 5.6.

48



5.2 Results

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 5 10 15 20 0 5 10 15 20

M
as

s
de

ns
ity

(u
Å

−
3
)

Distance to electrode (Å)

Anode Cathode

4.8V

2.4V

0V

Atomic wall
Smooth wall

Figure 5.6: Mass densities at the electrode interface for the structural models. Again,
the plot shows increased adsorption at the atomic wall. The ions can ap-
proach the boundaries more closely in case of the smooth electrodes.

Away from the electrodes, the curves approach the bulk density of 1.38 g cm−3 =

0.8311 u Å
−3

. At the cathode, the separation of charges in the interface region appears

as a reduction - and at the anode as an increase of the first peak in the total mass density

going towards higher potential. This is because the BMIM cation has a similar molar

mass than the anion but increased excluded volume, so swapping of anions and cations

in the first layer reduces the mass density.
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Figure 5.7: Cation orientation comparison at the cathode for the structural models. For
higher applied potentials, the cations more and more show flat alignment.
Also, the difference between the models tends to decrease for increasing
voltage.

In Figure 5.7, the averaged lateral cation orientation is compared between the LJ-

walls and graphene electrodes at different voltages. This is characterized by the Second

Legendre polynomial

S =
3

2
cos2 α− 1

2
(5.13)
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with α being the angle between the z-axis and the normal vector of the plane defined by

the three cation beads. A value of S = 1 corresponds to parallel (flat) cation alignment,

perpendicular (upright) orientation results in S = −0.5. Overall, the difference again is

most pronounced in the first layer, where an enhanced flat alignment on the structured

surface is observed. In the more diffuse, negatively charged second layer, the cations

are more likely to be found perpendicular. At 4.8V, the local minimum in S at z =

6.2 Å is significantly reduced, showing a potential induced reorientation from upright

to flat cation alignment.

5.2.3 In-plane radial distribution

The two-dimensional radial distribution functions g(r), evaluated in the first ion layer

in front of the electrodes gives an insight about the in-plane ordering of the adsorbed

ionic liquid. The distributions of counterions around counterions (gAA(r) at the anode

and gCC(r) at the cathode) for three different voltages and all electrode models are

shown in Figure 5.8. Additionally, the plot includes the bulk radial distribution of the

counterion species. The first layer is here defined as the range in z-direction from

the electrode to the first global minimum of the counterion density. In the analysis of

gCC(r), the center of mass of the BMIM cation is used, including adsorbed molecules

with a tilted orientation in the first layer. Comparing the different distributions, the

following qualitative observations can be made:

• The electrode charge method has no significantly impact on the in-plane radial

distribution functions (Figure 5.8 a vs c, b vs d, e vs g and f vs h).

• When comparing atomic and smooth walls (in a vs e and b vs f within the con-

stant charge results, c vs g and d vs h within the constant potential results), the

position of extrema does not change significantly. The graphene systems shows

additional features at distinct positions in the radial distribution functions which

persist through all voltages for the anions at the anode (a, r = 8 Å − 10 Å),
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5 Electrode structures and boundary methods in parallel plate capacitors

whereas cations only show significant deviations at low voltages (b, r = 11 Å).

This can be explained by the ion models: The impact of the hexagonal graphene

structure is stronger on the spherical anions, which can be patterned more easily

than the anisotropic cations.

• The comparison between anode and cathode shows that the voltage transition is

much more distinct at the anode. In Figure 5.8 a, the average distance between

the anions drops when the voltage is increased, which is the result of anion accu-

mulation during charging.

• The cation behavior in b is related to the cation reorientation with increased volt-

age: instead of pushing additional cations in the first layer, the system reacts with

the reorientation of tilted cations towards parallel alignment which has a smaller

effect on the in-plane cation pattern than ion exchange and results in the potential

independence of gCC(r) and a robust position of the main peak with increasing

voltage.
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Figure 5.8: The in-plane radial distribution function of the first layer, including parti-
cles up to the first local minimum of the counterion density. Data is pro-
vided for counterion-counterion distributions at the respective electrode for
different voltages. Additionally, the dashed lines show the bulk distribu-
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5 Electrode structures and boundary methods in parallel plate capacitors

5.2.4 First layer analysis
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Figure 5.9: Voltage dependence of the number of ions in the first ion layer for smooth
and atomic walls. In the case of structured electrodes, the migration of co-
ions is shifted to higher potentials. This effect is more pronounced for the
spherical anion.

Figure 5.9 shows integrated ion number densities in the first layer for the two elec-

trode structure models. Here, the first layer is defined as the range from the electrode

to the first local minimum in the mass density ρan(z) + ρcat(z) (see Figure 5.6). Both

adsorption and desorption, measured by the absolute slope of the data in Figure 5.9, is

higher for the anions than for the cations. This shows that the migration of the spherical

anions is favored over the more bulky cations. Further, anion desorption (left subplot,

lower curves) has a strong nonlinear potential behavior compared to cation desorption

(right subplot, lower curves). The transfer of ions is similar for the atomic and smooth

electrodes, with the largest deviation to be found for anions at the cathode. There, co-

ion desorption is shifted significantly to higher potential in case of atomic electrodes.

The particles can become slightly trapped by the hexagonal rings and the structured

graphene surface will contribute to the binding of the ions. This increased ion adsorp-

tion for the graphene electrode is also reflected in the differential capacitance. Similar

to the voltage induced reorientation, the applied potential has to reach a certain level to

54
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overcome the additional adsorption in case of an atomic structure. This delayed des-

orption contributes to the double-hump like shape of the differential capacitance of the

graphene systems.

5.3 Conclusions

The two different electrode charge models showed no significant influence on the ca-

pacitance, density behavior or the first layer in-plane structure. It has been shown

previously [78, 79] that at higher voltage, local charge induction can have an effect on

the ion structure. With charge induction methods, the local energy gain of an adsorbed

ion may break local particle structures like favorable ion orientations or weak ion co-

ordination. However, the results here show that within the simulated voltage range, the

constant charge approach yields similar behavior compared to the constant potential

method. Obtaining dynamical properties like charging time or using a time-dependent

voltage protocol however requires that the electrode surface charge is adaptive. An

atomic or flat surface structure of the graphene electrode leads to subtle differences in

both the lateral behavior in density and orientation, as well as the in-plane structure.

The interfacial ions adapt to the local structure of the electrode and the subsequent

layers will transfer this influence. The in-plane radial distributions revealed that the

spherical anions are more affected by the electrode structure than the three-bead cation

model. The resulting ion pattern emerges from the interplay between layer compo-

sition (set by the applied potential) and the entropic contributions of the wall-ion and

ion-ion interactions. In a more densely packed layer (at higher voltages), the difference

between anions and cations has a greater impact on the in-plane structure than the elec-

trode model. Consequently, the effect of the atomic wall is more visible in the lower

voltage regime and for the spherical anions. Further, the PF6 anions showed a voltage-

delayed desorption out of the first layer of the cathode compared to the desorption of

the BMIM cations at the anode. This leads to the slight mismatch of the differential

capacitance for the different electrode structures.
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6 Effects of solvent concentration

in nanoporous electrodes

Parts of the content in this chapter has been published in the following article. My

contributions: Production simulations with “metalwalls”, data analysis of the MD part,

figures and snapshots and parts of the writing.

R. Burt, K. Breitsprecher, B. Daffos, P. Taberna, P. Simon, G. Birkett, X. S.

Zhao, C. Holm and M. Salanne

“Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade-Off be-

tween the Concentration and the Separability of the Ions”

The Journal of Physical Chemistry Letters, 2016, 7 (19), pp 4015–4021

URL: https://doi.org/10.1021/acs.jpclett.6b01787

Although planar capacitor layouts are helpful to study a clean electric double layer

without electrode geometry perturbations, high energy densities for storage devices can

only be achieved with high surface area electrode material. In this chapter, the behavior

of pure 1-ethyl-3-methylimidazolium tertafluoroborate (EMIM BF4) and mixtures with

acetonitrile (ACN, CH3CN) is studied in nanoporous carbide-derived carbon (CDC)

electrodes. The results from coarse grained MD-simulations are compared to cyclic

voltammetry experiments with matching ACN concentrations and electrodes. Mixing

RTILs with organic solvents is motivated by the high viscosity of pure RTILs, reducing

the power density in highly porous carbon electrodes. The question arises if the use

of these mixtures will affect the capacitance or energy density of EDLC devices. Ad-
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6 Effects of solvent concentration in nanoporous electrodes

ditionally, the quantitative comparison to electrochemistry experiments highlights the

validity and limits of the MD setup. To be comparable, the simulations use a realistic

CDC electrode geometry and constant potential boundary conditions. The average pore

size and the particle diameters are close, which requires long trajectories to reach the

final molecular composition in the pores. To obtain feasible particle numbers and sim-

ulation time, the system can only represent the very surface of the electrode-electrolyte

interface. In application, the CDC network extends to macroscopic length scales (e.g.

120 µm in [80]) which is out of scope for detailed atomistic simulations. Preceding

work on similar systems gave valuable insight from a simulation point of view on the

storage mechanisms taking place in this setup [81, 82, 70, 83]. From experiments it

was found that similar values of pore size and ion diameter can lead to a peak in capac-

itance [3]. The choice of EMIM BF4 and CDC-800 electrodes [84] aims towards this

size ratio.

6.1 Simulation Setup

6.1.1 MD setup

Figure 6.1: Simulation snapshot of the CDC capacitor setup. On the left and right, the
box is terminated with a particle boundary (gray). The carbon structure is
shown with virtual bonds to the next neighbors (silver). The electrolyte
composed of acetonitrile (beige), EMIM cations (blue) and BF4 anions
(red). The snapshot shows the highest amount of solvent (67 wt % ACN)
in the investigated concentration range.
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6.1 Simulation Setup

An exemplary snapshot of the simulation cell can be seen in Figure 6.1. The electrodes

represent a nanoporous CDC structure with an average pore size of 0.75 nm obtained

by quenching a sample of liquid carbon [84]. The cubic electrode sample with side

length lc = 43.4 Å contains 3821 carbon atoms, which are fixed in the simulation box.

The CDC structure is used for both electrodes and mirrored at the box center. Bulk

volume and electrolyte particle numbers vary for the different solvent concentrations.

ACN mass wt % 0 (pure IL) 10 20 40 67

Ion conc. (mol/L at 298.15 K) 6.40 5.28 4.58 3.01 1.51

Ion pairs 600 601 608 326 324

ACN molecules 0 322 733 1048 3172

Table 6.1: Electrolyte compositions

Table 6.1 gives an overview of the ACN mass % and the corresponding ion con-

centration and MD particle numbers, spanning the range from pure IL to 67 wt % ace-

tonitrile. As in all MD studies, compromises in favor of computational efficiency have

to be made, which are the limited CDC sample volume and a temperature of 340K

to increase the ion mobility and reduce the required simulation time. Another sim-

plification is the use of coarse grained models for the employed electrolyte, which

is a three-bead representation of the imidazolium-based cation and a single spherical

bead for the BF4 anion. The force-field was developed and tested in [85]. The ace-

tonitrile is a linear three-bead model [86], intramolecular constraints are calculated

with the RATTLE/SHAKE algorithm [87] and Lorentz-Berthelot mixing rules were

employed for non-bonded interactions. The underlying simulation software with the

working title metalwalls is a custom Fortran code used and developed at the MDLS in

Saclay, specialized on molecular dynamics simulations of capacitors. The outstanding

feature is the charge induction method for the constant potential ensemble, described

by Siepmann and Sprink [88] and later Reed et al. [89]. The method is similar to

the ICC* algorithm - according to the current ion configuration, it iteratively deter-
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6 Effects of solvent concentration in nanoporous electrodes

mines the induced surface charge with a minimization routine and maintains the ap-

plied potential between the electrodes. To account for smeared out charges on the

curved graphene network, electrostatic interaction between Gaussian charges on the

carbons and point charges on the moving particles is possible. The computationally

expensive iterative calculation is the bottleneck of the simulation and significantly re-

duces the performance of the runs. For all Coulombic interaction calculations, 2D

Ewald summation[90, 91] with a short range cut-off distance of 22 Å was used, which

is approximately half the box length in the shorter x and y cell dimensions.

6.1.2 MD equilibration scheme

Due to the size of the system, a deliberate equilibration scheme is used before the

full setup with polarizable electrodes is applied. One can save simulation time by first

relaxing the electrolyte without the numerous carbon atoms. To this purpose, NPT sim-

ulations at the target temperature of 340K and normal pressure were performed with

the simulation package Gromacs for all ACN concentrations . These pre-equilibrated

particle boxes were then placed between the CDC electrodes, followed by further re-

laxation in the NVT ensemble. To speed up the initial pore filling (still without applied

potential), a fixed charge of ±0.01 e was set on all carbon atoms of the anode/cathode.

The sign of these charges was flipped for 10 iterations, followed by another 500 ps of

equilibration with zero charge. After that, the second stage of equilibration continues

in metalwalls. A problem that arises after the preceding equilibration procedure is that

the bulk density is slightly too low and the precise amount of adsorbed electrolyte is

unknown a priori. To reach the correct concentration in the bulk (obtained by the NPT

simulations), the gap size was reduced by careful position rescaling until the density

matched. From this stage, two charging schemes were applied. For dynamic charg-

ing, the electrode polarization was switched on, the half cell potential of ±0.5V was

applied and finally the system was propagated until the electrode charge sufficiently

converged. Similar setups reported charging times of about 18 ns [70], so the dynamic
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6.1 Simulation Setup

charging only was applied to the pure IL and the highest ACN concentration of 67 wt %

ACN. For the other systems, a top-down charging (tdc) approach was used, where the

charge of the carbon atoms was set to an initial guess of 0.01 e, the system was run

with constant charges and only then the electrode polarization and applied potential

was turned on. The initial guess exceeded the final electrode charge, hence the name

top-down charging. This allowed to obtain the capacitance with much less simula-

tion time, but also skipped the actual charging process. To motivate this approach,

it is anticipated here that the computation time needed for approximately 18 ns simu-

lation time was 816 h on 480 cores on the Hornet compute cluster. The computation

was spread among the project partners at the MDLS in Saclay, resources were located

at the Institut Henri Poincaré (Paris), the HLRS cluster Hornet (Stuttgart) and in the

University of Queensland (Brisbane).

6.1.3 Electrochemistry experiments

The corresponding experiments were performed by the group of P. Simon in the CIR-

IMAT Laboratory, Université Toulouse III - Paul Sabatier. The EMIM BF4 was pur-

chased from Solvionic (France), the ACN from Acros organic (France). The electrolyte

mixtures with ion concentrations listed in Table 6.1 were prepared at room tempera-

ture. The CDC powder was synthesized via high-temperature etching of titanium car-

bide (TiC) powder with chlorine gas following TiC + 2 Cl2 −−→ TiCl4 + C. With

this procedure, highly porous CDC is obtained, the pore distribution is affected by the

choice of the carbide precursor and etching temperature. Here, the applied temperature

of 800 ◦C corresponds to a maximum in pore size distribution at 0.77 nm [2, 3], which

is very close to the value of 0.74 nm of the CDC sample used in the simulations. The

CDC power was mixed with 5 wt % polytetrafluoroethylene (PTFE) binder and lami-

nated onto aluminum current collectors [92] with an active film thickness of 300 µm.

Two layers of 25 µm thick PTFE were used to separate the electrodes.
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6 Effects of solvent concentration in nanoporous electrodes

Figure 6.2: Cyclic voltammetry diagrams for the specific ACN concentrations also
used in the simulations. With the CV data, the (integral) capacitance can be
calculated and compared to the MD results. This plot and the underlying
data was produced in the CIRIMAT Laboratory, Toulouse.

For the cyclic voltammetry, a silver wire reference electrode is placed in the cell

center allowing to monitor anode and cathode separately. The cell was assembled

under argon atmosphere with less than 1 ppm of O2 and H2O content. Finally, cyclic

voltammetry experiments at scan rates of 5mV s−1 were carried out between 0V to

2.3V at room temperature for all ACN concentrations. Additionally, a lower scan rate

of 1mV s−1 and increased temperature of 373 ◦C was applied for the pure IL case.
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6.2 Results

6.2 Results

6.2.1 Integral capacitance

In CV experiments, an ideal capacitor would result in a rectangular I(U) curve with

the specific capacitance given by

Cideal =

dQ
dt
dV
dt

=
I

k
(6.1)

with scan rate k and measured current I . However, EDLC cells often behave far from

ideality, caused by several effects. This makes I(U) curves of CV experiments more

difficult to interpret and compare, as influences of the cell setup, material properties

and inherent effects of supercapacitors all come together. Some of these influences can

be captured by an element in an appropriate equivalent circuit. In the following, issues

related to the interpretation of CV data are listed:

• A non-zero series resistance of the real system rounds up the corners of the ideal

CV rectangle. This can be associated with the finite conductivity of the electrodes

and losses in the dielectric.

• Leaking current in the measuring cell gives rise to a superimposed linear behavior

in I(U) due to Ohm’s law. The equivalent circuit element is a large resistance in

parallel. In a sandwich-like cell setup with two electrodes and a isolation layer in

between, leakage can appear through small currents through the isolation or the

enclosing frame.

• Above certain cell voltages, electrolysis takes place at the electrode interface.

The accompanied electron transfer causes faradaic peaks in the CV curve and

contribute to the pseudocapacitance of the cell. These reactions are likely to be

non-reversible and cause concentration changes in the electrolyte, molecular de-

composition of the IL, electrode surface reconstruction or reactions of unwanted
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6 Effects of solvent concentration in nanoporous electrodes

residual substances.

• If the applied scan rates is too high and the cycle period exceeds the characteristic

charging time of the capacitor, the charging process is not complete at the reverse

point of the cycles and the measured capacitance is underestimated.

• Asymmetry of the I(U) curve in forward and backward scan direction indicates

charge-discharge asymmetry. A possible reason for this asymmetry are the al-

ready mentioned non-reversible redox reactions or non-equilibrium states due to

incomplete charging.

The nonlinearity of the capacitance, i.e. its dependence on the applied potential

is reflected in the CV curves but cannot be distinguished easily from the previously

mentioned points. Also, temperature dependence of the faradaic processes or solvent

evaporation introduces even another level of complexity. This complicates capacitance

measurements and result in different values for the capacitance depending on the local

current when simply using equation 6.1. A more reliable way of processing the CV

data is to restrict the analysis interval to a range where the behavior is more close to

the ideal capacitor. In application, that means to use the integral area of the CV curve

following

CCV =

� U2

U1

I(U)dU

2k(U2 − U1)mel
. (6.2)

The experimental capacitance values obtained from the CV data shown in Figure

6.2 follow this approach and are calculated using equation 6.2 in the potential window

between 0.5V to 2.0V. Note that by doing so, a possible voltage dependent behav-

ior of the capacitance is averaged over the range of the potential window. However,

simulations where only performed at 1V and 2.4V which does not allow meaningful

numerical differentiation of Q(U) and analysis of the differential capacitance.
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In the computer experiments, the integral capacitance at a given voltage V is calculated

using the mean charge of anode Qanode and cathode Qcathode directly measured in the

simulations by summing over the charge of the electrode carbon atoms and averaging

over the final time interval where the charging process is considered to be complete.

The error is calculated by the standard deviation of Q(t) in this interval. Further, the

specific capacitance is normalized by the electrode weight mel, which is simply given

by the number of carbons in the pore geometry times the atomic mass of carbon mC =

12.0107 u. The capacitance then is Csim =
|�Qanode�|+|�Qcathode�|

2melV ± .
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Figure 6.3: Integral capacitance from experiments and simulations (red triangles for
varying ACN concentration, single stars at 0 wt % ACN for temperature and
scan rate tests; simulation data points at two voltages in blue and purple).
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Figure 6.3 compares the specific capacitance obtained from simulations and CV

experiments. The simulation data includes capacitance values for simulation runs

at applied potentials of 1V and 2.4V. CV results where obtained at T = 298K,

k = 5mV s−1 for the whole range of ACN mass fraction and two reference measure-

ments with the pure IL at increased temperature T = 373K, k = 5mV s−1 and reduced

scan rate T = 298K, k = 1mV s−1.

The overall trend from both simulations and experiments show no common system-

atic dependence of the capacitance on the amount of ACN. The simulation data exceeds

the measured capacitance in all points, except the increased temperature run of the pure

IL of 150 F g−1, which matches the simulation results but also doubles the measurement

at room temperature. This strong dependence of the CV result on temperature, which

is expected to be small [93], points in the direction of incomplete charging in the CV

period due to the high viscosity of the pure IL [94]. The slightly increased measured

capacitance at room temperature from 70 F g−1 at 5mV s−1 to 80 F g−1 at a reduced

scan rate of 1mV s−1 supports this assumption. Unfortunately, more measurements at

different temperatures and scan rates as well as extended simulations at room temper-

ature where out of scope of the collaboration. Other sources of error in the simulations

are the simplified models of the coarse-grained molecules, the limited CDC sample

size and the treatment of the electrode as an ideal conductor [95]. However, the data

is consistent with previous results using BMIM PF6 and CDC electrodes with slightly

larger pores [26]. The main result of the comparison in Figure 6.3 is that the capaci-

tance is not strongly affected by the amount of acetonitrile solvent. From this one can

infer that increasing the concentration of the IL is not an efficient way to increase the

capacitance.
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6.2.2 Pore composition

To further analyze how the solvent affects the system, the pore composition of IL and

solvent for the difference ACN mass fractions are shown in Figure 6.4 for anode and

cathode respectively. Additionally, the plots include the number of ion pairs in case

of an uncharged electrode (purple line) and the difference between anion and cation

numbers at applied potential (dashed green line). The data is taken from the simulation

runs at applied voltage of 1V and averaged over the last nanoseconds of the trajectories.
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Figure 6.4: Particle counts within the pore volume as a function of ACN concentration.

A possible explanation of a constant capacitance is that the system has reached a

saturated regime, where the number of adsorbed ions remains constant with varying

solvent concentration. The simulations can rule out such a behavior, showing that the

amount of IL molecules decreases and the pores get more and more filled with ACN.

Instead, it is observed that the difference between EMIM and BF4 particles, which is the

net ion charge, is almost constant and follows the capacitance measured via the induced

charge of the CDC electrodes. This coupling of ion- and electrode charge is demanded

by charge neutrality arguments. Strictly, the induced charge is caused by the ions

inside the pore and the interfacial ion layers reaching in the bulk region up to the point
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6 Effects of solvent concentration in nanoporous electrodes

of electroneutrality. In Figure 6.4, the number of molecules is calculated only in the

pore volume excluding these interfacial ion layers, which explains the small difference

between net ion charge Qion = q(NBF4 −NEMIM ) and electrode charge QCDC . With

applied voltage, differences in particle numbers between anode and cathode emerge,

caused by the different roles of the IL species in anode and cathode. The smaller size of

BF4 compared to EMIM results in an increased amount of counterions in the anode and

a decreased amount of co-ions in the cathode. However, this ion size effect vanishes at

the highest ACN mass fraction, where there is little to no difference between the pore

composition of anode and cathode. It can be concluded that the solvent balances ion

size effects and leads to a more symmetric behavior of anode and cathode.

6.2.3 Charging mechanism

The comparison of pore compositions at zero and applied voltage in Figure 6.4 con-

tains information about how many ions entered of left the pore during the charging

process. In a simplified picture, three mechanisms are considered to increase the net

ion charge in the pore volume: (i) Counter-ion adsorption, (ii) co-ion desorption and

(iii) ion exchange. This can be captured by a single parameter X (introduced by Forse

et al.,[12]) that basically measures the change in particle numbers relative to the change

in net ion charge and is defined as

X =
N(Ψ)−N(0)

(|Q(Ψ)|− |Q(0)|) /e (6.3)

with the total number of in-pore ions N(Ψ) and net ion charge Q(Ψ) at a given voltage

Ψ. Figure 6.5 plots X as a function of the ACN mass fraction. The charging parameter

takes a value of 1 for counterion adsorption, 0 for ion exchange and -1 for co-ion

desorption.
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Figure 6.5: Variation of the charging mechanism parameter with the ACN mass frac-
tion for the positive and negative electrodes at 1V and 2.4V.

The plot includes data for the individual electrodes at 1V (full lines and symbols)

and 2.4V (dashed lines and open symbols) for the full range of ACN concentration. In

the positive electrode (anode), the charging is driven by counterion adsorption, progres-

sively increasing with ACN concentration and is very similar for the two voltages. In

the negative electrode (cathode), for 1V adsorption and desorption balance out, clas-

sified as ion exchange by the charging parameter. Note that the fluctuations of X

for 0 wt % to 40 wt % ACN in the negative electrode at 1V versus the rather smooth

increase of X in the positive electrode indicate that the ion configuration inside the

cathode might not be converged and averaging over several independent simulation

would be desired. For the increased voltage of 2.4V, the behavior of the positive elec-

trode shifts towards stronger counterion adsorption. At 67 wt % ACN, the results for

both electrodes and voltages align and show the highest degree of adsorption. Again,

the differences between the electrodes originate from the molecular shape of the ion
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6 Effects of solvent concentration in nanoporous electrodes

species: The spherical BF4 molecule is smaller and more mobile than the bulky EMIM

cation, thus both desorption and adsorption is favored for the anion. At the highest

ACN concentration, this ion specific effect gets less important. Aside from electrode

asymmetry effects, the data shows a global trend towards counterion adsorption with

increasing ACN concentrations. If the pore is considered to be saturated, adsorption

has to be accompanied with replacement of either solvent or co-ions. If the pore is

predominantly occupied by ACN, it gets more likely to just replace solvent molecules,

shifting X away from the ion-exchange regime.

6.2.4 In-pore structure
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Figure 6.6: Counterion distance from the internal surface of the CDC network at 1V.

Figure 6.6 shows a series of in-pore counterion densities as a function of the distance

from the internal electrode surface for different fractions of ACN. The internal surface

is determined by using reference simulations to probe the pore with an argon atom and

keeping track of the accessible volume and the closest surface. Then the distance of a

particle to the nearest carbon atom can be calculated and averaged over particle species

and time.

The data in Figure 6.6 reveals several features of the in-pore ion structure for varying
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ACN concentration:

• The shape of the distribution reflects the narrow pore size distribution close to the

ion size allowing effectively only a single layer of counterions inside the network.

• Alongside with more ACN in the system, the peak height is reduced and consis-

tently follows the number of counterions from Figure 6.4.

• The peak position for both electrodes resides robustly around 3.3 Å again related

to the small pore size.

• An exception of the last point is the surface distance in simulations with the high-

est ACN concentration, where the particles are slightly closer to the surface with

am average distance of about 3.1 Å. Possible explanations are that the reduced

ion density leads to a tighter packing of ions and only the very narrow parts of the

CDC pores are dominantly occupied by counterions for a high amount of ACN.

To further analyze the ion coordination inside the electrodes, the radial distribution

functions g(r) of the electrolyte species in the pore volume is shown in Figure 6.7

(a) and (b). As a reference, Figure 6.7 (c) contains the bulk data. In the plots, the

amount of ACN is increasing from light to dark colors. For the three-bead cation

model, the central particle modeling the imidazole ring is used for the calculation. As

expected, oppositely charged species are strongly coordinated around distances in the

range of 4 Å to 5.5 Å, which is close the diameter of the involved ions. Like-charge ion

coordination then peaks in a broader region of 5.5 Å to 9 Å, followed by a third shell

with almost vanishing magnitude. The most striking observation however is that the

distributions within one electrode are almost unaffected by the amount of solvent in

the system. The local maxima in g(r) keep their positions and only slightly change in

magnitude.
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Figure 6.7: Radial distribution functions in the different regions of the simulation box.
Color encoding shifts from light to dark colors for increasing concentration
of ACN.

The latter effect is more pronounced in the negative electrode with EMIM+ coun-

terions, where the first maximum in the distributions between Anion ↔ Cation and

Anion ↔ Anion is increased. The similar feature can be found in the positive elec-

trode: There, the first peak of the Anion ↔ Cation distribution in case of 0 wt %,

10 wt % and 20 wt % ACN collapses on a single line, as well as the curves for 40 wt %
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and 67 wt % ACN, with increased magnitude. This sudden change in distribution sug-

gests that the observed differences in g(r) are likely to be an geometry effect of the

CDC structure. With less ions in the system, different regions in the electrode are

preferably occupied and strongly overlay possible transitions in the solvation behav-

ior. Such transitions can be found in the bulk (Figure 6.7 (c)): Only the first peak in

Anion ↔ Cation gets more pronounced, all other oscillations are damped and show

slightly shifted maxima with growing amount of solvent. This can be summarized as

a reduction in like-charge ion coupling and a complementary increase in oppositely

charged ion coupling.

6.2.5 Ion coordination

The next set of Figures in 6.8 shows the coordination numbers of different combi-

nations of particle species in both electrodes as a function of ACN concentration. It

is calculated by simply counting the number of particles of species j in a spherical

volume around species i. The cutoff radii are chosen individually for a given pair of

species such that they includes the first peak in the radial distribution and reach until

the subsequent minimum. The detailed values of the cutoff radii are given in table 6.2.

Species pair rcut(Å)

Anion ↔ Cation 7.3

Anion ↔ ACN 6.4

Cation ↔ ACN 7.7

Anion ↔ Anion 10.2

Cation ↔ Cation 10.5

Table 6.2: Cutoff radii for ion coordination numbers
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Figure 6.8: Coordination numbers in the different regions of the simulation box for an
applied potential of 1V as functions of the ACN concentration.

The coordination numbers in Figure 6.8 give a quantitative picture of the particle

distribution and shows that in opposition to the robust radial probability distribution

in Figure 6.7, the absolute numbers of neighbors does change and ions get more and

more surrounded by solvent molecules with increasing ACN concentration. Further,

EMIM-ACN coordination is favored over BF4-ACN coordination in both electrodes.

To answer how the electrodes affect the particle coordination, the data inside the elec-

trodes is compared to the coordination numbers in the bulk, shown in Figure 6.8 (c).

The comparison reveals that although the carbon particles occupy some of the acces-

sible volume and scale down the overall coordination numbers, the solvation inside

74



6.2 Results

the CDC electrodes is not drastically different from the bulk behavior. It is insightful

to compare these results to the picture of completely dissociated electrolytes, where

ions carry a solvation shell with elongated dipoles of the polar solvent that screen the

central ion and effectively reduce ion-ion coupling. However, the g(r) bulk data in

Figure 6.7 (c) and the bulk coordination numbers in Figure 6.8 reveal that in the range

of simulated solvent concentration from pure IL to 1.51mol L−1, this simplified picture

of solvated, isolated ions does not apply. The first maximum of the Anion ↔ Cation

radial distribution remains robustly at around 4.6 Å and increases with the ACN con-

centration. The Anion ↔ Cation coordination number in the bulk does drop from

∼ 6.3 to ∼ 2.4, which suggests a chain-like arrangement of alternating anions and

cations. Corresponding to this observation, the configuration in the simulation snap-

shot in Figure 6.1 shows no tendency towards sole ions. More accurately, it could be

described as a network of ions embedded in clusters of acetonitrile.

6.2.6 Charging dynamics
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Figure 6.9: Time evolution of the electrode charge.
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Figure 6.9 shows the time evolution of the CDC surface charge per area obtained by

the simulations. The data includes dynamic runs for 0 and 67 wt % ACN and top-down

charging runs for 0 wt % to 40 wt % ACN for 1.0V in (a) and dynamic charging at a

higher applied potential of 2.4V in (b), which is a realistic voltage value for applied

EDLCs on the border of the electrochemical window of EMIM BF4 [96]. Both plots

already reveal two main findings of the study: Firstly, no clear trend is observed for the

different ACN concentrations. For both voltages considered, the surface charge ends

at values between 0.007 e to 0.009 e per carbon for the simulations at 1V and 0.017 e to

0.019 e per carbon for 2.4V. Secondly, the dynamic runs cannot support the assumption

of reduced charging times when adding the organic solvent. The comparison between

the most extreme cases, pure IL versus 67 wt % ACN shows no acceleration of the

charging process, which takes around 10 ns in all dynamic runs in Figure 6.9 (b).
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Figure 6.10: The in-pore diffusion for the positive (dashed lines) and negative (solid
lines) electrode as a function of ACN concentration for the different par-
ticle species. More ACN solvent results in a large increase in diffusion.

What suggest a speedup of the charging process for macroscopic pores is the en-

hanced diffusivity in the pores with higher amounts of solvent, which is found in the
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simulations. Figure 6.10 shows the in-pore diffusion coefficients with varying ACN

concentration. The plot includes data from both electrodes and all involved molecules

and is calculated from the charge-saturated part of the trajectories after 10 ns simulation

time. Only particles inside the CDC volume are taken into account in the calculation.

Due to the finite pore in z-direction, the mean squared displacement in xy-direction is

used in the calculation of the diffusion coefficients via

D =
�R(t)2�
2dt

(6.4)

with dimensionality d = 2. Going from 0 to 67 wt % ACN, a rise in diffusion from

1× 10−11 m2 s−1 to 30× 10−11 m2 s−1 for the ions is found. However, a significant gain

in ion diffusion is only reached above an ACN mass fraction of 20 wt %. For lower con-

centrations, the amount of ACN appears to be too low to decrease ion-ion correlations

and enhance the ion mobility. The diffusion coefficient of acetonitrile also follows this

trend and rises from 6× 10−11 m2 s−1 at 20 wt % ACN to 100× 10−11 m2 s−1 at 67 wt %

ACN.
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6.3 Conclusions

In this chapter, mixtures of the ionic liquid EMIM BF4 with different concentrations of

acetonitrile in contact with nanoporous electrodes were investigated with MD simula-

tions and accompanying CV experiments. This study should help to elucidate the role

of the organic solvent on capacitance, pore composition and charging dynamics. Fig-

ure 6.11 displays snapshots of the pore region in the charge state at 1V to accompany

the following conclusions.

(a) 0wt % ACN (b) 67wt % ACN

Figure 6.11: Pore snapshots of the positive electrode at 1V, captured at the end of the
simulation runs.

The simulation results showed that the capacitance (Fig. 6.3), the in-pore radial dis-

tribution functions (Fig. 6.7) and the charging time (Fig. 6.9) are only weakly affected

by the change in acetonitrile concentration. However, number of in-pore ions (Fig.

6.4), charging mechanism (Fig. 6.5), particle coordination (Fig. 6.8) and diffusion co-

efficients (Fig. 6.10) clearly depend on the amount of ACN.

For the comparison of simulation and experimental data (Fig. 6.3), qualitative agree-

ment for the integral capacitance was found, with an slight overestimation by the sim-

ulations, which is probably due to uncertainties of the CV experiments (shown by the
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variation of the capacitance at different temperatures or cycle rates) and due to sev-

eral necessary simplifications introduced in the particle models. In both methods, only

small changes of the capacitance despite the large variation of ionic concentration was

found. The robustness of the g(r) data (Fig. 6.7) gives a starting point for the expla-

nation of this concentration behavior. It shows that concerning the ions, no impactful

structural transition is happening in the examined acetonitrile concentration range, ei-

ther in the bulk or in the pore volume. This can be linked to the capacitance if the same

is described as the interplay of ion separation and applied potential. To charge up the

pore by a net difference in anion and cation numbers, ions have to break out of the

prevailing ion structure. This means that the potential difference must overcome the

energy change caused by the new, less favored structure. In time, the applied potential

is negated by the arising excess charge in the pore until a final charged state is reached.

The simulation data now shows that although absolute particle numbers change, the ion

difference in the charged state of the pore remains constant for all acetonitrile concen-

trations. A possible facilitation of ion separation due to the solvent is not visible in the

concentration behavior of the capacitance, because the potential difference is always

sufficient to result in charge separation.

The diffusion analysis (Fig. 6.10) raises the question why the increased diffusion

coefficients do not lead to an speed-up in charging time for higher solvent concentra-

tions. Three aspects provide insight on this apparent contradiction: First, the diffusion

is not calculated by particle paths directed into the pore (and therefore in direction of

the charge migration). As the mean squared displacements only can give meaningful

results for diffusion analysis in the periodic plane orthogonal to the migration direc-

tion, its influence on the charging time is limited to migration paths where the pore

geometry requests this orthogonal translation. Second, it is unclear if diffusion even is

the main factor that determines the charging time of the simulated system. At the in-

terface between bulk and CDC pore, the dynamics are greatly affected by the electrical

field caused by the electrode surface charge of the applied potential. Deep inside the
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6 Effects of solvent concentration in nanoporous electrodes

pores, the field is screened and ion migration is driven by self-diffusion. The size of

the CDC sample in z-direction of 43.4 Å (or about 7 times the ion diameter) might just

be too small for a diffusion increase in migration direction to show its influence.

The charging mechanism (Fig. 6.5 undergoes a transition from ion exchange to-

wards increased counterion adsorption for higher amounts of ACN. The case of pure

RTIL is characterized by a large ionic density close to the carbon surface (Fig. 6.6). In

this case, adding a counterion can be achieved by exchanging a co-ion, which requires

to break the Coulombic cation-anion associations. The constant capacitance showed

that there is no sign of an effect, where the change in solvent concentration reduces

this associations such that the applied potential is now sufficient to break it and effec-

tively increases the capacitance at a certain concentration. However, a reduction in ion

coupling upon adding ACN still is expected and fits to the transition of the charging

mechanism, which tends to be dominated by counterion adsorption at high ACN con-

centrations.

These results can be put into perspective of choosing an optimal ionic liquid based

electrolyte for a EDLC with nanoporous electrodes. It has been showed that the ionic

concentration of the EMIM BF4 acetonitrile mixture does not affect much the capaci-

tance up to the examined range of 67 wt % ACN or 1.51mol L−1. The choice of organic

solvent and its concentration also affects two other important properties of the device,

namely internal resistance (determined by the ionic conductivity) and the allowed op-

erating voltage set by the chemical window of the substances. Using organic solvents

allows for higher voltages (∼ 2.7V) than aqueous electrolytes (∼ 1V) [97], but the

conductivity is reduced [98]. Going from a pure RTIL to a mixture with organic sol-

vents increases the conductivity, but narrows the electrochemical stability window [99].

Therefore, the optimal choice of concentration will be a trade-off between conductivity

and voltage limits [100, 101].
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with slitpore electrodes

Since MD simulations of models featuring complex pore networks like the CDC elec-

trodes analyzed in Chapter 6 are computationally demanding, they are necessarily re-

duced in size compared to their experimental counterparts [85, 10]. For instance, the

pore length in a typical simulation is tens of nanometers at best, while in the exper-

imental systems the pores can be in the range of micrometers [102, 103]. Likewise,

the size of the region between the electrodes is of the order of nanometers in simu-

lations, but it is hundreds of micrometers or millimeters in real supercapacitors. The

finite slitpore setup introduced in this chapter provides a good link between theoretical

approaches and more material specific capacitor models like the CDC system. Because

the complexity of amorphous pores is missing, it can be used to study the effect of ion

confinement within a closed metallic pore under well defined conditions, neglecting

any possible curvature and network character.

In MD simulations, the slitpores have to be connected to an electrolyte reservoir

to study ion transfer and charging effects. In principle there are two possibilities to

model such a system: In open pore geometries, both ends of the pores are connected

to reservoirs, resulting in a dual-chamber setup for two electrodes. This setup has been

studies by simulations for various interconnecting shapes like cylindrical tubes [95,

104–106] or slit systems [61, 107–109, 54, 110]. In contrast to that, the geometry used

here is a closed system with radial terminations at the pore ends and a single reservoir

between the pair of electrodes. To motivate the closed pore scenario, it is recalled that
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nanoporous material benefits from narrow channels, where ion size and pore size are

comparable [2]. Apart from the increase in specific surface area of the electrode ma-

terial, reasons for this are packing effects and favorable electrostatic screening. The

details of these effects are studied by altering the pore size in the electrode geometry.

It should be noted that realistic pores are characterized by a pore size distribution and

the advantages of small pores will be attenuated by partially inaccessible volume in the

porous network.

7.1 Simulation setup

The simulation setup can be divided into the three components pore geometry, ion

model and applied potential. Setting up the components involves many parameter

choices, implementation of algorithms, utilizing external tools and validations. This

will be described in detail in the following sections. Concerning the simulation output,

most of the results like pore charge, capacitance, density profiles or charging mecha-

nisms are calculated from time dependent densities ρi(�r, t) of ion species i obtained by

the particle trajectories. The dependence of these observables on geometry parameters

and applied voltage is key for the characterization of the systems.

7.1.1 Pore geometry

The pore parameters and geometry is displayed in Figure 7.1. In the following, the

choice of fixed and variable parameters are motivated. In the simulations, a particle

representation of fixed carbon atoms is used to build up the pore geometry, the centers

of the carbon atoms are placed on the surface. This provides an atomic roughness of the

surface as is necessary for the constant potential solver used in ESPResSo. A general

rule for the parameter choices is to design the simulation cell as small as possible to

gain computational efficiency and as large as necessary to avoid finite size effects.
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Figure 7.1: Schematic of the slitpore geometry with all relevant parameters.

Overall, the system consist of two mirrored, unconnected electrodes separated by

a gap g = 8 nm. An additional gap p = 0.15 · Lz relative to the overall box size Lz

separates the pore tips of the periodic images in z-direction. Apart from the atomic

carbon structure, the geometry is translationally invariant along the y-axis with box

size Ly = h = 2.5 nm. The pore entrance and -bottom introduce two radii r1 = 4 Å

and r2 = 2 Å. These curvatures are used to avoid sharp angles which lead to spikes

in the electric field. The rim size s = 1 nm models the distance between the periodic

images of the pore in x-direction. The parameters g, p, r1, r2, s introduced so far are of

minor importance and only part of the geometry validation in Section 7.2. The more

interesting parameters are the pore length l and width w (sometimes referred to as the

pore size). Reasonable values here are chosen with a fixed ion diameter σWCA = 5 Å

in mind. Different values l = 8 nm, 12 nm, 16 nm, 20 nm are used in various parts of

the investigation so that a range of 16 to 40 particle diameters is covered. A value of

w = 9.37 Å is used for all simulations targeting a narrow pore and values from 5.37 Å

to 30.37 Å for the pore size parameter study. After subtracting the carbon diameter

σC = 3.37 Å, this covers the range from non-accessible pores to bulk-like pore sizes.

Including all parameters, the total simulation volume is calculated as follows:

Vtot = h(gLx + 4(lw/2 + (r1 − πr21/4)− (r2 − πr22/4))). (7.1)
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7.1.2 Ion model

For the most part, a primitive electrolyte model of symmetric, monovalent ions with

WCA interaction is used. The full parameter list can be found in table 7.1. Although

soft potentials are employed in the MD simulations, σWCA is referred to as ion size or

diameter.

σWCA (Å) �WCA (kJmol−1) rcut (Å) charge (e)

Cation 5 1 21/6σWCA ≈ 5.6 1

Anion 5 1 21/6σWCA ≈ 5.6 -1

Table 7.1: Interaction parameters used for the primitive ion model.

This choice is motivated by the following considerations: First, the simplicity of

the model speeds up the simulations series which is important due to the huge set of

parameters given by the pore geometry and applied potential range. Second, it is not

trivial to distinguish between excluded volume effects due to the geometry confinement

and effects resulting from ion asymmetry. This is helpful for later studies with more

detailed ion models. Furthermore, in Chapter 8 the results of the MD simulations are

compared to MC simulations using the same ions. It it known that asymmetry in charge

and shape is one of the main criteria in the classification of ionic liquids. What is left

in the model to still consider the electrolyte an ionic liquid are the size and the strong

electrostatic interaction. In the simulation, this is controlled by the Bjerrum length

lb =
e2

4π�0�rkBT , set by the relative permittivity �r and system temperature T . It combines

two physical aspects which both appear as a factor in the Coulomb forces between the

charges: Atomic and dipolar (orientation) polarization, which is not included in the

model, leads to reduced Coulombic interaction. The same accounts for the addition

of polar solvent molecules. In that sense, �r can also be used to model an implicit

solvent. This leaves a rather broad range of meaningful values for the permittivity,

resulting in different interpretations of the coarse grained electrolyte model. Reference
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simulations with varying �r were analyzed in Section 7.3.1 and �r = 4 was chosen

for further simulations, motivated by the fact that lower values lead to reduced pore

wetting without applied potential (see Section 7.3.1).

7.1.3 Canonical ensemble setup

For the NVT simulations and a given pore geometry with total volume Vtot, the vol-

ume fraction η = Vion

Vpore
sets the number of particles in the system. However, the total

volume of the system Vtot differs from the accessible volume Vacc which is unknown

prior to the simulation and will depend on η itself, the applied potential and pore ge-

ometry parameters. For example, if the pore width is too small for the ions to enter,

a large portion of the total volume is no longer accessible, but may become available

at a certain applied potential. Also, the volume fraction of the bulk liquid between the

electrodes ηbulk and that inside the slitpore ηpore will both be different from η. It should

be noted here that the region z < l ∪ z > l + g is referred to as inside of the pore.

Again, a large range of values from η = 0.15 to 0.55 was investigated in a first set of

simulations at zero applied potential in Section 7.3.1. For further simulations, reduced

sets of η within this range are used.

Especially for nanopore charging dynamics, the temperature becomes important be-

cause of the diffusive nature of the co-ion desorption. However, we exclude the tem-

perature T and relaxation time γ of the Langevin thermostat from the already large list

of changing parameters and use fixed values of T = 400K and γ = 10 ps−1.

7.1.4 Applied potential

A realistic setting of the capacitor system requires the modeling of an external, ideal

voltage source. The ICC*-algorithm is employed to fulfill the boundary conditions of

a fixed potential drop U between the metal electrodes. This leads to time-dependent

induced charges qi(t) on the discretized surface of carbon atom with index i. In Section

4.3.2, it was shown that ICC* actually only accounts for maintaining zero potential
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difference between the electrode. To reach the target potential difference U , a time

independent electric field �Evac(�r) is superimposed that only has to be calculated once

by solving the Laplace equation on a lattice for the given pore geometry.

7.1.5 Geometry generation

To avoid mismatch between the carbon particle positions and the lattice representation

of �Evac(�r), the following scheme is used to set up the system: First, the geometry is

generated using gmsh, ”a three-dimensional finite element mesh generator with built-

in pre- and post-processing facilities” [111]. The surface is parametrized by its outline

and extruded by h in y-direction (see Fig. 7.1). Out of this surface, gmsh uses a

”frontal” algorithm [112] to generate a mesh of triangles with side lengths close to a

given value cl. Later, the carbon atoms are placed in the centers of these triangles, so

the choice of cl = 2.9 Å will lead to a carbon-carbon distance of aCC = cl/
√
3 ≈ 1.67 Å

considering equilateral triangles. The output of gmsh is a stl-file, which is a set of NT

triangles Ti, given by three vertices in clockwise orientation and the corresponding

normal vector. This data is imported into ESPResSo, which now has two tasks: First,

placing the fixed carbon particles in the triangle centers and assigning the triangle area

and normal vector to the particle, needed for the ICC* algorithm. Second, the vacuum

field �Evac(�r) is pre-calculated by solving Laplace’s equation in the whole volume of

the system (see Section 7.1.7).

7.1.6 Surface distance calculation

For a straightforward implementation of the Laplace solver with a volume grid, it has

to be known if a finite volume element belongs to vacuum or the electrode boundary.

This can be done by the distance criteria

|dS(�r)| < �b (7.2)
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given the distance dS to the surface from any point �r in space and a threshold �b =

0.25 Å in a lattice with a resolution of 10 bins per Å. dS is found in by simply calculat-

ing the distance dTi to each triangle and using dS = min(dTi), i ∈ NT . It is worthwhile

to outline the implementation of the distance calculation [113]: First, the closest fea-

ture has to be determined. This feature can be one of the three edges (E1, E2, E3),

vertices (A, B, C) or the face F of the triangle (see Fig. 7.2).

Figure 7.2: Triangle features and edge equations in 2D.

This is most easily done in 2D, so two matrices Ts and Tr for translation and rotation

for each triangle are used that it ends up on the yz-plane with one vertex in the origin

of the coordinate system. The same transformations applied to the test point leads to

the transformed point �t = TrTs�r and the projected point p = (tz, ty). The nine edge

equations

ei(p) = (px −X) · dY − (py − Y ) · dX (7.3)

with gradient dX/dY and a point (X, Y ) on ei can be used to test a given point p. The

cases

ei(p)





> 0 p is left of ei

< 0 p is right of ei

= 0 p is on ei

(7.4)

determine the location of p relative to the edge. With a minimal set of evaluations of the

edge equations, the closest feature of the test point can be determined and the distance
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7 Simulating IL-based EDLCs with slitpore electrodes

to that feature is calculated. Single pre-calculations of the transformation matrices and

edge equations parameters for each triangle further speed up the implementation.

7.1.7 Laplace solver

The preceding distance calculations is required to determine the boundary nodes for the

Laplace solver. A 7-point stencil successive overrelaxation scheme is used to converge

to the solution Φ(�r) of the Dirichlet problem

ΔΦ(�r) = 0 in Ω

Φ(�r) = φ1 on ∂ΩL

Φ(�r) = φ2 on ∂ΩR

(7.5)

in the accessible domain Ω with the electrode surfaces ∂ΩL and ∂ΩR. In the discrete

solver, the box Lx, Ly, Lz is divided into an irregular lattice with a given number of

bins bx, by, bz and lattice spacing Δx = Lx

bx
,Δy =

Ly

by
,Δz = Lz

bz
. The iteration rule runs

over all bins (i, j, k) and reads as

Φijk = (1− α) · Φijk+
α

2 · (Δy2Δz2 +Δx2Δz2 +Δx2Δy2)
·

(Δy2Δz2 · (Φi+1jk + Φi−1jk)+

Δx2Δz2 · (Φij+1k + Φij−1k)+

Δx2Δy2 · (Φijk+1 + Φijk−1))

(7.6)

Note that the updated values are already used during one iteration step, the boundary

nodes are excluded and periodic boundary conditions are applied for neighbor bins at

the box borders. Fast convergence is obtained for a relaxation parameter α = 1.9. The

stopping criterion is fulfilled if the maximal absolute change of any Φijk between two

iteration steps is below 10−7.

88



7.1 Simulation setup

Figure 7.3: Exemplary potential map, electric field magnitude and gradient visualiza-
tion of the slitpore geometry.

An exemplary electric potential map, electric field magnitude and gradient visual-

ization is shown in Figure 7.3 for a potential U = 1.0V. An important observation

here is that the potential in Fig. 7.3 (a) inside the pores is almost constant and the

potential drop appears in the reservoir between the electrodes. This is also visible in

the magnitude of the electric field Fig 7.3 (b), where the values approach zero in the

pore entrance region and have a constant value of E = U/g = 12.5mV Å
−1

between

the electrodes. The field lines in Fig. 7.3 (c) are visualized with a Line Integral Con-

volution available in Paraview. In the regions of constant potential inside the pores, the

visualization is no longer possible because the magnitude of local field vectors drops
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7 Simulating IL-based EDLCs with slitpore electrodes

below the precision of the gradient visualization, resulting in noise data in the rear part

of the slitpore in Figure 7.3 (c). As expected, the field lines end up perpendicular to

the surface and follow the curvature of the geometry. The potential data only has to be

calculated once per geometry, any applied potential drop can be achieved by rescaling

the existing data. It is used in ESPResSo as a tabulated potential with linear interpola-

tion for the potential values at the actual particle positions. The gradient and resulting

force �FE = qi · �Evac(�r) on the charge qi is computed on the fly during the simulation.

7.1.8 Testing the applied potential method
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Figure 7.4: Electric potential of a test charge dragged along the z-axis from one elec-
trode to another.

In order to test the applied potential scheme, a charged particle is dragged from one

pore center to the other with activated ICC* and a superimposed potential of 1V. The

resulting potential along the z-direction

Φ(z) = −
� z2

z1

Fzdz
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7.2 Finite size test

is shown in Figure 7.4. The pore entrance positions at z = 160 Å and z = 240 Å are

marked by dashed lines. As expected, the potential inside the pores is constant and the

drop occurs in the reservoir between the electrodes. This confirms the validity of the

superimposed potential and the resulting forces.

7.2 Finite size test

Too small system sizes may lead to results that are affected or even dominated by finite

size effects. However, excessive testing of how the results converge for all geometry

parameters is out of scope. Nevertheless, some of the critical parameters are checked

for altered results. In particular, discretization of ICC* particles, gap size g and side

length h (see Fig. 7.1), which also set the reservoir volume, are tested. Also related to

the number of particles in the reservoir is the rim size s. It determines the distance of

the periodic images of the pore in x-direction and one edge of the plane which embeds

the pore. Ions and induced charges total in a neutral pore, so the influence of the

periodic replica of the pore in x-direction is expected to be minor.

7.2.1 ICC* discretization

Considering a test charge approaching a metal plane, the attractive force of the in-

duced charges acts only in the normal direction of the plane. This changes when going

from the continuum picture to a discretized surface. There, the off-normal contribu-

tions increase with closer approach of the test charge. In the CDC electrode model, the

smeared-out character of the induced charge in a metal surface was taken into account

by using Gaussian charge distributions for the induced charges on the carbon atoms.

In ESPResSo, electrostatic interaction between point charges and Gaussian charges is

not possible. However, comparing the ion size of 5 Å with the carbon-carbon distance

of 1.67 Å, the effect is expected to be negligible.
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7 Simulating IL-based EDLCs with slitpore electrodes

The surface discretization is tested in several ways: First, we perpendicularly ap-

proach the surface with a test charge and measure the attractive force that appears due

to charge induction. We compare the cases where the test charge is (i) moved directly

towards a carbon atom or (ii) towards the center of a carbon ring.
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Figure 7.5: Wall-particle forces of the discretized surface, probed at the two represen-
tative positions (on carbon and on center) of the slitpore carbon structure.

Figure 7.5 shows the force component Fx of the image charge attraction perpendic-

ular to the surface in both cases. The curves are very similar and only deviate signifi-

cantly about 1 Å away from the pore center. This has to be put into perspective to the

accessible region of the ions. This is denoted by the semicircles and gray areas, show-

ing the onset of the WCA potential between ions and carbon atoms. In case (i), the

WCA interaction starts at w
2 − σc+σion

2 = 0.505 Å away from the pore center, whereas

in case (ii), WCA begins at w
2 −

�
(σc+σion

2 )2 + a2CC ≈ 0.845 Å for all six particles of

the hexagon. Note that in these force tests, the particle is moved symmetrically be-

tween carbon centers or ring centers on both sides of the pore, the asymmetry in the
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Figure 7.6: Force on an ion pair with refined and applied ICC discretization.

illustration is for direct comparison of (i) and (ii). From this test it can be concluded

that the discretization level is sufficient to resolve correct normal forces by the induced

charges. However, it also shows that in the graphene ring centers, the image charge

attraction is slightly increased compared to the on-carbon position.

It is further tested how the ICC* discretization affects the electrostatic interaction

of an ion pair inside the pore. Therefore, a refined carbon mesh of half the size of

the lattice vectors is generated resulting in a carbon-carbon distance of aCC ≈ 0.84 Å.

The electrostatic forces on a pair of test charges separated by z for the refined and

applied (more coarse) discretization are compared in Figure 7.6. In both cases, the

forces are slightly affected by the relative position of the ions to the carbon structure.

The oscillatory contribution to Fz by the induced charges starts to overcome the ion-ion

coulomb force after 21 Å for the coarser carbon structure. In case of a filled pore, this

contribution will be small regarding average distances and number of ions.
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7 Simulating IL-based EDLCs with slitpore electrodes

7.2.2 Gap size
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Figure 7.7: Total number density for reduced and applied gap sizes 6 and 8 nm.

For the production runs, the system is simulated with a gap size g = 8 nm between the

two pores. This region models the bulk electrolyte in EDLCs and extends to µm or cm

in real capacitor applications. These distances are necessary to avoid possible short cir-

cuits in case of mechanical deformations. For the same reason, a permeable separator

is embedded between the electrodes in the center of the reservoir. In the simulations,

the bulk region is kept as small as possible to minimize the computational effort. The

electrode separation should be chosen such that the charge density oscillations at the

electrodes have decayed and there is no interference of the interfacial ion layers. The

amplitude of these oscillations and the number of layers Nl depends on the ion model
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7.2 Finite size test

and the applied voltage. Based on previous simulations, Nl < 6 holds also for high

applied voltages. This gives an estimate for the lower limit of the gap size for Nl = 6

and σion = 5 Å, assuming that each layer width is equal to the ion diameter:

g > 2Nlσion = 6 nm. (7.7)

The influence of g on the ion structure is tested in a series of simulation with an applied

voltage range of 0V to 5V. Exemplary, Figure 7.7 shows the ion charge density profiles

along the z-direction for the lower limit of the gap size, g = 6 nm and the applied gap

size g = 8 nm, for 1 and 3V respectively. In between the electrodes, marked by the

vertical dashed lines in Fig. 7.7, the charge density shows pronounced oscillations for

both applied voltages. In case of the smaller gap size g = 6 nm, the oscillation cannot

be considered as decayed in the bulk. With the increased value of g = 8 nm, there is

almost no structure left in the center of the system. Also, the subsequent simulations

for different initial volume fractions, which strongly affect the situation in the bulk,

will show that the pore charge is unexpectedly decoupled from the bulk configuration.

7.2.3 Side length

In the periodic y-direction of size h, the ion layers may not be able to decorrelate over

h and the resulting structure will be affected by the choice of the side length and the

ratio h
σion

. The ion arrangement along the z-direction inside the pore exhibits structural

changes from strongly confined at the pore ends to a less dense, homogeneous ion dis-

tribution in the pore center. The influence of the side length h is expected to be smaller

in the latter case, where the thermal noise will decorrelate the ions in y-direction also

for small values of h. Test simulations with side lengths h = 2.5 nm, 5 nm, 10 nm at 1V

were set up to rule out a major influence on global system observables, in this case the

time dependent capacitance per area.
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Figure 7.8: Time evolution of the specific capacitance for various side lengths.

Figure 7.8 shows C(t) for the different side lengths h and common parameters stated

at the top of the plot. A detailed discussion of the charging dynamics in the slitpore

setup will be discussed in Chapter 9 in more detail.

For the finite size analysis, the influence of h on the final charged state of the capacitor

is evaluated. The test simulations show that the saturated capacitance, averaged from

4 ns to 10 ns is not affected by the side length:

h = 2.5 nm : �C� = (6.36± 0.31) µF cm−2

h = 5 nm : �C� = (6.27± 0.21) µF cm−2

h = 10 nm : �C� = (6.38± 0.17) µF cm−2

Because h is also directly proportional to the number of particles in the bulk, the

smallest value h = 2.5 nm of the parameter series is most convenient for comprehensive

simulations with a large number of parameters.
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7.3 Results

7.3 Results

Any applied voltage between the electrodes induces charge and mass transport. This

changes the balance between bulk, anode and cathode and leads to a distinct ion distri-

bution across the system. The simulations show that relaxation times towards a charged

state can be slow and that the bulk density will change during the charging process.

This section starts with an investigation of the initial pore wetting at 0V (Sec. 7.3.1),

discusses how the bulk density affects the pore charge (Sec. 7.3.2) and how to avoid

out of equilibrium states during charging (Sec. 7.3.3). These issues can be seen as part

of the equilibration process but also reveal interesting aspects of the system. With the

charging process well under control, the systematic influence of the pore width on the

integral capacitance is discussed in Section 7.3.4.

7.3.1 Pore wetting

Two important parameters of the electrolyte model are the permittivity �r and initial

electrolyte volume fraction η, which are well defined in simulations: The permittivity

enters in the Bjerrum length and inversely scales the strength of the coulomb inter-

actions in the system. In experiments, it is accessible as the zero-frequency relative

permittivity. η sets the number of particles in the system of a given volume and cor-

responds to the pressure inside the capacitor. Because �r and η can be tuned by the

composition of the electrolyte and the ambient conditions of the EDLC cell, simula-

tions for �r from 2 to 10 and for η from 0.24 to 0.5 at zero voltage were performed. By

inspection of the density profiles ρ(z) across the simulation box, the system is charac-

terized by one of the four states (a) non-wetting, (b) incomplete wetting, (c) full wetting

and (d) bulk crystal depending on the values of �r and η. Figure 7.9 shows snapshots

of typical configurations for the different states.

Within the described simulation setup, several other factors can influence the initial

pore wetting behavior. Due to the large parameter space, these effects were not simu-
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7 Simulating IL-based EDLCs with slitpore electrodes

(a)

(b)

(c)

(d)

Figure 7.9: Exemplary snapshots of the different pore wetting classes: (a) non-wetting,
(b) incomplete wetting, (c) full wetting and (d) bulk crystal.

lated systematically, but are only briefly discussed below:

• Additional short-range attraction via Van-der-Waals interaction between the ions

and the electrode particles locally binds the ions on the surface. Note that this

effect is neglected here and the purely repulsive WCA interaction is applied. This

approach can be used to simulate ionophilic pores.

• The temperature of the canonical ensemble controls the aggregate state of the

IL. Meaningful values for simulations should be well above the melting point

of the electrolyte, but in applicable range considering the use of EDLC cells in

electromobility applications.

• Unstructured (i.e. smooth) electrodes reduce the friction and increase the ion

mobility in the confined parts of the system. This variation of the electrode model

is investigated in Section 5.2.2 for parallel plate capacitors.
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7.3 Results

• Larger pores (in terms of pore width w) lead to an improved pore accessibility,

but also negatively affect the capacitance as shown later in section 7.3.4.

• The capacitive response of the system is the pore occupation as a function of the

applied voltage. The question how the voltage behavior is affected by the initial

volume fraction is further discussed in Section 8.4
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Figure 7.10: Classification of the pore wetting behavior depending on initial volume
fraction and electrolyte permittivity.

56 pairs of values of η and �r are simulated and categorized in the states (a) to (d).

The result is condensed in the phase diagram in Figure 7.10. The data shows that the

parameters are influencing the pore filling behavior in a similar fashion: For low values

of �r in the range of 2 to 6 (i.e. increased electrostatic interaction) and a large range

of volume fractions from 0.24 to 0.4, the particles tend to leave the pore unfilled. This

resembles the low vapor pressure character of RTILs, where the strong ionic bonding
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7 Simulating IL-based EDLCs with slitpore electrodes

prevents the transition into the gas phase at the IL surface. Accordingly, high values

for the permittivity reduce the electrostatic ion-ion correlation and improve the pore

wetting. The pore filling can also be enhanced by increasing the initial volume fraction

which expands the IL drop in the bulk and pushes the ions into the pores. The data

shows that for η > 0.4, the pore is either in the fully wetted or bulk crystal configura-

tion. At high values of η and low �r, the systems freezes and forms a highly ordered

salt crystal in the bulk. In this configuration, the immobility of the ions will lead to a

poor performance of the capacitor, which relies on particle transport into and out of the

pores.

7.3.2 Bulk calibration
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Figure 7.11: Pore ion structure showing co-ion trapping and density reduction in the
bulk with applied voltage.

With applied voltage, ion migration leads to a change in density in the reservoir and the

pores. This is demonstrated in Figure 7.11, showing the particle number density along

the z-direction of the system with incomplete wetting initial conditions for 0V (green)
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and 3V (blue, red) for a total concentration of cIL ≈ 1.1M corresponding to the initial

volume fraction η = 0.24. The gray areas denote the location of the pores. Leaving

aside the discussion of structural features for now, it is observed that the density of ions

in the bulk electrolyte between the electrodes strongly depends on the applied voltage.

Quantitatively, the bulk density drops almost twofold upon charging.

Depending on the initial configuration at zero voltage and the dominating charging

mechanism, the bulk density will increase for co-ion desorption or decrease for coun-

terion adsorption when a voltage is applied. A detailed analysis of the charging mech-

anism follows in Section 8.5.
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Figure 7.12: Bulk packing fraction upon charging for different initial concentrations.

Figure 7.12 shows the described behavior of the bulk packing fraction as a function

of voltage. Each data point represents an individual simulation at the given applied

voltage where the bulk density has been sampled after completion of the charging pro-

cess. The packing fraction curve for cIL = 1.1M, for which Fig. 7.11 showed the den-

sity profile, drops twofold in a linear fashion from ηbulk = 0.32 at 0V to ηbulk = 0.16

at 3V. To test if this effect affects the pore charge, a simulation approach that main-
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7 Simulating IL-based EDLCs with slitpore electrodes

tains the density in the bulk is used. Dynamically moving the pore constraints conflicts

with the constant potential simulation scheme, as the applied field would have to be

recalculated with every translation of the boundaries. Using a larger bulk region would

increase the computational cost. Here, a Monte- Carlo like approach is applied, where

ion pairs are dynamically inserted and deleted in the bulk to maintain the density until

the charging process has finished. This correction move is executed every 0.1 ns and

disabled after the pore charge has converged. Also, an insertion move is rejected if

the change in total energy exceeds 10 kJmol−1 to avoid strong particle overlap. This

approach is considered as part of the equilibration process and can’t be employed to

obtain dynamical properties. The data acquisition happens after the bulk correction is

switched of in the charged state.
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Figure 7.13: Pore packing fraction and charge density (inset) with and without bulk
calibration.

Figure 7.13 compares the pore packing fraction and charge (inset Fig. 7.13) with

and without bulk calibration. It reveals that although the packing fraction in the pore is

slightly altered by the bulk calibration, it has practically no effect on the charge storage.
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This is likely because a change in the chemical potential Δµ± due to the change in the

ion density is small compared to the energy of the applied potential, i.e., Δµ± << eU .

7.3.3 Ramp charging

The voltage in constant potential simulations is usually switched on after a certain

time of system equilibration at 0V. For higher applied potentials, this approach led to

irregularities in measurements of the pore charge, where repeated simulation runs with

same system parameters resulted in different pore charges.

Figure 7.14: Charge density heatmaps for the sudden application of an applied voltage
(a) and a linear voltage ramp (b). The same final voltage of 3V is applied
in both cases, averages for the heatmap generation were obtained for the
last 5 ns simulation time. The difference in final ion configuration indicate
that the step-voltage approach has not reached a steady state yet.

The density profiles in Figure 7.11 as well as the charge heatmap in Figure 7.14 (a)

show that with larger applied voltages (∼ 3V), co-ions in the pore can temporarily

become trapped near the pore end on time scales reached with the MD simulations

(∼ 100 ns). Such a co-ion trapping leads to a decreased charge storage and slowed

down dynamics. A way to avoid ion trapping is to use a linear voltage ramp U(t) = kt

to charge the system until the target voltage is reached, instead of applying the final

voltage in a step-like fashion. Figure 7.14 (b) demonstrates that this strategy avoids co-
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7 Simulating IL-based EDLCs with slitpore electrodes

ion trapping and leads to a charge equilibrated pore configuration on computationally

accessible time scales. The detailed analysis of this approach and extended simulations

with various sweep rates k will be addressed in Chapter 9.

7.3.4 Oscillating capacitance
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Figure 7.15: The integral capacitance exhibits oscillating behavior for increasing pore
size. The dashed vertical lines indicate pore sizes that lead to local max-
ima in the capacitance. A global maximum is found if the pore size
matches the ion size.

In this simulation series, the pore size w is varied in a range from 3 Å to 27 Å. With

ions of diameter 5 Å, the lower limit covers the situation of too narrow pores. In the

upper limit, the system converges towards a setup with completely flat electrodes. The

pore size w is of interest for EDLCs, as available technology allows to fabricate high

surface area electrode material with a narrow pore size distributions [11]. The data in

the following Figures 7.15, 7.16 and 7.17 was simulated with η = 0.27, �r = 4 and

an applied voltage of 1V without bulk calibration. Figure 7.15 shows the pore size
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dependence of the integral capacitance

C(w) =
1

AU

��

i

qi

�
(7.8)

per (single) electrode surface area A calculated from the sum over all ICC particles qi

and averaged over both electrodes in the charge state of the capacitor. For narrow pores

smaller than the ion size, the capacitance still has a small contribution from the rim of

the pore that offsets the complete data set by 1.3 µF cm−2. For w >= σion, the capaci-

tance exhibits three distinguishable oscillations in the simulated range of pore sizes. In

this range, the capacitance ranges from the global maximum of C(w) ≈ 9.6 µF cm−2

at w = 5 Å to the local minimum of C(w) ≈ 6.9 µF cm−2 at w = 7 Å. The capacitance

oscillations are often explained with the analogon of constructive and destructive inter-

ference of ion layers [54]. It is true that one layer of co- and counterions each would

result in a neutral pore, leading to zero capacitance. The interference picture however

neglects that the true configuration is found in the free energy minimum governed by

excluded volume, electrostatics and driving forces into the confined region, which can-

not be captured by simple additive superposition of densities of single-wall solutions.

Another important observation is that the global maximum in capacitance can be

found if the pore size is equal to the ion size (at 5 Å). This can be explained by the su-

perionic state, described in Section 4.2: If ions are surrounded by metallic boundaries,

the interaction between themselves is screened exponentially considering the unity of

an ion and its image charges. This effect gets weaker if the pore size increases. As a

result, it is possible to pack more like-charged ions inside the narrow slitpore up to the

point, where the pore is to small for the ions to fit in.

7.3.5 Ion structure with varying pore size

The series of density profiles in Figure 7.16 shows the development of the ion con-

figuration across the pore width. The configurations associated with the local maxima
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7 Simulating IL-based EDLCs with slitpore electrodes

of the capacitance are highlighted with bold colors. If the pore is filled with a single

counterion layer at w = 5 Å, the capacitance has a global maximum. As the pore be-

comes wider, charge oscillating ion layers are emerging comparable to ILs at planar

electrodes. Figure 7.16 also shows that the outermost layers are always made up of

counterions. This leads to the rule that the maxima in capacitance appear if the num-

ber of internal layers n in x-direction is an odd number, for the pore size this suggests

wopt
n ≤ n · σion for n = {1, 3, 5, . . .}. Shifted stacking of the spherical ions undermines

this rule, generally the characteristic width of ion layers has to fit into the given pore

geometry. This structure results in maximal packing of ions and thus maximal induced

charge, any disturbance reduces the capacitance.

Figure 7.16: Ion number density profiles for various pore sizes across the pore (red:
counterions; green: co-ions). The bold slices are the configurations at
local capacitance maxima.
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7.3 Results

Figure 7.17: Ion number density profiles for various pore sizes along the pore (red:
counterions; green: co-ions).

In the density along the pore in Figure 7.17, ions at the bottom of the pore also show

charge density oscillations like ILs at planar interfaces, although highly confined. For

wider pores, the oscillations become more pronounced. After the ion layers at the pore

ends, the density in z-direction appears homogeneous up to the pore entrance, where

another layered structure emerges due to the pore cover. At a pore size of 4 Å, some

counterions are still able to squeeze inside the pore because of the soft interaction

potential. For values w < 4 Å, the pore becomes inaccessible for the ions.
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7 Simulating IL-based EDLCs with slitpore electrodes

7.4 Conclusions

Concerning the geometry parameters of the slitpore electrode system, tests for the de-

gree of discretization of the carbon particles, the size of the reservoir and the side length

of the slitpore show no signs off finite size effects for the chosen parameters used in

subsequent simulations. However, the parameters of the model electrolyte strongly

affect the system: The pore wetting analysis shows that the initial configuration and

density in the pore at zero volt is highly determined by the permittivity and initial

volume fraction of the electrolyte. These parameters contribute to the overall ionopho-

bicity of the pores.

The ion density ρbulk between the electrodes of a supercapacitor can vary appreciably

with the applied voltage. This can be corrected by calibrating ρbulk during equilibra-

tion runs to keep it constant. However, this change in the bulk density only has a minor

effect on the charging behavior. This result means that it is safe to consider relatively

small electrode-electrode separations in supercapacitor models, also the computation-

ally expansive bulk calibration only has a small impact on the pore charge. Another

important issue that appeared in the validation of the setup is that at intermediate and

high voltages, co-ions can become trapped in the pores on typical simulation time

scales, producing non-equilibrium states. This difficulty is resolved by charging the

capacitor using a linear voltage-ramp instead of an abrupt step-voltage.

For varying pore size, the capacitance exhibits oscillations with a global maximum

when ion diameter and pore sizes match. This clearly shows that it is important to

choose an adapted combination of electrolyte and electrode material, preferably with

a narrow pore size distribution close to the ion size. Usually, the anion and cations in

ILs are different in molecular structure and extent, so that the pore size has to be tuned

with respect to the larger ion for symmetric electrodes. If the polarity of the capacitor

is fixed, asymmetric electrodes could be used, individually optimized for the respective

counterion.
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8 Finite pore length effects

Parts of the content in this chapter has been published in the following article. My

contributions: Performed MD simulations, figures and snapshots, data analysis and

parts of the writing. The Monte-Carlo results of this chapter were produced by Dr.

Svyatoslav Kondrat.

K. Breitsprecher, M. Abele, S. Kondrat and C. Holm

“The effect of finite pore length on ion structure and charging”

The Journal of Chemical Physics, 2017, 147 (10), p 104708

URL: https://doi.org/10.1063/1.4986346

The finite slitpore simulation model (hereafter called MD model) introduced in Chapter

7 represents a simplified building block of a macroscopic nanoporous network such as

CDCs, which consist of interconnected networks of different pores [114]. Although

such a network can be described as a collection of shorter pores, the ionic liquid is

nevertheless mainly present deeply in the porous carbons and far from the contact with

the bulk electrolyte or pore closings. In this sense, infinitely extended pores can still be

considered as good models for these porous materials. The deficiency of infinite pores

is that the effects related to the pore closing and opening are completely ignored and

the charging dynamics are not straightforward to study.

For the infinite slitpore model, a Monte-Carlo simulation approach is used, (hereafter

called MC model). The MC data was produced by Dr. Svyatoslav Kondrat in the

context of the collaborative project presented in this chapter. The MC model consists
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8 Finite pore length effects

of a single nanopore with an ionic liquid confined between two parallel metal plates,

which are infinitely extended in xy-directions modeled by applying periodic boundary

conditions in these directions (see Figure 8.1 b).

Figure 8.1: Schematics of the finite slitpore model of the MD simulations and the infi-
nite slit used in the MC model. Here, the pore can exchange particles with
an implicit reservoir, implied by the arrow between slit and the outside ion
pair.

The IL reservoir is taken into account by the transfer energy δEpm of an ion from the

bulk into the pore, which is assumed to be equal for anions and cations. In this chapter,

these two types of models are compared to study the effects of finite and infinite pore

lengths on the ion structure and charging.

8.1 The MC framework

The interaction potentials were implemented in the towhee simulation package [115].

Grand canonical Monte-Carlo simulations were performed using Widom insertion-

deletion moves [116], translational moves, and molecular-type swap moves [61]. After

5 × 106 equilibration steps, up to 107 production steps at temperature T = 400K were

performed. In both models and all results presented in this chapter, the same pore width

w = 9.37 Å is used, corresponding to a accessible pore width of 6 Å. Also, the primitive

ion model of charged WCA particles described in Section 7.1.2 was used throughout

the comparison.
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8.2 Matching MC/MD

8.2 Matching MC/MD

8.2.1 Ion-ion electrostatics
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Figure 8.2: Electrostatic force between a pair of like-charged ions for the analytical
solution (solid line), the induced charge approach (points) and the vacuum
case (dashed line).

The electrostatic potential U at the plates of the MC model by symmetry corresponds

to the applied potential 2U between the two electrodes of the MD model. U enters the

Monte-Carlo scheme by setting the electrochemical potential to µ± = ±eU+δE±. The

electrostatic interaction energy between two ions confined in a metal slit pore similar

to Eq. 4.17 reads [61]

vαβ(z1, z2, R) =
4qαqβ
εw

×
∞�

n=1

K0

�
πnR

w

�
sin

�
πn

w
(z1 + 0.5)

�
sin

�
πn

w
(z2 + 0.5)

�
(8.1)
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8 Finite pore length effects

where qα and qβ are the ion charges (±e), R is the lateral distance between the ions,

z1, z2 ∈ [−w/2, w/2] are their positions across the pore, and ε is the dielectric constant

(taken ε = 4 in this chapter). To test how the superionic state emerges within the

ICC∗ approach, the force between two ions in the pore middle has been calculated

and compared with the force obtained from Eq. (8.1) as fαβ = −dvαβ/dR (note that

f++ = f−− = −f+− ≡ f ). Figure 8.2 demonstrates the excellent agreement between

the MC and MD methods. Compared to the Coulomb force (dash line) of free ions, the

confined interaction is much weaker.

8.2.2 Image charge attraction
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Figure 8.3: Good agreement is found for the attractive image charge force of a sin-
gle ion approaching the metallic pore boundary comparing the analytical
solution (solid line) and the ICC∗ case (points).

An ion confined in a narrow conducting nanopore experiences an image-force attrac-

tion to the pore walls. For a slit metallic pore, infinitely extended in the lateral direc-
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tions, this interaction energy can be calculated analytically via [61]

E
(α)
self(z) = − q2α

εw

� ∞

0

�
1

2
− sinh(k(1/2− z/w)) sinh(k(1/2 + z/w))

sinh(k)

�
dk, (8.2)

where z is the position across the pore. The interaction potentials in Eq. 8.1 and Eq.

8.2 constitute the superionic state. The image forces acting between an ion and the

pore walls obtained by the ICC∗ approach and from Eq. (8.2) as fself = −Eself/dz

are compared in Figure 8.3 with excellent agreement. Note that the corresponding

potential acquires an additional contribution due to periodicity, which can be corrected

by considering larger systems. However, this shift in Eself does not influence the ion-

pore walls forces, therefore the results of the MD simulations remain the same.

8.2.3 Wall potentials

In the MD model, the electrodes have been constructed as described in Section 7.1.1

with fixed pore width of 9.37 Å and a pore length of 8 nm. The MC model neglects the

pore wall structure and consider flat soft walls instead, using the 10-4 Lennard-Jones

(LJ) interaction potential

φMC
wall−ion(z) = 2π�wall−ionσ

2
wall−ionρwall

�
2

5

�
σwall−ion

z − z0

�10

−
�
σwall−ion

z − z0

�4
�

(8.3)

where �wall−ion and σwall−ion are the wall-ion energy and diameter parameters, ρwall is

the two-dimensional number density of carbon atoms, and z0 is the location of the wall.

This potential is obtained by integrating the LJ inter-particle interaction potential over

a surface of LJ particles, where the surface is infinitely extended in the xy-directions.

In order to match the MC and MD models, the interaction potential (Eq. 8.3) is fitted

to the averaged potential that an ion experiences when approaching the atomistic wall.
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10-4 LJ wall potential for MD. The inset shows a zoom to the onset of the
interaction in the pore center.

Potential curves of this fitting procedure are shown in figure 8.4, the inset highlights

the region close to the pore center (z = 0). It is difficult to accurately match the in-

teraction of the carbon walls (CW) used in the MD model in the whole range of the

wall-ion distances. Also the atomistic wall-ion potential is not homogeneous in the

lateral directions, shown by CW (max) and CW (min) curves. For an optimal match

of the homogeneous soft wall potential (HSW), the fitting procedure targets the mean

potential. The resulting fitted parameters of the interaction potential given in Eq. 8.3

are σwall−ion = 4.472 Å and ρwall = 0.106 Å
−2

. In addition to the soft pore walls which

interact with the ions via Eq. 8.3, a model of hard walls common for MC simulations

was tested. [61, 107–109, 54, 117].
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Figure 8.5: Ion density profile (left) and pore charge (right) comparisons between car-
bon electrodes (MD) and hard/soft wall interaction potentials (MC).

Figure 8.5 (a) shows that the hard walls strongly influence the ionic liquid structure

inside a pore, but their effect on the charge storage in Fig. 8.5 (b) is moderate. For low

voltages, the accumulated charge in both systems practically coincides and the only

significant differences arise at high applied potentials, where the pore with hard walls

saturates while the soft-wall pore can accommodate more charge. Although fine details

of the non-electrostatic wall-ion interactions are important for the ion structure, their

impact on charging is minor, at least at low and intermediates voltages.
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8 Finite pore length effects

The final test for the total wall-ion interaction potential Φwall−ion as a function of the

position z across the pore is shown in figure 8.6 shows. Φwall−ion consists of the image-

force potential (Fig. 8.3) and the 10-4 LJ interaction (Fig. 8.4) and compares average

ion-wall potential used in the MD model (open squares) to the total potential used in

the MC model (solid line). The shift in self-energy due to the 3D periodicity enforced

by the ICC* algorithm vanished, as the 2D periodic electrostatic solver ICMMM2D

[118] was used to calculate the image-force contribution to Φwall−ion.

8.2.4 Matching the pore density
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Figure 8.7: Matching transfer energy (MC) and IL concentration (MD) to result in sim-
ilar pore density at 0V.

The in-pore packing fraction at zero potential U = 0 should match for both models to

further compare the systems in the charged state. We calculated this packing fraction

as ηin−pore = πσ3/(6Vpore), where σ = σ± = 5 Å is the ion diameter and Vpore = Swacc

is the volume of a pore. S is the lateral area and wacc the accessible pore width. In the

MD model, unless otherwise specified, only the middle parts of the pores were taken

into account when calculating ηin−pore and the entrance and the closing of the pores

were excluded. Since wacc is not known exactly a priori and is expected to vary with
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8.2 Matching MC/MD

the applied potential, wacc = w − σc is used where σc = 3.37 Å is the diameter of

the carbon atom. The pore width w = 9.37 Å gives wacc = 6 Å. Note that this is the

accessible pore width for a system with hard pore walls. In the MD model, the in-pore

ion packing fraction can be controlled by changing the total concentration of ions in

the supercapacitor, cIL. Physically this can be realized by varying the pressure in the

case of pure ionic liquids or by varying the salt concentration in the case of electrolyte

solutions.

Figure 8.7 (a) demonstrates that the pore becomes less populated as cIL decreases.

However, at extremely low concentrations the MD simulations predict the formation

of an IL cluster between the electrodes, which prevents ions from entering the pore

at U = 0V. In the MC model, the pore occupation is controlled by the ion transfer

energy δE. Figure 8.7 (b) shows that the in-pore packing fraction decreases as δE

increases, and the pore becomes more ionophobic [119, 120]. The pore saturates for

both systems around ηin−pore ≈ 0.4. The less strict saturation in the MD model is

attributed to the atomic structure of the electrode wall, allowing increased maximal

packing at high densities. After having matched the pore occupancies at no applied

potential, voltage-dependent MC and MD simulations were conducted for the systems

shown by large symbols in Figure 8.7, where initial concentration and transfer energy

leads to the same in-pore packing fraction.
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8 Finite pore length effects

8.3 Ion structure
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Figure 8.8: In-pore ion structure: The MD model shows a heavily layered pore struc-
ture, whereas the MC model produces homogeneous pore densities.

There are two important features in the MD model that are not present in the MC

system, the finite pore length l and explicit simulation of the IL reservoir between the

electrodes. In order to better understand the impact of the different modeling aspects,

the IL structure along the pore is compared. Figure 8.8 shows the ion density profiles

for the MD models for two pore lengths 8 nm and 20 nm. The orange line denotes the

density of the MC system. As already shown in Section 7.3.2, the average ion density

in the bulk electrolyte depends on the applied voltage. This implies that the chemical

potential of the bulk ionic liquid changes with voltage, while it is taken constant in the

MC model. In Figure 8.8, the ions exhibit a clear layering near the pore closings and

openings, while they seem to form a nearly homogeneous structure in the middle of a

pore. However, for non-zero potentials the density is not constant along the pore and

increases from the pore entrance to the pore end. Clearly, in the MC model the average

ion densities are position independent and a quantitative comparison between the MC

and MD model is ambiguous.
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Figure 8.9: Lateral in-pore structure comparison

Figure 8.10: Ion packing in narrow pores from MC simulations with δE± = 21.75 kBT
(a-c) and MD simulations with cIL = 1.6mol (d-f).

The ion structure for different voltages across the pore is shown in Figure 8.10. At

zero voltage, anions and cations are distributed equally in the pore and collapse on a

single density profile. At high applied potentials, the co-ions have left the pore and

the counterions prefer to locate themselves at the pore walls due to the image charge

attraction towards the metallic boundary. The arising mismatch between the MC and

MD model at 2V again is attributed to the increasing influence of the atomic electrode

structure in the MD simulations, inducing additional ordering in the counterion layers.
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8 Finite pore length effects

8.4 Voltage dependence of the pore charge

Figure 8.11 compares the accumulate charge Q(U) from MC and MD simulations for

pores with matched occupancies at zero voltage. The data demonstrates that the charg-

ing proceeds similarly in the MC and MD models. Interestingly, Q(U) is practically

independent of the transfer energies δE (MC simulations) and ionic liquid concentra-

tions cIL (MD simulations). Again, this is because the electrostatic contribution (±eU )

to the total electrochemical potential dominates the contribution due to δE and cIL,

respectively.
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Figure 8.11: Charging from MC and MD simulations. (a) Accumulated charge Q as a
function of applied potential U from MD simulations for a few values of
the total ionic liquid concentration cIL in a supercapacitor. (b) Q from MC
simulations for a few values of the transfer energy δE.

The direct comparison of the charge curves in Figure 8.12 highlights the quantitative

differences of the two simulation approaches. For applied potentials U > 1V, the

difference becomes more apparent until the data aligns again when the pores start to

saturate at high voltages U ≈ 4V. This comparison shows that the finiteness of the

pore in the MD model has its greatest impact in that intermediate voltage regime.
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8 Finite pore length effects

Figure 8.13 depicts the ion packing fraction in the pore ηin−pore as a function of the

applied potential. In all cases of strongly ionophilic pores, i.e. pores with a substantial

amount of an ionic liquid at no voltage, ηin−pore first decreases for increasing voltage,

and starts to increase only when there are no co-ions left in the pore. In other words, at

low voltages charging is dominated by co-ion desorption, while it is counterion adsorp-

tion that drives charging at higher applied potentials [61, 6, 7, 119]. This is consistent

with previous observations [119], showing that desorption (and swapping) are thermo-

dynamically preferable over adsorption in most cases, except of a narrow window of

parameters in which desorption and swapping are unfeasible due to the lack of co-ions.

To characterize charging mechanisms in more detail, the charging parameter XD(U)

is calculated from the voltage dependent pore occupation of both ion species via

XD(U) =
e

C(U)

dN

dU
, (8.4)

where e is the elementary charge, C(U) = dQ/dU the differential capacitance, Q de-

notes the accumulated charge and N the total number of ions. XD expresses how charg-

ing is related to pore filling or de-filling and describes which charging mechanism takes

place. If charging is driven solely by swapping of co-ions for counter-ions, then the to-

tal ion density does not change, N = const, and hence XD = 0. For pure adsorption we

have edN/dU = dQ/dU and thus XD = 1, while for desorption dQ/dU = −edN/dU

and so XD = −1. The parameter X of [12] is related to XD in a similar fashion as the

integral capacitance is related to the differential capacitance:

X(U) =
1

Q

� U

0

XD(u)C(u)du, (8.5)

which can be seen as a voltage-averaged XD with the weight C(u), where Q =
� U

0 C(u)du

is a normalization constant.
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Figure 8.14: Charging parameter XD from MD (a) and MC (b) simulations showing
the regions where charging is dominated by adsorption (XD > 0) and
desorption (XD < 0). XD = 0 corresponds to swapping of co-ions for
counterions.

The charging parameter XD obtained from MD and MC simulations is presented

in Figure 8.14. It shows that at high voltages charging is solely due to counter-ion

adsorption (XD ≈ 1), but at low voltages it can be either co-ion desorption or counter-

ion adsorption, depending on the initial conditions given by cIL or δE. Interestingly,

for highly ionophobic pores when the pore is nearly empty at no applied potential, the

parameter XD is significantly greater unity, which means that both counter and co-ions

are adsorbed into the pore at low voltages. This is likely because at low densities the

entropic cost of ion insertion is low and the low voltage allows the ions to enter the

pore in pairs.

8.6 Differential capacitance

Fine details of the charging process are captured by the differential capacitance C =

dQ/dU shown in Figure 8.15. Although Q(U) does not seem to vary significantly with

cIL or δE (see Fig. 8.11), C(U) shows nevertheless a complex behavior, particularly for

densely populated ionophilic pores (low δE or high cIL respectively). For such pores,
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8 Finite pore length effects

the capacitance exhibits a first maximum corresponding to co-ion/counterion swap-

ping and a second maximum associated with the co-ion desorption, before it finally

decreases as the pore becomes more and more occupied by counterions and charges

by adsorption at high voltages. For weakly ionophobic pores there is only one maxi-

mum in C(U) at low pore occupancies, while at high potentials the charging proceeds

similarly for all pores.
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Figure 8.15: Differential capacitance as a function of voltage from (a) MD and (b) MC
simulations.
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8.7 Conclusions

The main conclusion is that although the MC and MD models are qualitatively consis-

tent with each other (Figures 8.14, 8.15 and 8.10), there are some important differences

due to the finite pore length. In particular, the pore entrances and closings seem to have

a vivid effect on the ion structure inside a pore. At high concentrations and/or high

applied potentials, the ion density is not constant along the pore but varies roughly lin-

early between the pore entrance and the pore end, where it exhibit a strongly oscillatory

structure (Fig. 8.8). This impedes a complete quantitative match of the two models.

Further findings are summarized below:

• Interestingly, the accumulated charge seems to be only weekly dependent on the

total ion density in a supercapacitor (Fig. 8.15). This observation provides an ad-

ditional degree of freedom for optimizing the charging dynamics by varying the

ion concentration without significantly compromising the energy density (note

that the fine details of the charging process are resolved by the differential capac-

itance, which does depend on the total ion concentration/ion transfer energy (Fig.

8.15 (c)).

• Even though hard and soft pore walls lead to significant differences in the in-

pore ion structure, they show practically the same charging behavior (Fig. 8.5).

This is likely because the applied potential ‘overrules’ all fine details of the non-

electrostatic wall-ion interactions and the resulting particle structure.

• At high voltages, charging proceeds exclusively via counter-ion adsorption, while

at low voltages the charging process is dominated by either co-ion desorption or

counter-ion adsorption, depending on the ion transfer energy or the total ion con-

centration (Fig. 8.14). Remarkably, at low ion concentrations and low voltages,

both counter- and co-ions are adsorbed into the pore (Fig. 8.14 (c)).
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9 Slitpore dynamics

Parts of the content in this chapter has been published in the following article: article.

My contributions: Performed simulations, data analysis, figures, snapshots and parts

of the writing.

K. Breitsprecher, C. Holm and S. Kondrat

“Charge Me Slowly, I Am in a Hurry: Optimizing Charge–Discharge Cycles in

Nanoporous Supercapacitors

ACS Nano, 2018, 12 (10), pp 9733-9741

URL: https://doi.org/10.1021/acsnano.8b04785

In the preceding Chapters 7 and 8, mostly static observables of the finite slitpore

system have been analyzed. This chapter aims towards understanding the dynamical

charge transport in subnanometer pores in greater detail. The focus lies on time scales

reachable by coarse grained MD simulations, typically in the order of nanoseconds.

Besides measuring the time evolution of the pore occupation, the simulation frame-

work also allows to apply a time dependent voltage U(t) between the electrodes to

study the response and potentially improve the performance of the capacitor system

by physically motivated voltage protocols for charging and discharging. Furthermore,

the origin of the already mentioned non-equilibrium state of trapped co-ions and the

effect of voltage protocol parameters are discussed in this chapter. Another central

issue is rescaling the results to macroscopic systems. To this end, the pore length scal-

ing of key results is analyzed, allowing to extrapolate the time dependence of length

scales reachable with the MD simulation scheme of this work (∼ nm) to macroscopic

systems.
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9 Slitpore dynamics

9.1 Models and Methods

l

w

U(t)

Figure 9.1: Overview sketch of a long slitpore with l = 20 nm and indicated applied
dynamic potential U(t).

Two ionic liquid models have been used in this chapter. In most cases, the monovalent

WCA model described in Section 7.1.2 with a diameter of σ = 5 Å was chosen, known

to capture the essential physics of ionic liquids. [121, 122, 52, 51, 123]. Additionally,

the more realistic four-site model of BMIM PF6 [24, 25] was used (see Section 5.1.3).

The carbon atoms were modeled with a 9-12 Lennard Jones potential with parameters

σc = 3.37 Å and �c = 0.23 kJmol−1. The same closed slit nanopore system described

in detail in section 7.1.1 is used with a Langevin thermostat at temperature T = 400K

and damping constant γ = 10 ps−1 In all simulations, at least 4 ns of equilibration

with no applied potential was performed before production runs. Again, the electrodes

were kept at a constant potential using the ICC* algorithm [67] with a superimposed

time-dependent external potential which has been precalculated by solving the Laplace

equation [124] for all electrode geometries considered at a reference potential drop of

1V and rescaled to the time-dependent potential during the simulations.
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9.2 Step-voltage charging

9.2 Step-voltage charging

t = 0:0ns (neutral)

t = 0:02ns (linear)

t = 2:28ns (square-root)

t = 28:0ns (exponential)

z0 80

Figure 9.2: Simulation snapshots of step-voltage charging at selected times representa-
tive for the charging regimes.
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9 Slitpore dynamics

Frequently, the voltage between the electrodes of a supercapacitor is applied in a step-

like fashion. It is turned on abruptly and the system is allowed to complete charging and

equilibrate. This is a particularly favorable method in MD simulation studies, which,

with a few rare exceptions [125, 126, 123], use step-voltage to study charging dynamics

[127, 70, 9, 6]. However, as illustrated in Figure 9.2, step-voltage charging can cause

some co-ions to become (temporarily) trapped inside narrow pores on the time scales

of a typical molecular dynamics simulation [126, 123]. Depending on the magnitude

of the applied potential, the steady state configuration of the charged pore can consist

of co- and counterions. However, in this parameter set with an applied potential of 3V,

the in-pore co-ion density should vanish in equilibrium, known from long simulation

runs and simulations with different voltage protocols that avoid co-ion trapping. The

step-voltage simulations show a significant amount of co-ions in the pores even after

28 ns of simulation time. The scan-rate dependence of the capacitance obtained by

cyclic voltammetry in experimental setups [128, 80] suggest that co-ion trapping may

occur in experimental systems and commercially fabricated supercapacitors, reducing

their power and energy densities, particularly in high frequency applications.
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Figure 9.3: Time evolution of ion numbers in the pore. The dashed lines indicate the
numbers of co- and counterions in the final charged state.
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9.2 Step-voltage charging

The co-ion trapping takes place because a sudden application of voltage causes a

fast field-driven adsorption of counterions from the bulk electrolyte into the pores. It

is important to recall that the electric field caused by the applied potential is very weak

deep inside the pore, so field-driven effects are associated with the entrance region of

the pore. This counterion adsorption process occurs on time scales of a fraction of

a nanosecond (for the pore length considered), and leads to significant pore overfill-

ing[129, 127]. This can be seen in Fig. 9.3, where the sum of all ions (purple data)

clearly exceeds the equilibrium particle count given by N equ
tot = N equ

+ . The adsorbed

counterions compress the in-pore ionic liquid, leading to the formation of a crowded

neutral phase and a dilute charged phase in the entrance region of the pore (Fig. 9.2 at

0.02 ns). The co-ions become trapped in the crowded phase (Fig. 9.2 at 2.28 ns), where

they exhibit slow hopping-type motion before they can eventually diffuse out of the

pore through the dilute, counterion rich phase (Fig. 9.2 at 28.0 ns). As a consequence,

the co-ion desorption occurs dramatically slowly and on much longer time scales.
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Figure 9.4: Three selected ion escape trajectories. The trapped particles deep in the
pore rest in place much longer compared to the actual desorption time.

Three selected examples of ‘escape paths’ of trapped co-ions are shown in Figure
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9 Slitpore dynamics

9.4. While trapped in the crowded phase, the co-ions only advance towards the pore

entrance by abrupt hopping motion until they reach the front of the dilute phase where

they diffuse out of the pore in a few nanoseconds. In order to analyze charging modes

quantitatively, 20 independent simulations have been performed to obtain accurate av-

eraged charging curves.
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Figure 9.5: Charging regimes of the step-voltage charging process of counterions(a)
and co-ions (b). The simulation data was averaged over several runs.

These charging curves, shown in Figure 9.5 separately for counterions (a) and co-

ions (b), reveal four distinct charging regimes:

Linear charging regime

Initially, at very short times, the counterion adsorption proceeds linearly in time, shown

in the inset in Fig. 9.5 (a). This is due to the forces resulting from the applied potential

and is similar to the charging of flat electrodes. The electric field of the applied poten-

tial depicted in Fig. 7.3 (b) rapidly decays in the first few nanometers of the pore, so

only the field in the entrance region of the pore is actually driving the charging process.

132



9.2 Step-voltage charging
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Figure 9.6: Zoom to the onset of the charging process for several pore lengths. The
dashed lines are fitted to the linear charging regime.

The linear regime for several pore lengths is shown in Figure 9.6, the characteristic

time scale depends on the pore length and hence must be determined by the compres-

sion rate of the in-pore ionic liquid. The linear counterion adsorption leads to a linear

growth Q ∼ t of the accumulated charge at short times. This is consistent with the

transmission-line model of charging CDC electrodes [70], but has not been seen in

simulations of open slit pores [127].

Square-root diffusive regime

After the initial linear regime, the charging becomes driven by collective inter-diffusion

of co- and counter ions. Figure 9.5 shows that both co-ion desorption and counterion

adsorption proceed diffusively, which implies that the accumulated charge grows as

a square root of time, i.e. Q ∼ t1/2 at intermediate times, which has been shown

previously [129, 127]. A similarity can be pointed out between this regime and the

charging of wide pores, where the square-root behavior follows from the equivalent
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9 Slitpore dynamics

circuit considerations [130, 2]. Note that the physical origin of this behavior is different

for wide and narrow pores. While it is the resistivity of a bulk ionic liquid and the

capacitance of the pore wall–ionic liquid interface that determine charging in wide

pores, it is determined by the collective in-pore diffusivity of ions and by the screened

ion-ion interactions in the superionic state for narrow pores [129, 127].

Two exponential regimes

Both counterion adsorption and co-ion desorption proceed exponentially at the later

stage of charging, the charge behaves as Q/Qequ ∼ 1 − e−t/τ1 , where Qequ is the ac-

cumulated charge in equilibrium and τ1 the decay length. The characteristic times of

the exponential regime for co- and counterions are different. In particular, the counte-

rion adsorption is faster with the decay time τads ≈ 26 ns, while the co-ion desorption

time is τdes ≈ 87 ns (for the parameters of Fig. 9.5). This leads to two exponential

charging regimes characterized by a mixture of adsorption and desorption. The slower

desorption-dominated regime has been previously termed a super-slow regime [127].

9.3 Ramp-voltage charging

The remedy against co-ion trapping and the accompanying slow charging is to slow

down the charging process itself by using a zero based linear voltage protocol U(t) =

k ·t with a certain slope k. In other words, instead of suddenly switching the voltage on,

a linear sweep from zero volts to the desired potential is used. If the sweeping rate is

chosen wisely, the system charges considerably faster as compared to the step-voltage

charging.
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9.3 Ramp-voltage charging

t = 0 (U = 0V)

t = 0:1ns (U = 0:025V)

t = 8ns (U = 2V)

t = 12ns (U = 3V)

z0 80

Figure 9.7: Simulation snapshots of ramp-voltage charging at selected times and volt-
ages.
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Figure 9.8: In-pore particle count for linear voltage sweep. The vertical dashed lines
denote the times of the snapshots shown in Fig. 9.7.

For instance, for the sweep rate k = 0.25V (Figures 9.7 and 9.8), the system is

fully charged after just 12 ns (tads) and the pores are free of co-ions in less than 8 ns

(tdes). In the step-voltage charging of the same system, the co-ions were present in the

pores even after 40 ns of the simulation time (Fig. 9.3). The reason why charging is

faster with the linear voltage protocol is that the system can follow a quasi-equilibrium

path, which helps to avoid pore overfilling and co-ion trapping. Figure 9.7 illustrated

the evolution of the charging process: The initial crowded and counterion rich phases

have vanished and the pore gradually proceeds towards the final configuration of a pure

counterion population. Since at low voltages the charging is predominantly due to co-

ion desorption [131, 123], a slowly increasing voltage gives the system enough time

and reduces the pore occupancy, which enhances the ion diffusivity [127, 132] and

hence speeds up the charging dynamics.
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9.3 Ramp-voltage charging

9.3.1 Optimal sweep rate
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Figure 9.9: Dynamic charging curves for various sweep rates. For k = 0.875V ns−1,
the charging time is minimal (bold blue line).

The quasi-equilibrium charging may also allow to benefit more from the electrode’s

charge-storage capabilities when there are limitations on charging times. Referring to

Figure 9.8 as an example, if the voltage is linearly increased with slope k = 0.25V ns−1,

the charging is complete by t = 12 ns, while the supercapacitor is about 30% under-

charged if the step-voltage charging is stopped at the same time. For shorter times

this advantage decreases or may even vanish, but the sweep rate can be optimized to

obtain the highest charging. This can be seen from the Q(t) curves for various values

of k in Figure 9.9 showing that the charging time tcharge is sensitive to k. For fast

sweeping (large values of k), the system may still experience co-ion trapping and over-

filling, leading to a large tcharge. For example, sweeping the voltage with the high rate

k = 2.5V ns−1 leads to only a slightly faster charging than by step-voltage, but it is
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9 Slitpore dynamics

much slower than when the voltage is swept with a lower rate k = 0.25V ns−1. At

sufficiently low rates the system has enough time to respond to the changes in the ap-

plied potential, so that the charging follows closely the equilibrium path. Therefore, for

small k, the charging time is tcharge = U/k, which increases with decreasing k. Thus,

for high k the charging is slow due to co-ion trapping, while at low k one loses time

because the system could react faster than the imposed voltage sweep. This means

that in between these two regimes there is an optimal sweep rate that minimizes the

charging time. If k is in the range of equilibrium charging where no trapping occurs

(as in Fig. 9.8 with k = 0.25V ns−1), the co-ion desorption finishes earlier than the

counterion adsorption. Since the adsorption time in that regime is tads = U/k, it can be

decreased by sweeping the voltage faster. The optimal rate kopt is obtained when the

adsorption time becomes equal to the desorption time tdes.
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Figure 9.10: Adsorption and desorption times as functions of the sweep rate. The ver-
tical dash line denotes k = 0.25V used in Figures 9.7 and 9.8. Beyond
kopt, the error in charging time increased due to co-ion trapping.
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9.3 Ramp-voltage charging

This is verified in Figure 9.10 which shows the charging times averaged over 5 in-

dependent simulations runs per value of k in the range of 0.125V ns−1 to 0.875V ns−1.

Indeed, for k > kopt, the desorption time tdes increases with increasing k due to co-ion

trapping and overfilling. In the plot, this results in large error bars (denoting the min-

imal and maximal charging times of the 5 independent simulations) for k > kopt, as

trapping can vary in intensity for different runs. For k below kopt, there is no trapping

but sweeping as such is too slow. This leads to the simple equation tdes(kopt) = U/kopt

for determining the optimal sweep rate kopt.
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Figure 9.11: Total charging time as a function of sweep rate for 0% and 4% tolerance.

In the ‘super-slow’ regime of the desorption process with trapping (e.g. Fig. 9.3), the

last few co-ions require a large amount of time to leave the pore and don’t contribute

much to the charge. Therefore, allowing a certain amount of trapping to occur in the

system speeds up simulations but leads to a lower value of the ‘optimal’ sweep rate

(and lower charging times) than when demanding a system with no trapping. This

motivates to introduce a tolerance that allows a certain percentage of co-ions to remain
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9 Slitpore dynamics

in the pore. The desorption is finished at the time the co-ion particle count drops below

a certain threshold, expressed here in percentage of the number of co-ions at t = 0 ns.

Figure 9.11 shows two curves for charging time tcharge(k) with 0% and 4% tolerance,

leading to different values of kopt, shown by vertical dashed lines. Allowing for 4%

tolerance in determining tdes for computational efficiency, an optimal sweep rate of

kopt ≈ 0.875V ns−1 and a charging time of about 3.3 ns is obtained.

9.3.2 Pore charge saturation
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Figure 9.12: The accumulated pore charge as a function of sweep rate. Q(k) levels off
top Qsat at kopt(0%). The dashed lines point to the sweep rates with 0%

and 4% loss of the charge.

For a representative electrode and a given working voltage, the accumulated charge Q

can be measured as a function of the sweeping rate k (note that Q must be measured

at the end of the sweeping process at time t = U/k). The so-measured Q(k) obtained

by simulations is illustrated in Figure 9.12. It saturates at Qsat = 28.5 µC cm−2, the
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9.3 Ramp-voltage charging

optimal rate kopt corresponds to the highest rate at which Q ≈ Qsat (here measured

to kopt(0%) = 0.5V ns−1). The Q(k) dependence could be used to determine kopt in

experiments. It also shows that there is a trade-off between charging time and accumu-

lated charge.

9.3.3 Pore length dependence of the optimal sweep rate
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Figure 9.13: Optimal sweep rate kopt with simulation data points of four different pore
lengths. The solid line shows the fitting curve kopt(l) = A/l2.

With the analysis routine described in Section 9.3.1, the optimal sweep rates for a pores

with different lengths l between 8 nm to 20 nm for 4% tolerance have been obtained,

the result is shown in Figure 9.13. It is found that the following equation describes the

kopt(l) dependence remarkably well:

kopt =
1

Al2
, (9.1)
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9 Slitpore dynamics

where A is a fitting parameter, which depends on the applied potential. For the data

shown in Figure 9.13 at 3V, A ≈ 1.67× 10−4 ns V−1 Å
2

was found. This behavior can

be understood by assuming free two-dimensional diffusion as the physical origin of the

desorption process: By increasing the voltage by ΔU , one has to allow enough time

for the co-ions to leave the pore. This time can be roughly estimated as

Δtopt ≈ (l2/Dcoion),

here Dcoion is the co-ion diffusion coefficient, which depends on the current state of the

system but does not depend on the pore length. This implies

l2/Δtopt = const,

which gives the relation (Eq. 9.1) by using

Δtopt = ΔU/kopt

and assuming the same ΔU for all steps. A particle-based interpretation of this result

is that the desorption of co-ions buried deeply in the pores proceeds via diffusion and

is the limiting factor of the total charging process. For adsorption, the counterions only

have to enter the pore to contribute to the net charge.

9.4 Charging with BMIM PF6

In order to determine accurately the optimal sweep rates, a large number of simula-

tions for various rates and pore lengths including several independent runs to assure

equilibrated charged states have to be performed. With the computationally inexpen-

sive model of an ionic liquid consisting of charged soft spheres used so far in this

chapter, these large parameter sets can be accessed in reasonable time. To test if the

trapping effect persist for real ionic liquids, additional simulations are carried out with

142



9.4 Charging with BMIM PF6

the coarse-grained model of BMIM PF6, which has proven to provide quantitatively

reliable results when compared to experiments [24, 27, 133, 134, 28]. Figure 9.14

demonstrates that also for BMIM PF6 the co-ions become trapped in the pores when

the voltage is switched on between the electrodes in a step-like manner. As discussed,

the reason is that the counterions are quickly adsorbed into the pore during the initial

(linear) stage of charging, blocking the anions from diffusing out of the pore. Apply-

ing a slow voltage sweep slows down the cation adsorption and allows a faster anion

desorption. Note that in this plot the sweep rate is not optimized. Interestingly, co-

ion trapping appears weaker in the anode (see Fig. 9.15), which is likely because

the smaller anions block the cations less efficiently. Similarly, as for the charged soft

spheres, we observe a transient formation of two phases of BMIM PF6 in the pores,

with the co-ions exhibiting a hopping type of motion in the neutral crowded phase, and

a diffusive behavior in the more dilute counterion rich phase.
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Figure 9.14: Comparison of step- and sweep voltage charging in the cathode with the
coarse grained ion model BMIM PF6 showing exemplary simulation snap-
shots and charging curves. For step-like charging, the PF6 co-ions are
trapped in the pore, whereas some co-ions can desorb when using a volt-
age ramp.
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Figure 9.15: Comparison of step- and sweep voltage charging in the anode with the
coarse grained ion model BMIM PF6 showing exemplary simulation snap-
shots and charging curves. Due to the asymmetric ion model, trapping is
weaker in the anode.

9.5 Discharging

With a few notable exceptions [135, 136], prior works have mainly focused on the

process of charging [129, 127, 137, 70, 132]. However, discharging supercapacitors is

often a critical step in many applications in which fast energy delivery is required, such

as supplying energy to portable electronic equipment, camera flash lights or car starters.

The dynamic pore charge of the capacitor when the voltage is abruptly switched to 0V

can be seen in Figure 9.16. In the plot, Qequ is the accumulated charge in equilibrium

for the fully charged supercapacitor at applied voltage U = 3V. τdis is the time needed

by the supercapacitor to discharge to 5% of Qequ. In the simulation, switching off the

voltage means to disable the external field between the electrodes. The ICC* calcula-

tion remains active which preserves the induced charge on the carbon atoms due to the

separated ion configuration. In a circuit, the potential difference of 0V is attained by

grounding both poles of the capacitor.
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Figure 9.16: Time evolution of the accumulated charge Q during step-discharging for
a pore length of l = 8 nm.
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Figure 9.17: Time regimes of the average pore charge Q(t) in the discharging process.
Plot (a) is shown as Qequ − Q(t) to see the fit a

√
t as a straight line in

double logarithmic scale.

Similar to the charging regimes in Figure 9.5, the detailed discharge behavior is

shown in Figure 9.17. At short times, a square-root regime (a) is observed followed

by an exponential saturation at long times (b). Symbols show the results of averaged

MD simulations, the dashed lines show the fitting results by functions a
√
t in (a) and
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A exp(−t/τ ) in (b). The square-root and exponential regimes again suggest that the

discharge process is driven by diffusion. As the pore initially is filled with (former)

counterions only, the diffusion is collective, meaning that the particles migrating out of

the pore are coupled by the screened electrostatic repulsion.

9.5.1 Pore length dependence of the discharge time
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Figure 9.18: Discharging time τdis as a function of pore length l. The diffusive charac-
ter of discharging results in τdis ∝ l2.

The discharge time after switching off the applied voltage for pores with lengths be-

tween 8 nm to 20 nm is shown in Figure 9.18. Considering a collective diffusional

process, the discharge time depends on the pore length as

τdis = Bl2, (9.2)

where B is a constant reflecting ion diffusivity, whose value can be fixed by a sin-

gle simulation. Note that B depends on the accumulated charge and therefore on the

146



9.5 Discharging

working voltage. The pore length dependence of Eq. 9.2 accurately fits the simula-

tions results. By extrapolation, it allows to determine discharge times for long pores

by calculating τdis for shorter pores that are computationally more easily accessible.

9.5.2 Accelerated discharging

0

20

40

60

0 2 4 6 8

0

1

2

3

(a)

k = ∞
k = −1V/ns

0

2

4

6

0 20 40 60 80 100

(b)

C
ha

rg
e,

Q
(—

C
/c

m
2
)

Voltage,
U

(V
)

Time (ns)

0

20

40

60

0 2 4 6 8

0

1

2

3

D
is

ch
ar

ge
tim

e,
fi d

is
(n

s)
Sweep rate, k (V/ns)

fidis(k)

5:267
k + 0:572|���{z���}

fidis(∞)

0

2

4

6

0 20 40 60 80 100

Figure 9.19: Discharging supercapacitor with different sweep rates. Plot (a) shows the
charge as a function of time for step-voltage (k = ∞) and for linear sweep
discharge with the sweep rate k = −1V ns−1. (b) shows discharge times
τdis versus sweep rate k and a fit through the simulation data. τdis increases
inversely with with the sweep rate, showing that discharging is fastest
when the voltage is turned off in a step-like fashion.

Motivated by the success of the sweep voltage charging, one might be tempted to apply

a similar strategy to discharging. The comparison in Figure 9.19 (a) between a voltage

step (3V → 0V) and linear discharging (with k = −1V ns−1) suggests that discharging

is fastest when the voltage is switched off in a step-like fashion. When probing the

discharge behavior with different sweep rates in Figure 9.19 (b), the discharge time

τdis(k) can be fitted to

τdis(k) =
5.267V

k
+ 0.572 ns

and never deceeds the limit of 0.572 ns for k → ∞. So compared to a linear discharge

sweep, it is always faster to switch off the voltage and give the system enough time

to discharge to an acceptable degree (e.g. to 5% of the accumulated charge as in Fig.

147



9 Slitpore dynamics

9.16). This is understandable as discharging is driven essentially by collective ion

diffusion out of the pore and there is no process that can lead to overfilling or any other

effect hindering this diffusion, which could have been cured by a voltage sweep.

9.6 Optimal electrode thickness

Instead of optimizing supercapacitors by minimizing the charge-discharge times for

a given electrode configuration, it is also possible to match the pore length (i.e. the

thickness of a porous electrode) to a required working frequency, w = 2π/T , where

T = tcharge + τdis. In this case, the optimal pore length is found using Equations 9.2

and 9.1 with tcharge = U/kopt, where U is the working voltage:

lopt(U,w) =

�
2π/w

A(U)U +B(U)
. (9.3)

With this strategy, supercapacitor optimization amounts to finding the charge and dis-

charge parameters A and B by fitting the experimental or simulation data to Equations

9.1 and 9.2, respectively, and building electrodes with the pores of length lopt. The

pore length can also be optimized for charge or discharge alone, depending on what is

the critical step in a specific application, which corresponds to setting A or B to zero

in Equation 9.3. While porous electrodes with well-defined slit pores do exist [138,

139], many porous materials consist of interconnected networks of short pores [114],

or may have a wide pore width and length polydispersity. In this case, however, since

charging and discharging are still mainly diffusive processes, Equations 9.1 and 9.2 are

expected to hold, but with some ‘effective’ (averaged) parameters A and B representing

the whole electrode. If the electrode thickness (e.g. the size of a carbide-derived carbon

particle) is known, the parameters A and B can be determined directly from Equations

9.1 and 9.2. This strategy and Equation 9.3 can be applied to find the optimal thickness

of an electrode for a given voltage. Inversely, knowing the optimal frequency for a

given electrode allows to determine its thickness through the knowledge of A and B.
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9.7 Charge cycles
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Figure 9.20: Pore charge of the fully optimized, bipolar cycle with a linear sweep
k = ±0.875V ns−1 and step discharging.

Figure 9.20 summarizes the findings in the form of an optimal charge-discharge cycle.

The cycle consists of a linear sweep to U = 3V with the rate kopt = 0.875V ns−1,

followed by switching off the voltage in a step-like fashion. The next cycle (here

to the negative potential −3V) begins after waiting at 0V for τdis ≈ 1.2 ns, which

allows the system to discharge to an acceptable degree. If the preferable cycle is

U → −U → U · · · as in Figure 9.20 rather than U → 0 → U · · · , it is nevertheless

advantageous first to discharge a supercapacitor and only then to sweep the voltage to

−U with the same rate kopt. By switching the voltage directly from U → −U , all in-

pore counterions suddenly become co-ions trapped inside the pores. Such a ‘trapping

catastrophe’, shown in Figure 9.21 leads to very slow charging rates.
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Figure 9.21: Pore charge of a bipolar cycle. Using a voltage step U → −U suddenly
inverses the roles of co- and counterions and leads to a ’trapping catastro-
phe’.

9.8 Pore length extrapolation

It is instructive to estimate the parameters of the optimal circle for real electrodes and

ionic liquids. As an example, the simulations are compared to experimental results

using the ionic liquid OMIM TFSI and porous electrodes of thickness 120 µm [80].

Equation 9.1 would allow to directly calculate the optimal sweep rate with the simula-

tion result A ≈ 1.67× 10−4 ns V−1 Å
2

obtained by fitting kopt(l) for a number of pore

lengths. However, since this value has been obtained for charged soft spheres (charged

WCA particles), which are much less viscous than OMIM TFSI, A is rescaled by the ra-

tio of the bulk diffusion coefficients DWCA/DOMIM-TFSI ≈ 17333, in order to get a rough

estimate for the linear sweep parameter A for OMIM TFSI. After straightforward trans-

formations it is found that kopt ≈ 0.24mV s−1 for the pore length l = 120 µm and the

applied potential U = 3V. This value is in fairly good agreement with the experi-
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mental results, showing the saturation of capacitance at comparable sweep rates [80].

For the discharge parameter in Equation 9.2 the simulations give B ≈ 0.0115 ns nm−2,

which becomes B ≈ 198.9 ns nm−2 after rescaling for OMIM TFSI. This yields for the

discharge time τdis ≈ 47.7min of the fully charged 120 µm thick electrode. Remark-

ably, the discharge time is approximately 4.36 times shorter than the charging time

tcharge ≈ 208min at optimal sweep rate 0.24mV s−1. This strong asymmetry suggests

that different strategies to optimization must be taken depending on what is the critical

step in a particular application.

9.9 Conclusions

The kinetic behavior of step-voltage charging is governed by a potential-driven linear

and a square-root diffusive charge accumulation, followed by two exponential regimes.

During the fast linear stage, the adsorbed counterions compress the in-pore ionic liquid,

creating a crowded neutral phase inside the pores, which leads to strong co-ion trap-

ping and consequently slow charging. It has been suggested that reducing the affinity of

pores towards ions can help avoid overfilling and thus accelerate charging [129, 127].

However, such ionophobic pores still remain a challenge for material scientists and en-

gineers. Another possibility to speed up charging is to use electrodes with sufficiently

wide pores to the detriment of capacitance and energy density [2, 1, 3, 4].

It is found that for the charging process, an ‘acceleration by slowing-down’ can be real-

ized using linear sweep voltammetry. This prevents the formation of the crowded phase

and avoids co-ion trapping. Dynamical MD simulations were used to determine the op-

timal sweep rates kopt which minimize the charging times. Further simulations showed

that kopt ∼ l−2, where l is the pore length or electrode thickness. Conversely, the best

discharge rates are obtained when the voltage is turned off in a step-like fashion, while

the discharge times τdis ∼ l2. These scaling relations are consistent with the mainly

diffusive character of charge-discharge dynamics and, importantly, they allow one to

predict optimal cycles for arbitrary thick electrodes. Interestingly, the optimal charge-
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9 Slitpore dynamics

discharge times are strikingly different, discharging is more than four times faster than

charging. This time asymmetry suggests that separate Ragone plots for charging and

discharging are needed to fully describe the energy-power relation for supercapacitors.
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10 Cross-system conclusions

A cross-comparison of the three capacitor systems investigated in this work has to

account for the different scenarios of flat (Chapter 5), CDC (Chapter 6) and slit-like

(Chapters 7, 8 and 9) electrodes. Therefore, a suitable normalization of the capacitance

is needed, either given per surface area, carbon mass or pore volume. Especially for

the parallel plate capacitor, this is not straightforward to do and requires a mapping

of the simulation domain to a macroscopic system. A minimal setup would consist of

graphene sheets and space for the electrolyte. A separation layer is needed that pre-

vents short circuits of opposing electrodes under mechanical stress, followed again by

electrolyte space and the counter electrode. For a macroscopic device, this structure

needs to be continued in a space-filling way, either by stacking or rolling of the basic

layers. Both would result in direct contact of oppositely charged electrodes, so another

isolation layer behind the electrodes is needed. These requirements create a large un-

certainty of the final physical dimensions and aggravates the comparison of capacitance

per volume or weight to other systems. A more reliable capacitance normalization in

this setup therefore is by surface area of the graphene sheets. However, in nanoporous

electrodes like the CDC setup, it is difficult to accurately specify the surface area or

accessible volume because of the amourphous atomic carbon structure. Here, a defi-

nition of specific capacitance per electrode mass is a reliable measure. Lastly, in the

slitpore setup, pore volume, surface area and electrode mass in principle all are avail-

able quantities. The uncertainty here is due to the usage of soft interaction potentials

and the hexagonal carbon pattern, whose accessible surface area deviates from a flat

wall. Note that similar to the flat electrodes, it is unclear how the slitpores could be

assembled to a macroscopic capacitor device. Here, only the region inside the pore is
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10 Cross-system conclusions

taken into account when analyzing the accumulated charge assuming a space-filling,

macroscopic continuation of the slits.

Electrode Electrolyte Voltage (V) C/M (Fg−1) C/A (µF cm−2) C/V (F cm−3)

Planar BMIM PF6 1.2 15.31 3.54 7.14

CDC EMIM BF4 1.2 122.0 5.81 108.24

Slitpore BMIM PF6 2.0 41.96 2.71 45.16

Slitpore Model IL 2.0 171.46 11.07 184.57

Table 10.1: Specific capacitance normalized by weight, surface area and volume of the
different simulation models.

A comparison of integral capacitance values normalized by weight, surface area and

volume is shown in Table 10.1 for the three scenarios. The non-normalized capacitance

at a given half-cell voltage V is calculated via

C =
�QL� + �QR�

2V
(10.1)

using the mean of accumulated charges on the two electrodes �QL� and �QR�. For

normalization by mass, the pure carbon weight of a single electrode is used neglecting

the electrolyte. In case of the planar electrodes, all three graphene sheets used in the

simulations are taken into account. The electrode area in this case is the lateral surface

of the simulation box A = 27.2 Å × 30.0 Å, the volume is chosen to be half the box

V = A × 73.92 Å. In the CDC system, surface area and volume of the electrodes are

obtained by binning the electrode region and probing the bins with hard particles of

diameter 5.5 Å for overlap with carbon atoms. For the slitpore, a system with pore

length 80 Å and width 6 Å is chosen. Table 10.1 shows that the various geometries,

electrolytes and normalizations lead to quite different capacitance values that have to

be put into perspective:

• The planar electrode overall shows the worst performance. Taking into account

only a single graphene sheet would lead to a threefold increase and a value of
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C/M = 45.93 F g−1 for the capacitance per electrode weight. Also C/V is the

lowest in the planar case due to the uncertainty in the accounted volume and

poses a rather poor quantity for the cross-system comparison. Thus, the capac-

itance per area gives the most reliable comparison, a reduced capacitance here

can is expected due to the fact that the electrolyte structure in the non-confined

case doesn’t benefit from screened electrostatics of the superionic state found in

nanoporous systems.

• The CDC electrodes with EMIM BF4 outperforms the slitpore electrode with

BMIM PF6, using the model IL for the slitpore however reverses this trend.

• Comparing the two electrolytes of the slitpore simulations shows a consistent

increase in capacitance by a factor of 4 for all specific capacitance values. The last

two points highlight that the size of the ions has a large impact on the capacitance.

• Another fundamental difference between slitpore and CDC system is that in the

latter case, the carbon walls can be approached by the ions from front and back,

whereas the region outside the pore is considered metallic and particle free in

the slitpore setup. This gets important for the capacitance per weight and surface

area, as the slitpore needs double the amount of carbon atoms to construct the

pore.

• Finally, the model IL expectedly overestimate the capacitance, again attributed to

the reduced size of the model compared to the coarse grained ILs.

Considering the voltage dependence of various observables throughout the systems, it

becomes apparent that certain effects vanish or lose importance for increasing applied

potential. This can be found in the comparison the systems with smooth and atomi-

cally structured electrodes, showing similar values for the differential capacitance at

higher potentials in Figure 5.4. It is also visible in the slitpore system, where the in-

pore packing fraction (Fig. 8.13), the charging mechanism (Fig. 8.14) and differential
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10 Cross-system conclusions

capacitance (Fig. 8.15) match at higher voltage for systems with a large range of IL

concentrations. The general physical picture here is that the energy gain of charged

species given by a electric potential difference overrules entropic contributions due to

structural features of the electrode. A similar theme can be found concerning the initial

electrolyte density (discussed in Chapters 7 and 8) or solvent concentration (discussed

in Chapter 6): Both have only little influence on the stored charge and capacitance in

case of an applied voltage. This suggests that a reduction of ionic liquid concentration

can be advantageous for supercapacitors.
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[70] C. Péan, C. Merlet, B. Rotenberg, P. A. Madden, P.-L. Taberna, B. Daffos, M.

Salanne, and P. Simon. “On the dynamics of charging in nanoporous carbon-

based supercapacitors.” ACS Nano 8.2 (2014), pp. 1576–1583.

[71] M. Cole and J. Klein. “The interaction between noble gases and the basal plane

surface of graphite.” Surface Science (1983).

[72] F. F. Abraham and Y. Singh. “The structure of a hard-sphere fluid in contact

with a soft repulsive wall.” The Journal of Chemical Physics (1977).

[73] W. A. Steele. “The physical interaction of gases with crystalline solids: I. Gas-

solid energies and properties of isolated adsorbed atoms.” Surface Science 36.1

(1973), pp. 317–352.

[74] W. A. Steele. “The interaction of rare gas atoms with graphitized carbon black.”

Journal of Physical Chemistry 82.7 (1978), pp. 817–821.

[75] D. Roy, N. Patel, S. Conte, and M. Maroncelli. “Dynamics in an Idealized Ionic

Liquid Model.” Journal of Physical Chemistry B 114.25 (2010), pp. 8410–

8424.

[76] R. Hayes, G. G. Warr, and R. Atkin. “Structure and Nanostructure in Ionic

Liquids.” Chemical Reviews 115.13 (2015), pp. 6357–6426.

[77] P. Holoborodko. Smooth Noise Robust Differentiators. http://www.holo

borodko.com/pavel/numerical-methods/numerical-deriva

tive/smooth-low-noise-differentiators. 2008.
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pores in an electric double-layer capacitor.” Electrochemistry Communications

11 (2009), pp. 554–556.

[129] S. Kondrat and A. Kornyshev. “Charging Dynamics and Optimization of

Nanoporous Supercapacitors.” Journal of Physical Chemistry C 117 (2013),

pp. 12399–12406.

[130] P. L. Taberna, P. Simon, and J. F. Fauvarque. “Electrochemical Characteris-

tics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors.”

Journal of the Electrochemical Society 150 (2003), A292–A300.

[131] S. Kondrat and A. A. Kornyshev. “Pressing a spring: what does it take to max-

imize the energy storage in nanoporous supercapacitors?” Nanoscale Horizons

1.1 (2016), pp. 45–52.

171



BIBLIOGRAPHY

[132] Y. He, R. Qiao, J. Vatamanu, O. Borodin, D. Bedrov, J. Huang, and B. G.

Sumpter. “Importance of Ion Packing on the Dynamics of Ionic Liquids dur-

ing Micropore Charging.” The journal of physical chemistry letters 7.1 (2015),

pp. 36–42.

[133] O. Y. Fajardo, F. Bresme, A. A. Kornyshev, and M. Urbakh. “Electrotunable

Friction with Ionic Liquid Lubricants: How Important Is the Molecular Struc-

ture of the Ions?” The Journal of Physical Chemistry Letters 6.20 (2015),

pp. 3998–4004.

[134] D. Roy and M. Maroncelli. “Simulations of Solvation and Solvation Dynamics

in an Idealized Ionic Liquid Model.” Journal of Physical Chemistry B 116.20

(2012), pp. 5951–5970.
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