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ABSTRACT 

Fatigue analysis for floating wind turbines poses a novel 

challenge to calculation workflows if a probabilistic load 

environment is to be considered. The increased complexity of the 

structure itself as well as its interaction with the environment 

require a coupled and more detailed analysis with respect to 

resolution of environmental conditions compared to fixed 

bottom systems.  

Different approaches to address the computing challenge for 

floating turbines are possible to support engineering judgement 

and have been investigated in the past, with conservative binning 

on the one end of the accuracy scale and computation intensive 

Monte Carlo simulations on the other end. This study 

investigates the feasibility of regression based surrogate models 

based on radial basis functions. The investigation performed here 

is aligned with work performed in the H2020 project LIFES50+. 

Consequently, the considered system is the DTU 10MW 

Reference Wind Turbine installed on the LIFES50+ OO-Star 

Wind Floater Semi 10MW. The site under investigation is the 

LIFES50+ Site B (Gulf of Maine) medium severity 

representative site. 

Results show a similar convergence of lifetime fatigue load 

prediction as with Monte Carlo simulations indicating that this 

technique may be an alternative if a response model of the 

considered system is of interest. This may be interesting if 

damage loading is to be calculated at a different site and if a 

classification of met-ocean conditions is available. 

INTRODUCTION 

With the ongoing trends in offshore wind energy towards deeper 

waters and larger distances to the shore, floating offshore wind 

turbines have shown to be a possible addition to the offshore 

efforts to a sustainable energy mix. Industrialization efforts to 

minimize system costs require a standardized, fast and accurate 

design process in order to check the feasibility of a given design 

for a specific site. The overall design process has increased in 

complexity moving from onshore to offshore to floating offshore 

systems, due to rising influence of the wave environment on 

overall system dynamics and loads. Especially the evaluation of 

the fatigue limit state, as described in the power production 

design load case 1.2 of common guidelines [1] requires a 

thorough understanding of the system response towards a large 

variation of environmental parameters. This is typically highly 

nonlinear as the wind turbine is considered to be in operational 

condition and thus, the complex interaction of the turbine with 

its environment becomes relevant. Fatigue load assessment is 

commonly established by comprehensive studies using 

integrated, time-domain simulations.  

Fatigue damage assessment requires the (conservative) 

consideration of all possible events during the systems lifetime. 

This means that for relevant environmental conditions, the load 

response is calculated and weighted according to its occurrence 

probability. This is rather simple for an onshore turbine, as wind 

is the only relevant environmental condition. Because an onshore 

turbine foundation is typically circular, the directionality of the 

wind can be discarded. Then, only the wind speed and its 

variation, the turbulence intensity, are influencing the loading. 

For fixed-bottom offshore structures, ocean loading needs to be 

considered (wave height, wave period and current speed become 

relevant) and a symmetric substructure like a jacket may be 

added (wind, wave and current directionality become relevant). 

Going offshore thus significantly increases the number of 

environmental conditions to be considered, which leads to an 

increased modelling effort of the more complex system (i.e. 

substructure and ocean loads). The characteristics of fixed-

bottom offshore structures however allow for simplified, 

conservative approaches: the use of damage equivalent 

Proceedings of the ASME 2018 37th International
Conference on Ocean, Offshore and Arctic Engineering

OMAE2018
June 17-22, 2018, Madrid, Spain

OMAE2018-78219

1 Copyright © 2018 ASME

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Publikationen der Universität Stuttgart

https://core.ac.uk/display/185704426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

significant wave heights allows to link the wave height to the 

wind speed [3]. Stiff substructures result in natural periods well 

out of the wave period range, allowing the consideration of 

representative wave periods only (median or damage equivalent) 

[4] [5] [6]. Finally, it is expected that the largest loads are 

resulting from aligned wind, wave and current directions [7]. 

Thus, through simplifications, going offshore only increased the 

variable space by the wind direction. Still, the more complex 

structure and the added environmental variables significantly 

increase the simulation effort. Conservative assumptions help to 

keep the total effort on a feasible level. Further simplification 

may be possible due to the limited interaction of the turbine with 

the substructure by performing separate investigation of the rotor 

and substructure [9] [10] [11]. Conservative assumptions limit 

the environmental variable space and help to keep down the 

simulation effort. However, it was shown that fatigue loading on 

fixed-bottom wind turbines varies significantly due to changing 

environmental conditions [9] [12], indicating that a more 

accurate and less conservative design is possible. 

For floating wind turbines, many of the simplifications used for 

fixed-bottom design may not be applied: Coupled models are 

required due to the close interaction of the rotor and the floating 

foundation [10]. The large natural periods of the floating 

platform result in largely increased sensitivity of the loading to 

the environment. Hydrodynamic response varies strongly with 

wave periods and at the same time with wave and wind inflow 

direction. Wind-wave-misalignment becomes relevant [13]. This 

means that the use of conservative assumptions may lead to 

overly conservative designs. On the other hand, considering a 

more detailed environment increases the simulation effort. Due 

to the large number of simulations to be performed, the 

simulation effort for fatigue analysis is substantial and poses a 

major challenge in the design and certification process of 

floating wind systems. Procedures exist which incorporate 

simplifications of the environment in order to limit the number 

of simulations, e.g. by using damage equivalent environmental 

conditions. Also, simple models may be used for initial design 

purposes and controller design [14]. However, given the strong 

variation in loading, these simplifications may lead to 

excessively conservative designs and/or may not consider 

important components of the turbine, such as rotor and mooring 

line loads [15].  

 

Given the predicament of choosing between simulation effort 

and conservatism, it is regarded as an aspiring goal to find a 

methodology which allows the following: an accurate fatigue 

design considering the probability environment of the considered 

site and also keeping the simulation effort to a minimum. 

Problems of this kind are addressed by the general discipline of 

“design of simulation experiments” [16]. Here, the most baseline 

approach can be considered the simple simulation of random 

combinations of the input variables under consideration of their 

occurrence probability. This approach is commonly known as the 

Monte Carlo approach. The Monte Carlo approach allows a 

discrete integration across a multidimensional design space 

following the equation  

∫ 𝑓(𝑥)𝑑𝑥
[0,1]𝑠

≈
1

𝑁
∑ 𝑓(𝜉

𝑖
) 

𝑁

𝑖=1

 , (1) 

where 𝜉𝑖  𝜖 [0,1]𝑠 are each of the 𝑁 random, independent samples 

in the 𝑠-dimensional unit hypercube. It can be shown that the 

Monte Carlo approach converges to the correct solution, which 

is why this approach is of high value for use as a reference. 

However, Monte Carlo simulations generally show slow 

convergence and often efficient alternatives are available to 

simplify the calculation of the integration problem. In wind 

energy fatigue assessment, as described, feasible alternatives are 

available for onshore and offshore wind energy, but for floating 

systems, the problem has to be reviewed based on presented 

arguments. 
One application of Monte Carlo integration for fatigue load 

assessment of floating wind turbines is presented in [17]. There, 

simple random sampling is applied considering the probability 

distribution of five different environmental parameters. It is 

mentioned that using Monte Carlo compared to a grid approach 

(an efficient alternative), the convergence rate is increased from 

ℎ =
1

𝑛1/𝑑 to ℎ =
1

𝑛1/2, with 𝑛 simulations and 𝑑 dimensions or 

independent variables. This results in an advantage for increased 

dimensionality. A possible limit with respect to increased 

nonlinearity (considered by increasing the fatigue slopes) is 

mentioned. A variation to standard random sampling is followed 

in [18], by which the convergence rate is further decreased by 

minimizing the discrepancy of the point set. The results 

presented therein also serve as baseline for the present study. 

This probability-based Monte Carlo approach produces quickly 

converging results for the lifetime damage estimate and may be 

of interest for a more accurate site-specific fatigue assessment. 

However, it is closely linked to the site under consideration 

which limits the reusability of the performed work (i.e. each 

combination of environmental conditions to be simulated are 

chosen according to their occurrence probability based on the 

probability model of the environment of the considered site).  

 

A more flexible usage of the simulation results may be obtained 

by application of surrogate models. These can be seen as 

multidimensional regression surfaces representing the load 

response as a function of the (assumed independent) 

environmental variables. If a surrogate is available, it may 

simply be combined with the site-specific occurrence probability 

of environmental conditions in order to obtain the fatigue loads 

over the systems’ lifetime. Considering the possible introduction 

of substructure classes similar to wind turbine classes [2], the 

same design will be evaluated in different environments. 

Surrogate models may be site-independent and hence allow the 

creation of a database which can be evaluated for different 

environments without any simulation effort (assuming the site-

independency of the mooring line system). Initial surrogate 
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models may be obtained from the first load evaluation and new 

information may be added later on to improve accuracy. 

 

The determination of load response surrogates is seen in the same 

problem specification of curve fitting procedures applied in 

analysis of experimental data [32]: there is an unknown target 

function is to be constructed by a simpler known function (the 

simplest version is certainly a linear curve fitting procedure 

based on polynomial function of e.g. first- or second degree). 

First attempts related to load response modeling of floating wind 

turbines have been performed in the past (e.g. [30]). With the 

development and employment of artificial intelligence and 

statistical learning more complex alternatives as function 

approximators are available, which may also be applied in a 

curve fitting environment, such as neural networks. These 

methods are more complex and due to the high dimensionality 

of the problem, many supporting points are typically required. 

Thus, these approaches are especially interesting in the field of 

load monitoring where a large amount of data points can be 

assumed to be available [33]. As computational power is 

increasing the application of these methods for simulation based 

load evaluation may become interesting. In [19], a neural 

network was used based on probabilistic environmental 

conditions for the estimation of lifetime fatigue damage of 

floating wind turbines. 

 

The present study is building on the past experiences by 

presenting the following: 

 

 Use independent environmental variables in order to 

achieve more flexibility in the usage of the results. 

 Use quasi-random sampling for design point selection. This 

procedure shows a better distribution of design points 

compared to other random sampling techniques such as e.g. 

latin-hypercube sampling [20] and thus shows better 

convergence qualities. Also, convergence analyses are 

facilitated, as newly added points follow the scheme of 

optimal distribution within the design space. 

 Use radial basis function networks for surrogate modeling. 

This is considered as a simple alternative to neural networks 

representing the application of approximation functions in 

general [21]. 

 

The present paper starts with an introduction of the considered 

system and environment, as well as the selection of the baseline 

design points which are later used for the setup of the surrogate 

model. Afterwards, the models active in the simulation and post-

processing routines are presented. Next, the setup and evaluation 

of the radial basis function surrogate model is described. Finally, 

the fatigue damage prediction obtained using the surrogate 

model is discussed. 

CONSIDERED SYSTEM 

As this study is closely aligned with work performed in the 

H2020 project LIFES50+, the analysis is performed using an 

early version of the public DTU 10MW reference turbine [22] 

installed on the LIFES50+ [23] OO-Star Wind Floater Semi 

10MW floating platform. The tower of the DTU 10MW turbine 

was redesigned to a stiff-stiff design in order to mitigate rotor-

excitation. A system-specific controller is applied taking into 

consideration the global system dynamics and avoiding the 

floating-wind specific negative damping problem. The mooring 

line system applies added weights in order to stiffen the global 

system motions. A public FAST model of the used system is 

provided in [24]. In this study, a preliminary version of the same 

is used, including minor variations of e.g. mooring line design 

and hydrodynamic properties as can be found in the final version 

of the public model. A sketch of the substructure is shown in 

FIGURE 1. Key information of the system is provided in TABLE 

1. 

 
TABLE 1: KEY PARAMETERS OF LIFES50+ OO-STAR WIND 

FLOATER SEMI 10MW FLOATING PLATFORM WITH DTU 10MW 

REFERENCE TURBINE. SYSTEM FREQUENCIES CONSIDER A 

STIFF SUBSTRUCTURE FROM MSL DOWNWARDS. 

Property Value 

Cut-in wind speed  4 m/s 

Rated wind speed 11.4 m/s 

Cut-out wind speed 25 m/s 

Number of mooring lines 3 

Mass of clumped weight 50000 kg 

Substructure mass 2.3618E+07 kg 

System natural frequency surge 0.0055 Hz 

System natural frequency heave 0.049 Hz 

System natural frequency pitch 0.032 Hz 

System natural frequency yaw 0.0086 Hz 

System natural frequency tower 0.786 Hz 

 

 
FIGURE 1: LIFES50+ OO-STAR WIND FLOATER SEMI 10MW 

FLOATING PLATFORM 

CONSIDERED ENVIRONMENT AND DESIGN POINT 
SELECTION 

Environmental parameters are determined based on LIFES50+ 

representative site B (medium severity environment, reference 
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site: Gulf of Maine, USA) as provided by the design basis of 

LIFES50+ [25]. Three environmental conditions are considered 

in this study: wind speed, wave height and wave period. Wind 

and wave data are taken from measurement data from the NOAA 

buoy data network, which was also used by [26]. Hub height 

wind speeds are calculated using the power law for the wind 

shear [27]. Wind and wave directions are assumed co-aligned in 

this study. Turbulence intensity is considered according to IEC 

turbulence class C [2]. Hourly measurements were considered 

from 2003 to 2015, resulting in an overall database of 103,282 

useable measurement points.  

Based on the available data, a Nataf joint probability model of 

the considered environmental parameters was established based 

on available measurement data [18]. The model is used for 

weighting of environmental conditions for the determination of 

the lifetime damage loading. The use of a surrogate model for 

the environment is considered of higher value for this study 

compared to using raw data, as this way gaps in information due 

to sensor resolution are mitigated. As the model accuracy of the 

environmental model is not part of the investigation, the Nataf 

model is assumed to be a “perfect” description of the 

environment. The same Nataf model was used for all the 

simulations referred to in this study, so errors in the modeling do 

not influence the results of this study. Using this model, 

continuous information of the environment is available which 

facilitates probabilistic evaluation of the fatigue loading. The 

quality and performance of the environmental model is not part 

of this study.  

The evaluation of model also provides the limits of the design 

space to be considered. This is done by considering three load 

ranges (LR) which divide the wind speed into three regions: 

below rated (LR1), 𝑣𝑐𝑢𝑡−𝑖𝑛 < 𝑣 ≤ 𝑣𝑟𝑎𝑡𝑒𝑑 − 0.15 ⋅ 𝑣𝑟𝑎𝑡𝑒𝑑, 

transition (LR2), 0.15 ⋅ 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣 < 𝑣𝑟𝑎𝑡𝑒𝑑 + 0.15 ⋅ 𝑣𝑟𝑎𝑡𝑒𝑑  

and above rated (LR3), 0.15 ⋅ 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣 < 𝑣𝑐𝑢𝑡−𝑜𝑢𝑡 . Within the 

load ranges, the 1st and 99th percentiles of samples extracted from 

the environmental model of wave height and -period provide the 

limits of the design space. This way, a more efficient 

consideration of the environment is given by roughly taking into 

account the dependence of wave heights on wind speed. While 

this approach may be of advantage for the considered 

environment in this study, it may be a disadvantage when the 

resulting surrogate model is to be transferred to another site. 

Then, new simulations may be necessary in order to mitigate 

extrapolation errors. A more general approach by defining 

different classes (in the form of design space border values) of 

marine environmental conditions linked to the wind environment 

would help to limit the amount of simulations required for a 

predefined range of environmental conditions (i.e. all 

environments covered by a certain class can be considered with 

a given surrogate model). 

The limits of the design space for the considered environmental 

conditions are given in Table 2. Figure 2 shows a scatterplot of 

all combinations of environmental conditions (design points) 

simulated in this study. For each load range, 345 design points 

were selected using the quasi-random sampling based on Sobol’ 

sequences as described in [28] and [29]. It can be seen that the 

density of design points is smaller for wave height in LR3, which 

is due to the larger range of wave heights that need to be 

considered in this region. The total number of data points used 

in this study is 1035 (345x3) for which 3105 simulations were 

performed (1035 x 3 seeds). 

 

TABLE 2: ENVIRONMENTAL CONDITIONS FOR DIFFERENT 

LOAD RANGES (LR) 

Load 

range 

variable Design space limits 

[min, max] 

LR1 Wave height [m] 0.3, 3.2 

LR1 Wave period [s] 1.7, 13.3 

LR2 Wave height [m] 0.5, 5.0 

LR2 Wave period [s] 1.2, 12.3 

LR3 Wave height [m] 0.7, 7.0 

LR3 Wave period [s] 0.9, 11.9 

 

 
FIGURE 2 : SCATTERPLOT OF DESIGN POINTS CONSIDERED IN 

STUDY 

SIMULATION 

FAST v8.16.00a-bjj was used to perform coupled simulations. 

Overall simulation time was 60 minutes with an additional 10 

minutes that were neglected in the post-processing as run-in time 

to allow initial transients to fade out. Turbulent wind based on 

the Kaimal model and 10 minutes periodic wind fields were 

applied for the simulation. The simulation time for floating wind 

turbines has been investigated in [34] with the result that 10 min 

simulations are sufficient for a 5MW Spar buoy. A detailed 

investigation for the system and environment used in this study 

is presented in [35]. From the results presented therein, it can be 

assumed that the load uncertainty is below 10% (ca.7/6/3 % for 

blades/tower/fairlead, respectively) for the applied setup in this 

study. Note that a SN-curve slope of 𝑚 = 4 is applied for all 

sensors, which means that all results for the blade loading are 

only indicative (see also further below). For aerodynamic 

modeling only simple blade element momentum theory was 

taken into account, i.e. no corrections for dynamic stall or 

dynamic inflow were considered. The platform hydrodynamics 

are calculated considering both Morison equations as well as 

potential flow theory. The potential-flow model was established 

in a pre-processing step using the panel-code Ansys AQWA. 

Mooring line dynamics are determined based on a dynamic 

model using NRELs lumped mass mooring line modeler 
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MoorDyn. The Jonswap model and a superposition of airy waves 

was applied for modeling the wave environment. 

 

Rainflow counting was applied to obtain the distribution of the 

load amplitudes 𝛥𝐿 for each time series and the Palmgren-Miner 

linear damage accumulation law was used to calculate damage 

equivalent load amplitudes 𝛥𝐿𝐷𝐸 (commonly known as damage 

equivalent loads or DEL) of the obtained 1 hour time series:  

Δ𝐿𝐷𝐸,𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = (∑
Δ𝐿𝑖

𝑚 ⋅ 𝑛𝑖

𝑁𝑟𝑒𝑓,𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)

1
𝑚

, 

 

(2) 

where Δ𝐿𝑖 are the load amplitudes from the rainflow counting, 

𝑛𝑖 are the number of occurrences of the detected load cycles, 

𝑁𝑟𝑒𝑓,𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛  is the reference cycle number applied for each 

simulation (set to 2𝑒6 in this study) and 𝑚 is the slope of the SN-

curve. In this study, 𝑚 = 4 was assumed for all evaluated 

positions. This may not be adequate for all positions (in 

particular for composite materials typically 𝑚 = 10 is used), but 

is regarded as sufficient for the demonstration purpose of the 

method.  

The results for the 3 seeds considered for each design point were 

averaged. Exemplary results of the tower base fore-aft bending 

moment DELs are shown for different load ranges (columns) and 

environmental conditions (rows) in FIGURE 3. The large 

influence of wind speed in the first load range is visible as well 

as the increased impact of the wave height with increasing 

magnitude. The DEL response also shows a distinctive peak at a 

wave period of about 7.2s. This peak is somewhat shifted to the 

pitch response from a potential-flow response magnitude 

evaluation. This may be linked to the additional dynamics of the 

mooring lines and wind turbine, which was not considered in the 

potential-flow analysis. 

 
FIGURE 3: SCATTERPLOT TOWER BASE FORE-AFT BENDING 

MOMENT DELS FOR DIFFERENT LOAD RANGES (COLUMNS) 

AND ENVIRONMENTAL CONDITIONS (ROWS). 

SURROGATE MODEL 

Based on the simulation results, a surrogate model can be 

established for the DEL response of different load sensors as a 

function of the environmental conditions. The derivation of a 

surrogate model for the fatigue load response of floating wind 

turbines can essentially be viewed as a curve-fitting operation in 

multidimensional environmental variable space. Taking into 

account the complexity of the problem, a simple curve fitting 

based on polynomial functions is not feasible, as was shown in 

[30]. For highly nonlinear, multidimensional curve-fitting (also: 

function approximation, pattern-recognition) problems, 

machine-learning algorithms are a common approach in the field 

of data analysis.  

 

Classical regression is typically performed in the sense of 

multiple linear regression [36], which means linear in a statistical 

sense (i.e. with respect to the regression coefficients, so the base 

functions of the regression may be non-linear): 

𝒀 = 𝑿𝛽 + 𝜀. (3) 
 

Here, 𝑌 𝜖 ℝ𝑅×1 is the system response over 𝑅 evaluations of 

varying combinations of the 𝑝 independent variables 

𝑿 𝜖 ℝ𝑅×𝑝+1 combined by regression coefficients 𝛽 𝜖 ℝ1×𝑝+1 and 

errors between observed and predicted values 𝜀 𝜖 ℝ𝑅×1. The 

regression coefficients of a predefined set of linear combinations 
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of functions may be tuned such that the sum-of-squares of the 

errors is minimized, which is a simple procedure. 

 

An alternative to linear regression is nonlinear regression, which 

offers a much broader range for the selection and combination of 

baseline functions, however the error-minimization then needs to 

be performed iteratively, embedded into a non-linear 

optimization framework. The general problem of regression with 

analytical functions, however, is that they have to be defined 

beforehand which becomes increasingly difficult with increasing 

number of dimensions, especially when the regression is 

nonlinear. This is where neural networks are of interest as they 

may provide a cost-effective, general, parametrized, non-linear 

response approximation procedure given the existence of a set of 

input-output combinations [37]. They are cost-effective from a 

computational point of view in the sense that they superpose 

simplified functions (neurons) depending on single variables 

(weights) rather than taking into account many variables at the 

same time. This way, they mitigate the “curse of dimensionality” 

faced by conventional (non-linear) series expansion. However, 

still, as neural networks are nonlinear in the parameter space, 

learning must be based on nonlinear optimization techniques 

which may cause new challenges when trying to mitigate results 

in local minima [38]. 

 

Radial basis networks (RBN) may be viewed as a simple 

representation of artificial neural networks (ANN) due to their 

simple definition and fast and efficient learning procedures [38]. 

They also show good performance for interpolation of noisy data 

[39]. Implementation of RBNs is done as two layer feed forward 

networks (i.e. one hidden and one output layer; information 

flows only from the input over the hidden to the output layer). 

The hidden layer employs radial basis functions at fixed points 

(neurons), whose values depend only on the distance towards the 

center point. Due to fixing the radial functions to predefined 

points (and hence the nonlinearities) in the hidden layer, a fixed 

nonlinear transformation with no adjustable parameters of the 

input vector is performed. The results of this nonlinear 

transformation is then weighted in a second linear output layer 

whose weights resemble the only adjustable parameters of the 

model. Due to the setup, it is expected that RBNs show similar 

performance as other two-layer ANNs, hence presenting a good 

alternative to classical ANNs for this work. 

 

The network output for a given input vector is calculated as 

follows: 

(1) In the radial basis layer, the distance between the input 

vector and the weight matrix (containing the weight 

vectors) is calculated. 

(2) The obtained distances are multiplied elementwise by a 

constant bias vector, which tailors the sensitivity of the 

different radial basis neurons. 

(3) The biased distances are then inserted into the radial 

basis function. In this work, radial basis functions of the 

type 𝜙(𝑛) = 𝑒−𝑛2
 are used, with distance 𝑛 between 

function center and evaluation point. The results of the 

hidden layer are then forwarded to the output layer. A 

spread parameter may be defined, which defines the 

range of influence of individual neurons. In this study, 

two different spreads were used such that the medium 

response is achieved after 10% and 20% of the design 

space. A smaller spread can be expected to require more 

neurons to cover the overall design space but allows 

more complex response surfaces (as the overlap 

between neurons is less). 

(4) In the output layer, the results of the different neurons 

are added and a constant bias value is added to the 

results from the radial basis layer. 

 

The response mapping in 𝑘-dimensional space 𝑓: ℝ𝑘 → ℝ1 

performed by the network can be summarized in the formula:  

𝑓(𝒙) = 𝜆0 + ∑ 𝜙(𝜆𝑖 ⋅∥ 𝒙 − 𝒘𝑖 ∥)

𝑘𝑟

𝑖=1

 (4) 

 

With the input vector 𝒙, bias or weight values 𝜆𝑖, weight vector 

𝒘 and the number of neurons 𝑘𝑟. The curve fitting may then be 

performed by first defining 𝒘 and using a least-square method to 

find optimal 𝜆𝑖. An alternative approach is the orthogonal least 

squares learning algorithm as proposed in [38] and applied in this 

work. Therein, radial basis neurons are sequentially added at 

points were the greatest error of the network is detected so that 

the error at these points is minimized. This procedure is repeated 

until the mean squared error (MSE) of the network reaches a 

value below the predefined threshold (𝜀𝑔𝑜𝑎𝑙 = 10−3 and 10−4 in 

this study). A more detailed description of the algorithm used in 

this study can be found in [31] and [38].  

More advanced neural networks may employ sigmoid transfer 

functions in the hidden layer, which may provide more accurate 

results. Also more research may investigate more closely the 

number of hidden layers and feedback loops. Also, algorithms to 

avoid subjective parameters such as smooth factors or center 

locations as is required in the procedure used here may provide 

additional advantages [39]. Finally other options for surrogate 

models have been used elsewhere, and may also be promising 

for the modeling of the loads of floating offshore wind turbines, 

such as Kriging, multi-layer neural networks, support vector 

machines or polynomial chaos. It remains to be found the most 

feasible (i.e. simple, robust, computationally efficient and exact) 

solution for the presented curve fitting problem. This is not part 

of this work, as only the general applicability of complex 

function approximation techniques is to be shown for the 

derivation of surrogates for the load response of floating wind 

turbines. 

For derivation in this study, the available data set of 1035 points 

is subdivided into sets for training and validation. The number of 

data sets for training the network ranges between 50 and 1000, 

as indicated in Fig. 6 (x-axis values). For each considered 

training size, random points from the database are chosen 
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repetitively (1000 times for each training size) and a surrogate 

model is created.  

MODEL EVALUATION 

The evaluation of any individual surrogate model has to be 

performed for any surrogate model which is to be applied. A 

feasible approach is presented in this section and exemplary 

applied to the tower fore-aft bending moment loads and a 

surrogate model using spreads of 10% and a target MSE of 10−4 

(considering the training set).  

The model evaluation typically involves the comparison of 

response predictions from the newly created model to some 

reference data (i.e. validation data set). In the present work, 

simulation results are available from a related study based on 

direct Monte-Carlo simulation (probability based) using 16,200 

simulations to determine the fatigue load response at 5400 design 

points. From the results of the study, the lifetime DEL can be 

predicted with an accuracy of +/- 5% after 300 simulations for 

the blade, tower base and fairlead positions. Thus, using all of 

the 5400 DEL results from that study is considered valid baseline 

data for this study. The study assumed the same Nataf model 

used in this study and the same system and environmental 

conditions were used. It is presented in detail in [18].  

Using the abovementioned MC baseline data, the following 

procedure for evaluation of surrogate models is set up including 

the following items: 

 

- Scatterplots over all dimensions provide a first intuitive 

overview of the accuracy of the model 

- Error analysis of the error of predicted DEL is performed 

by plotting the  
o Variation of error depending on the predicted 

response and the independent variables. This 

allows insuring that errors are randomly distributed 

across the design and response space. This is 

complemented by  
o Error histograms to ensure normalized 

distribution of errors and plotting 
o Predicted over observed values (from baseline 

data).  
o 2D error maps are used additionally to identify 

more clearly the relation of errors to the location in 

the design space. 

The procedure is independent on the modeling approach 

presented in this work. Hence, the procedure and the related plots 

may be of use for similar studies which apply surrogate 

modelling. 

Figure 4 shows the scatterplot evaluation of a surrogate model 

based on 800 simulations. It is visible how the main 

characteristics of the load response are well captured (load peak 

around rated wind speed, increased loading with increasing wave 

height and small impact of wave period with some increased 

loading around 8s periods). Some outliers are also visible which 

apparently lead to smaller predicted loads. 

 

 
 
FIGURE 4: SURROGATE MODEL VERIFICATION USING 

SCATTERPLOTS. RESULTS SHOWN TOWER BASE FORE-AFT 

BENDING MOMENT. 

For the error evaluation, the normalized error is calculated as 

follows: 

𝜖𝐷𝐸𝐿 =
𝚫𝑳𝐷𝐸,𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒−𝚫𝑳𝐷𝐸,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐸(𝚫𝑳𝐷𝐸,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
, (5) 

with 𝚫𝑳𝐷𝐸,𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒  𝜖 ℝ1×5400 the predicted results from the 

surrogate model, 𝚫𝑳𝐷𝐸,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  𝜖 ℝ1×5400 the observed results 

from the baseline simulation study, and expected value 𝐸. 

In curve fitting problems, it is to be ensured that errors are 

distributed randomly and do not show dependence on the 

independent or the predicted variable. This analysis may be done 

using a plot set as given in Figure 5, which is based on the same 

data as used in Figure 4. It shows a constant random distribution 

of errors across both predicted and independent variables. The 

histogram of the errors shows some increased kurtosis compared 

to the reference standard normal distribution (scattered line). 

Some more weight of the probability distribution is seen for 

positive errors. Overall, the errors are well within the 0.5 margin. 

However, some outliers are visible, in particular for large wave 

heights and small DEL values. 

  
FIGURE 5: ERROR EVALUATION. RESULTS SHOWN FOR 

TOWER BASE FORE-AFT BENDING MOMENT. 
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Figure 6 shows the 2D error maps for the tower base fore-aft 

bending moment DEL response. These plots indicate the borders 

of the design space used for the setup of the surrogate model (red 

boxes) and the points evaluated for the error analysis (and 

simulated in the baseline MC study). With this plot it becomes 

clearly visible how extrapolation beyond the design space leads 

to the previously observed large errors. As the design space 

borders are defined according to the 1st and 99th percentile 

values, it is clear that in a model evaluation of 5400 design 

points, some values will fall out of the design space. Because the 

radial basis network positions radial basis functions across the 

design space, an underestimation of the loads outside of the 

design space is to be expected. The problem of extrapolation can 

only be mitigated by further increasing the design space, which 

does not seem feasible due to the lower density of design points. 

An alternative is to simply neglect points outside of the design 

space, the error of which would have to be assessed. Also, less 

points could be sufficient to calculate lifetime damage which 

means that the problem does not occur for smaller samples. For 

standardized application, it should be clear how many design 

points are required for the calculation of lifetime damage. 

Environmental contours are seen as a promising solution to give 

a limit for consideration of sampling points. These could then 

also give an indication of the applicability of a surrogate model 

for a specific site. In [18] it was shown that singular events do 

not have a large influence on the lifetime DEL, hence the impact 

of these extrapolation is not found critical in the present study. 

 

 

 
FIGURE 6: 2D ERROR MAPS. SHOWN FOR TOWER BASE FORE-

AFT BENDING MOMENT. 

LIFETIME DAMAGE EQUIVALENT FATIGUE LOADS 

Using the surrogate model, a continuous description of 1hour 

DEL response across the environmental design space is 

available. This may now be combined with the continuous model 

of the occurrence probability of the environmental parameters in 

order to arrive at a lifetime damage response. This is done in the 

present study using Monte-Carlo integration. As described 

above, the Nataf joint probability model of the environment is 

determined based on marginal probability distributions and 

correlations of environmental variables obtained from 

measurements. The model allows a mapping of random points in 

a unit hypersquare into the variable space, taking into account 

the occurrence probability of different environmental conditions. 

With the environmental model 106 environmental events are 

selected taking into account the probability of occurrence. The 

DELs for the resulting set of environmental conditions are then 

obtained from the DEL surrogate model. Finally, the lifetime 

damage equivalent load may be calculated by Monte Carlo 

integration using:  

Δ𝐿𝐷𝐸,𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = (∑ Δ𝐿𝐷𝐸,𝑖
𝑚𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑖=1

𝑁𝑟𝑒𝑓,𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒,𝑖

𝑁𝑟𝑒𝑓,𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 )

1

𝑚
, (6) 

 

where 𝑁𝑟𝑒𝑓,𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒,𝑖 is the reference cycle number for the full 

life time of the system. 𝑁𝑟𝑒𝑓,𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒  is calculated by weighting 

each evaluation point according to their relative occurrence 

probability over the entire life time: 𝑁𝑟𝑒𝑓,𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒  = 𝑤𝑠𝑖𝑚 ⋅

𝑁𝑟𝑒𝑓,𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛. In the case of 106 environmental conditions, the 

weighting is calculated according to 𝑤𝑠𝑖𝑚 =
106

3600𝑠

20∗8760∗3600𝑠

. 

CONVERGENCE STUDY 

The convergence of the overall procedure is investigated with 

respect to increasing the number of simulations used for the 

derivation of the surrogate model. An uncertainty is 

implemented in the surrogate modeling due the choice of training 

samples for the setup of the surrogates. This is included in the 

convergence analysis by repeating the regression procedure for 

each number of considered simulations 103 times. The resulting 

lifetime DEL are normalized with respect to the lifetime DEL 

obtained from the Monte Carlo baseline. Two different types of 

radial basis networks are investigated here in order to explain 

some fundamental characteristics specific to radial basis 

networks. As described before, the specific characteristics of 

radial basis functions are the defined spread of the radial basis 

neurons and the target accuracy. In this comparison the first setup 

(RBN1) is a 20% spread value of neurons and a target error of 

10−3. The second setup (RBN2) has a spread of 10% and a target 

error of 10−4 and hence is more accurate, but computationally 

expensive and may be prone to overfitting.  

 

Figure 7 shows the results of the convergence analysis which 

indicates that already based on 100 design points (evaluated 

using 3 seeds each), the error of the prediction lifetime DEL is 

likely to be below 5% for RBN1. For RBN2 an underestimation 

is visible if only a limited number of simulations are available 

for training. This indicates that if the spread of neurons is small, 

a larger number of training points is required in order to reach 

sufficient coverage of the design space. 
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FIGURE 7: CONVERGENCE OF ERROR OF LIFETIME DEL 

DETERMINED FROM SURROGATE MODEL WITH INCREASING 

NUMBER OF SIMULATIONS. RED DOTTED LINES INDICATING 

5TH AND 95TH PERCENTILES. RESULTS SHOWN FOR TOWER 

BASE FORE-AFT BENDING MOMENT. TOP: RBN1, BOTTOM: 

RBN2 

The prediction error of the lifetime DEL may be weighted again 

with the SN-slope in order to show convergence of the damage 

prediction error:  

𝐷1

𝐷2
= (

Δ𝐿𝐷𝐸,1

Δ𝐿𝐷𝐸,2
)

𝑚

. (7) 

Following Eq. (7), the normalized damage error is equal to the 

normalized error in DEL calculation to the power of 𝑚. 

Figure 8 shows the convergence of damage adjusted error for all 

sensors investigated as part of this study.  

For RBN1, it indicates a bias of up to around 5% compared to 

the Monte Carlo reference study for the lower load locations (i.e. 

for the tower base and fairlead the center of the plotted percentile 

curve-pairs stays below 1 even for a large number of 

simulations). The bias is linked to the lower target accuracy of 

RBN1. This leads to consistent underprediction of the load 

response (may be found through error analysis). Apart from this 

bias, the convergence behavior is similar for all load locations. 

This being said, sensors which are located lower, show a slower 

speed of convergence. This is due to the increased impact of the 

wave environment in the lower parts of the system and hence the 

increased complexity of the response function.  

For RBN2, the underprediction for the fairlead tension persists 

even after the before mentioned underprediction. A clear reason 

for this bias could not be found. It is however likely that an 

underprediction is done in a region with high occurrence 

probability and fatigue loads (i.e. around rated wind speed). 

There, even small errors will be penalized strongly. It could be a 

possibility for improvement of surrogates to take this occurrence 

probability into account in the curve fitting procedure (e.g. by 

adding occurrence probability and load based weights to the 

error calculation).  

Overall, the damage prediction for two different approaches 

results in a damage model accuracy of around +/-10% using 

below 1000 design points. In this way, when comparing the 

results with the Monte Carlo reference study performed in [18], 

it can be seen that the convergence behavior using surrogate 

models may be comparable to the direct Monte Carlo approach 

(there, 200-500 design points were found to be sufficient for 

fatigue design). Due to the flexible application of surrogates to 

other environments, it would thus be recommended to choose a 

surrogate modeling over direct Monte Carlo simulation: The 

break-even point would be reached with the second or third load 

evaluation. It should also be possible to add design points 

sequentially, increasing the design space and hence the region of 

model applicability (adding dimensions, however is easily 

implemented). However, it is highlighted that care is to be taken 

in the model derivation and a thorough error analysis and quality 

evaluation needs to be performed in order to ensure that the 

results are trustworthy. In this way future research on surrogate 

modeling on loads of floating wind turbines should be followed 

in order to identify standardized procedures for modeling and 

model evaluation. Some suggestions have been presented here, 

but will need extension.   
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FIGURE 8: CONVERGENCE OF DAMAGE ADJUSTED ERROR OF 

LIFETIME DEL DETERMINED FROM SURROGATE MODEL WITH 

INCREASING NUMBER OF SIMULATIONS. SHOWING 5TH AND 

95TH PERCENTILES FOR DIFFERENT SENSORS. TOP: RBN1, 

BOTTOM: RBN2 

SUMMARY, CONCLUSIONS AND OUTLOOK  

A methodology for a probabilistic fatigue load assessment based 

on surrogate modeling was presented and evaluated. The chosen 

procedure here is based on the following steps (indicating the 

different choices made in the present work):  

1) Define load ranges linked to distinctive system 

characteristics  

(e.g. below rated, transition, above rated) 

2) Set up joint probability environmental model  

(e.g. Nataf transformation) 

3) Determine probabilistic design space limits for each 

load range  

(e.g. 1st and 99th percentiles) 

4) Obtain design points based on quasi-random 

sampling procedures  

(e.g. Sobol’ sequences) 

5) Calculate fatigue load response at design points 

using time-domain aero-servo-hydro-elastic 

simulation tools  

(e.g. FAST8.16) 

6) Set up surrogate model  

(e.g. radial basis network) 

7) Combine probability and surrogate model to obtain 

lifetime fatigue response  

(e.g. Monte Carlo simulation) 

Several notes on the above points are given here for context and 

outlook:  

(1) and (3) Load ranges are used at this stage to ensure accuracy 

for the different system behavior in different operation 

conditions. Also, the design space is more efficiently covered, 

partially taking into account the probabilistic nature of the 

environment (i.e. no large wave heights at very low wind 

speeds). It may well be that future applications will not need the 

load ranges. For now, it is considered in order to ensure robust 

results.  

(2) Different environmental models may be used. In particular 

the Rosenblatt transformation may be of interest for higher 

accuracy. This introduces further modeling error (and need for 

convergence studies), due to the implied binning procedure and 

questionable interpolation of statistical properties. If the Nataf 

model is assumed as a correct representation of the environment, 

a Monte Carlo integration can be easily applied. In this way, 

Nataf modeling is prefered in an academic environment, as long 

as the environmental model is not under investigation. 

(6) Alternatives may be more comprehensive artificial neural 

networks, support vector machines, kriging, polynomial chaos 

expansion or others.  

It was shown that for the considered site, environmental 

conditions and system, a limited number of design points is 

sufficient to achieve a converged and accurate prediction of the 

fatigue damage of different relevant components of a floating 

wind turbine system. Detailed error analysis is a helpful tool in 

order to determine the quality and applicability of a surrogate 

model. Further study will be necessary to support the findings 

from this study, considering different environments, systems and 

additional loading positions and materials. Because the 

convergence characteristics are similar to the results from a 

direct Monte Carlo simulation study, the results of this work 

promise the general applicability of surrogate models. If this 

insight stands after further investigation, surrogate models 

combined with classified met-ocean conditions may largely 

facilitate the early design of floating wind turbine systems. Then, 

the fatigue response model of a system may be directly combined 

with any site within a given met-ocean class and an estimate for 

the lifetime fatigue damage can be obtained without any 

additional simulation effort. 
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