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Abstract Jun O’Hara invented a family of knot energies E/'7, j, p € (0, 00), O’Hara
in Topology Hawaii (Honolulu, HI, 1990). World Science Publication, River Edge
1992. We study the negative gradient flow of the sum of one of the energies E* = E®!,
a € (2,3), and a positive multiple of the length. Showing that the gradients of these
knot energies can be written as the normal part of a quasilinear operator, we derive
short time existence results for these flows. We then prove long time existence and
convergence to critical points.
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1 Introduction

Is there an optimal way to tie a knot in Euclidean space? And if so, how nice are these
optimal shapes? Is there a natural way to transform a given knot into this optimal
shape?

To give a precise meaning to such questions a variety of energies for immersions
have been invented and studied during the last twenty five years which are subsumed
under the term knot energies.

In this article we deal with the third of the questions above. But first of all, let us
gather some known answers to the first two questions.

The first family of geometric knot energies goes back to O’Hara. In [23], O’Hara
suggested for j, p € (0, 0o0) the energy

. 1 1 P
4 — _ / . /
E (C)‘// <|c(x)—c(y>|f dc<x,y)f> N leoldxdy

(R/Z)?

of a regular closed curve ¢ € C 0'I(IR/ 7Z,R™). Here, d.(x, y) denotes the distance of
the points x and y along the curve c, i.e., the length of the shorter arc connecting these
two points.

O’Hara observed that these energies are knot energies if and only if jp > 2 [23,
Theorem 1.9] in the sense that then both pull-tight of a knot and selfintersections are
punished. Furthermore, he showed that minimizers of the energies exist within every
knot class if jp > 2. So: Yes, there is an optimal way to tie a knot—actually even
several ways to do so.

Abrams et al. proved in [1] that for p > 1 and jp — 1 < 2p these energies are
minimized by circles and that these energies are infinite for every closed regular curve
if jp—1>2p!

There is a reason why for the rest of our questions we will only consider the case
p = 1: For p # 1, we expect that the first variation of E/-? leads to a degenerate
elliptic operator of fractional order—even after breaking the symmetry of the equation

! In fact one can even show that for Jjp — 1 > 2p the energy is only finite for open curves that are part of
a straight line—in which case the energy is O (cf. [9, Remark 1.3]).
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The gradient flow of O’Hara’s knot energies

coming from the invariance under re-parameterizations. We will only consider the non-
degenerate case p = 1 and look at the one-parameter family

o ol _ 1 _ 1 / /
520 = 50 = [[ (s aom — e )0 Oldxdy. (LD

(R/Z)?

We leave the case p # 1 for a later study.

The most prominent member of this family is E2 which is also known as Mobius
energy due to the fact that it is invariant under Mobius transformations [14, Theo-
rem 2.1]. While for o € (2, 3) the Euler-Lagrange equation is a non-degenerate elliptic
sub-critical equation it is a critical equation for the case of the Mdbius energy EZ.

In [14], Freedman, He, and Wang showed that even E 2 can be minimized within
every prime knot class. Whether or not the same is true for composite knot classes
is an open problem, though there are some numerical experiments that indicate that
this might not be the case in every such knot class [19]. Furthermore, they derived
a formula for the L?-gradient of the Mdbius energy [14, Equation 6.12] which was
extended by Reiter [24, Theorem 1.45] to the energies E* for o € [2, 3). They showed
that the first variation of these functionals can be given by

E%(c+eh) — E%(c) _

BEY(©) = lim / (090 (x), h(x) - 1€/ dx

e
R/Z
where
1
« . 1 cx+w) —clx) Kk (x)
T =y | PC’“‘){M et w—cnre TP

1
-2

) K (x) , 4 1

- lc(x +w) —c(x)|¥ €' (x + w)ldw. (1.2)

Here, Pj(u) =u— (u, ﬁ)ﬁ denotes the orthogonal projection onto the normal

part, and k = «, denotes the curvature vector of the curve c, i.e. k = k. = (%)2 s
1
where % = ﬁ % is the derivative with respect to arc-length. Furthermore, p.v [ N ! =
limg o flfl /2.1/20\[—e.¢] denotes Cauchy’s principal value.
In the case that ¢ is parameterized by arc length this reduces to
1
c(s +w) —c(s) c”(s)
DI = pv. / P712 —(@—2
Q&= | P 1216ty —cwpre @7 up
)
/!
EPSAC) }dw. (1.3)
le(s +w) —c(9)[*
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S. Blatt

Using the Mobius invariance of E 2 Freedman, He, and Wang showed that local
minimizers of the Mdbius energy are of class C!-! [14]—and thus gave a first answer
to the question about the niceness of the optimal shapes. Zheng-Xu He combined this
with a sophisticated bootstrapping argument to find that minimizers of the Mobius
energy are of class C* [17]. Reiter could prove that critical points c of E%, o € (2, 3)
with k € L are smooth embedded curves [24], a result we extended to critical points
of finite energy in [8] and to the Mobius energy in [9].

Let us now turn to the central theme of this article, the last of the three questions
we started this article with: Is there a natural way to transform a given knot into its
optimal shape? Since E¢ is not scaling invariant for & € (2, 3), the L>-gradient flow
of E% alone cannot have a nice asymptotic behavior. We want to avoid that the curve
would get larger and larger in order to decrease the energy. Here, the length L(c) of
the curve ¢ will help us.

To transform a given knotted curve into a nice representative, we will look at the
Lz-gradient flow of E = E* + AL for a € (2,3) and A > 0 a fixed constant. This
leads to the evolution equation

0;c = —0%(c) + Ake. (1.4)
Another Ansatz for a flow that might transform a given curve into a critical point

is to let A depend on time in such a way that the length of the curve stays fixed during
the flow. This leads to the evolution equation

0;c = —=0%(c) + M)k
where A () is given by

ST O @), k@)1 () ldx

A1) =
“ Jryiz K QO (0)ldx

Unfortunately, the extra term is much harder to control than in the case for constant A
due to its supercritical nature. We will not discuss this evolution equation further and
leave it for a later study.

We will see that the right hand side of Eq. (1.4) can be written as the normal part
of a quasilinear elliptic but non-local operator of order « + 1 € [3, 4).

The main result of this article is the following theorem. Roughly speaking, it tells
us that, given an initial regular embedded curve of class C°, there exists a unique
solution to the above evolution equations. This solution is immortal and converges to
a critical point. More precisely we have:

Theorem 1.1 Let o € (2, 3) and co € C®°(R/Z, R") be an injective regular curve.
Then there is a unique smooth solution

c € C*([0, 00) x R/Z,R™)
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The gradient flow of O’Hara’s knot energies

to (1.4) with initial data c(0) = cg that after suitable re-parameterizations converges
smoothly to a critical point of E* + AL.

Note that we do not expect the above theorem to hold for the gradient flow of
the Mobius energy E2. Due to the criticality of the equation one gets in the case of
the Mobius energy the long time behavior of this equation should be much richer.
Numerical experiments yield to the conjecture that for example the gradient flow of
the Mobius energy can develop singularities for certain initial data. It would make even
less sense to consider the negative gradient flow of EZ 4 AL for a positive constant A.
As E? is scaling invariant the length term would force the flow to produce singularities
in finite time.

Lin and Schwetlick showed similar results for the elastic energy plus some positive
multiple of the Mobius energy and the length [20]. They succeeded in treating the term
in the L?-gradient coming from the Mdbius energy as a lower order perturbation of the
gradient of the elastic energy of curves. This allowed them to carry over the analysis due
to Dziuk, Kuwert and Schiitzle of the latter flow [12]. They proved long time existence
for their flow and sub-convergence to a critical point up to re-parameterizations and
translations.

The situation is quite different in the case we treat in this article. We have to
understand the gradient of O’Hara’s energies in a much more detailed way and have to
use sharper estimates than in the work of Lin and Schwetlick. Furthermore, in contrast
to Lin and Schwetlick we show that the complete flow, without going to a subsequence
and applying suitable translations, converges to a critical point of our energy.

We proceed with an outline of the proof of Theorem 1.1 and thus with an outline of
the paper. In Sect. 2, we prove short time existence results of this flow for initial data
in little Holder spaces and smooth dependence on the initial data. To do that, we show
that the gradient of E¢ is the normal part of an abstract quasilinear differential operator
of fractional order (cf. Theorem 2.3). Combining Banach’s fixed-point theorem with
a maximal regularity result for the linearized equation, we get existence for a short
amount of time. In order to keep this article as easily accessible as possible, we give
a detailed proof of the necessary maximal regularity result.

The most important ingredient to the proof of long time existence in Sect. 3.4 is a
strengthening of the classification of curves of finite energy E¢ in [5] using fractional
Sobolev spaces. For s € (0, 1), p € [1, 00) and k € Ny the space Wk+s:P(R/Z, R™)
consists of all functions f € W57 (R/Z, R") for which

1/p
(k) _ £ P
T L) — ) dxd
JZR/Z.
is finite. This space is equipped with the norm || £ || yiss.p := || f [l yip + 1 f ®© |ws.p. For

a thorough discussion of the subject of fractional Sobolev space we point the reader to
the monograph of Triebel [26]. Chapter 7 of [2] and the very nicely written and easy
accessible introduction to the subject [13].
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S. Blatt

We know that a curve parameterized by arc length has finite energy E¢ if and only

if it is bi-Lipschitz and belongs to the space W2, In Theorem 3.2 we show that

even
¢/ a1, < CE®
w2

o+l . . L
and hence the W "2 -2-norm of the flow is uniformly bounded in time.
To control higher order derivatives, we then derive the evolution equation of

gk = f 105k 121¢’ (x) |dx. (1.5)
R/Z
where x denotes the curvature of the curve ¢ and d; := —%_ s the derivative with

. [’ ()] ™ .
respect to the arc length parameter s. Note that in contrast to previous works like the

work due to Dziuk, Kuwert, and Schitzle on the elastic flow or the work due to Lin
and Schwetlick on the gradient flow of the elastic energy plus a positive multiple of
the Mobius energy, we do not consider the normal derivatives of the curvature but the
full derivatives with respect to arc length.

Using Gagliardo—Nirenberg—Sobolev inequalities for Besov spaces, which quite
naturally appear during the calculation, together with a fractional Leibniz rule, we can
then show that also the £X are bounded uniformly in time. By standard arguments this
will lead to long time existence and smooth subconvergence to a critical point after
suitable translations and re-parameterization of the curves.

To get the full statement, we study the behavior of solutions near such critical points
using a Lojasiewicz—Simon gradient estimate in Sect. 4. This allows us to show that
flows starting close enough to a critical point and remaining above this critical point in
the sense of the energy, exist for all time and converge to critical points. More precisely
we have.

Theorem 1.2 (Long time existence above critical points) Let cyy € C*°(R/Z, R") be
a critical point of the energy E = E“ + AL, « € (2,3), A > 0, letk € N, § > 0, and
B > «a. Then there is a constant ¢ > 0 such that the following is true:

Suppose that (ct)iefo,1) is a maximal solution of the gradient flow of the energy E
with smooth initial data satisfying

lco—cmllcp < ¢

and
E(ct) > E(cm)

whenever there is a diffeomorphism ¢; : R/Z — R/Z such that |c; o ¢y —

cmllcs < 6. Then the flow (c;); exists for all times and converges, after suitable
re-parameterizations, smoothly to a critical point c, of E satisfying

E(ceo) = E(cp)-
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The gradient flow of O’Hara’s knot energies

In contrast to Theorem 1.1, the analogue to Theorem 1.2 holds for the gradient flow
of the Mobius energy alone [6, Theorem 5.1]. Note, that though the proof also works
for the gradient flow of EZ + AL, A # 0, the statement would be empty as there are
no critical points of this energy. This is due to the fact that E? is scaling invariant but
L is not. The same is true for the energies E* — AL, A > 0.

Theorem 1.2 shows that in the situation of Theorem 3.1 the complete solution
converges to a critical point of E* + AL—even without applying any translations or
re-parameterizations.

2 Short time existence

This section is devoted to an almost self-contained proof of short time existence for
Eq. (1.4). We will show that for all cg € C*°(IR/Z) a solution exists for some time.

For any space X C C!(R/Z,R") we will denote by X;, the (open) subspace
consisting of all injective (embedded) and regular curves in X.

Theorem 2.1 (Short time existence for smooth data) Let ¢y € Ci°r° R/Z) and o €
[2, 3). Then there exists some T = T (co) > 0 and a unique solution

c e C®([0, T) x R/Z,R")

of (1.4) with initial data c(0, -) = c.

We can strengthen the result above. In fact, we can reduce the regularity of the
initial curve even below the level where our evolution equation makes sense. We still
can prove existence and in a sense also uniqueness of a family of curves with normal
velocity given by the gradient of E* + AL. For this purpose we will work in little
Holder spaces h?, B ¢ N, which are the completion of C* with respect to the C#-

norm. We equip this space with the norm || - ||,6 = || - |05 Let 8[J-c denote the normal
velocity, i.e. let ath = 0;c — %c’

Theorem 2.2 (Short time existence for non-smooth data) For o € [2, 3)
let ¢y € hfr(R/Z, R") for some B > «, B ¢ N. Then there is a constant T > 0
and a re-parameterization ¢ € CP(R/Z, R/7) such that there is a solution
ceC(0,T), hfr(R/Z, R™") N C*®((0,T), C*°(R/Z,R"))
of the initial value problem
dtc = —V%(c) + Ak, Vt €[0,T],
c(0) =coo 9.

This solution is unique in the sense that for each other solution

¢e (0, 7). hf (R/Z,R") N C®((0, T), C®([R/Z,R"))

@ Springer



S. Blatt

and all t € (0, min(T, f")] there is a smooth diffeomorphism ¢, € C*°(R/Z,R/Z)
such that

ct, ) =ct, d: ().

As in the special case of the M&bius energy dealt with in [6], these results are based
on the fact that the functional L possesses a quasilinear structure—a statement that
will be proven in the next subsection. After that we build a short time existence theory
for the linearization of these equations from scratch and prove a maximal regularity
result for this equation.

To get a solution of the evolution Eq. (1.4), we first have to break the symmetry
that comes from the invariance of the equation under re-parameterizations. We do this
by writing the time dependent family of curves ¢ as a normal graph over some fixed
smooth curve cg. Applying Banach’s fixed-point theorem as done in [4] for nonlinear
and quasilinear semiflows, we get short time existence for the evolution equation of
the normal graphs and and continuous dependence of the solution on the initial data. A
standard re-parameterization then gives Theorem 2.1 while Theorem 2.2 is obtained
via an approximation argument.

2.1 Quasilinear structure of the gradient

we can write

V% = Pﬁi]“c
where
%
o _ c(x +w) —c(x)—wc'(x) o " (x)
V%) (x) = p.v./ {201 o 1 W) (@ —2) O Pdex T W x)*

1

2
C//(x)

/()P fe(x + w) = (x|

}lc’(x +w)|dw. 2.1

By exchanging every appearance of [c(x + w) — c(x)| and d.(x + w, x) by their
first order Taylor expansion |¢’(x)||w| and |¢'(x + w)| by |¢’(x)] in the formula for
0%, we are led to the conjecture that the leading order term of 2U* is the normal part
of |c’f++1 Q% (c) where

(Q%)(x) == p.v. / (zc(x tw) —ew) —wels) c”(x)) 4w

w2 |w|°‘
]

[_

D=
D=
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The gradient flow of O’Hara’s knot energies

is an operator of order o + 1 [24, Proposition 2.3], [17, Lemma 2.3].

This heuristic can be made rigorous using Taylor’s expansions of the error terms
and estimates for multilinear Hilbert transforms (cf. Lemma 6.2) leading to the next
theorem. It will be essential later on that the remainder term is an analytic operator
between certain function spaces—which we denote by C”. We denote by H?, > 2,
the Bessel potential spaces.

Theorem 2.3 (Quasilinear structure) For o € (2, 3) there is a mapping

Fo e () coct P R/Z.RY), CP(R/Z,R"))
B>0
such that
B = | ,|a+1PL(Q°’c)+F“
forall c € HYF'(R/Z,R").

Proof of Theorem 2.3 1t is enough to show that there is a mapping

“e (ot ®/z,RY), CP(R/Z,R™))
B>0

such that
L% = _ Q% + F%
- |c/|a+1

forallc €e H "”‘I(R/ Z,R"). The theorem then follows immediately using 2U%c =
P(B%0) = 15t P (Q%0) + Foc — (Foc, 1) i
We decompose

P = % |a+1 0% +2aR%c — (@ —2)RSc — 2R c + aRSc 2.2)

where

(R{c)(x) := / (cx +w) — c(x) — wc'(x))

R/Z

1 1
_ 4 dw,
) <|c(x Fw) — c()et? |c/<x)|a+2|w|a+2>'c (o w)ldw

" 1 1
R () = [ S0 ( - )Ic’(x +w)ldw,
R/

: I/ O)2 \de(x +w, x)* |/ (x) 2w
(Re)(x) = / " (x) < 1 _ 1 )|c/(x +w)ldw
3 '_R/ I ()12 \Je(x +w) —c@)]* [|c/(x)[*we ’
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w

o . 1 c(x +w) —c(x) — wc'(x)
@) = e | :
R/Z

B C,,(x)> et -l

lw|*

Using Taylor’s expansion up to first order, we get

de(x +w, w) = |w| / I/ (x + Tw)|dT
1

1
- |w|/ |c’(x)|+rw/<M,c”(x+stw)>ds dr
; , |c’(x + sTw)|

d(x +1tw)

1
_ / 2 _
= Jwlle' ()] + w 0/(1 r)<—|c/(x+m)|,

(x + tw)>dr

= wl | ()](1 + wXc(x, w))

where

o ) _ c(x+tw)

Xebow) =1 <x>| /( )<|c wrrw) ¢ “w)>dt
and

2
le(x + w) — c(x)|* = |wc'(x) + w? /(1 — 1) (x +tw)dr
= w1+ wXe(x, w))

where

Xo(x, w) = W ( <c (x), /(1 ) (x + rw)dr>

2

+w

/(1 — )" (x + Tw)dt
0
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The gradient flow of O’Hara’s knot energies

Together with the Taylor expansion

1
N+x"=1—0x+0(c+ 1)x2/(1 — )1+ 1x|°%dt

0
foro > 0 and x > —1, this leads to
! ! ! ((1 FwX(x, w) "% 1)
— = w X, W -
lc(x +w) —c(x) [/ w7 |c'(x)|7|w]|® ‘
_ 1 o X.( )
T le@pup \ T 20

1
+ % (% + 1) WX, (u, w)? /(1 — (1 + TwX.(x, w))—‘z’—zdr)
0

and

1 1 1

dix+w.x0)° [ wle (¢ |w

1
< [ ow et oo+ Du R w? [0 =00+ w0
0

Furthermore, we will use the identities

1
c(x +w) — c(x) — we' (x) = w? /(1 — 1) (x + Tw)dr
0

and
d(x +Tw)

I’
e dr.
G+ € (x+fw)> !

1
Wu+wn—Wun=w/<
0

Plugging these formulas into the expressions for the terms R{, RS, RS, Ry and
factoring out, we see that they can be written as the sum of integrals as in the following
Lemma 2.4. Hence, Lemma 2.4 completes the proof. O

Lemma 2.4 For l~1 <1, iz <, and i3 < I3 and a multilinear operator M let

I = / M (x+tiw), ..., " (x+1,w), x4+, 410), . .., (X T W),
[O’1JI~1+1~2+1~3
(x4 4l 1w) (X + Ty a4 w)>
I/ (X + T tla1w)| (X Ty 4)]

dl'l . ~d1’l~ld‘l,'ll+1 . 'dtll+l~2dr11+lz+1 . 'dtl1+lz+l~3’
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i.e. we integrate over some of the t; but not over all. Then for & € (0, 1) the functionals

1/2

1
Ti(e)(x) == f L dw,

|w[®
—1/2

1/2
o) (x) = /

—1/2

1 % —o
I(fo =)+ twXe(x, w)~7dT) Jw

wlwl®

’

and

12
Ta(e)(x) = /

—1/2

I(fy (1 = )1 + TwXe(x, w)"°)dz
dw

|wl

are analytic from CPT+2 1o CP for all B > 0.

Proof The statement of the lemma for 77 follows immediately from the boundedness
of the multilinear Hilbert transform in Holder spaces as stated in Remark 6.3 combined
with the Lemmata 5.2 and 5.3.

Using a similar argument, one deduces that c — 1 + 7 X, is analytic, hence we get
that for a given ¢ there is a neighborhood U such that

1D (1 + T X w)ll oo,y < C"m!

for all ¢ € U where C does not depend on w and 7. Using that v — |v|? is analytic
away from 0, we deduce that

1D (1 + X, w) 2,08y < C'm!

using Lemma 5.2 and the fact that the composition of analytic functions is analytic.
Hence, the integrands in the definitions of 75 and by the same argument also of 75
satisfy the assumptions of Lemma 5.3. Hence, 7> and T5 are even analytic operators
from CA+>(R/Z, R") to CP(R/Z, R™). o

2.2 Short time existence

Using the quasilinear form of U, we derive short time existence results for the gradient
flow of O’Hara’s energies in this section. For this task, we will work with families of
curves that are normal graphs over a fixed smooth curve ¢y and whose normal part
belongs to a small neighborhood of 0 in ##, 8 > «.

To describe these neighborhoods, note that there is a strictly positive, lower semi-
continuous function r : Ci%r R/Z,R™) — (0, c0) such that

c+{N e C3(R/Z,R")L : |IN|c2 < r(c)}

@ Springer



The gradient flow of O’Hara’s knot energies

only contains regular embedded curves for all ¢ € Cl%r (R/Z,R"™) and

r(c) < 1/2 inf |c'(x)|. 2.3)
x€R/Z

Here, C#(R/Z, R”)ﬁ denotes the space of all vector fields N € C#(R/Z, R") which
are normal to c, i.e. for which (¢’ (u), N(u)) = O for all u € R/Z. Letting

Veg(e) i= (N € WP (R/Z, R 1 |IN|c1 < r(e))

we have for all ¢ € hfr R/Z,R")

¢+ Vrplo) C WP (R/Z,R"). Q2.4)
Let N € V, g(c). Equation (2.3) guarantees that P(JC- ENY @) is an isomorphism from

the normal space along c at u to the normal space along ¢ + N. Otherwise there would
be a v # 0 in the normal space of ¢ at u such that

(c+ N)(u) > (c+ N)(u)
|

:PL ’ = - )
0= Pernyw® =v <” e+ NY @I/ I(c + N)(w)]

which would contradict

< (C+N)'(M)> (c+ N)'(u) '< N'(u)
v — > [v] — (v

e+ Ml e+ N "le+NY @)

>‘ > |v|/4 > 0.

Forc € C'((0, T), C!.(R/Z, R")) we denote by
dtc =PI (0

the normal velocity of the family of curves.
We prove the following strengthened version of the short time existence result
mentioned at the beginning of Sect. 2.

Theorem 2.5 (Short time existence for normal graphs) Let ¢y € C*°(R/Z, R") be an
embedded regular curve, @ € [2,3), and B > o, B ¢ N.

Then for every No € Vy g(co) there is a constant T = T (No) > 0 and a neigh-
borhood U C V, g(co) of No such that for every No € U there is a unique solution
Ny, € C(0,T), hPR/Z)E) N CH(0,T), C¥R/L)L) of

3 (co+ N) = —=B%(co + N) + Akegpn 1 €10, T1, 2.5)
N(0) = No. '

Furthermore, the flow (No, 1) — Nﬁo (@) isin C*°((U x (0,T)), C*°(R/Z)).
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The proof of Theorem 2.5 consists of two steps. First we show that (2.5) can be
transformed into an abstract quasilinear system of parabolic type. The second step is
to establish short time existence results for the resulting equation.

The second step can be done using general results about analytic semigroups, reg-
ularity of pseudo-differential operators with rough symbols [7], and the short time
existence results for quasilinear equations in [4] or [3]. Furthermore, we need contin-
uous dependence of the solution on the data and smoothing effects in order to derive
the long time existence results in Sect. 4.

For the convenience of the reader, we go a different way here and present a self-
contained proof of the short time existence that only relies on a characterization of the
little Holder spaces as trace spaces. In Sect. 2.2.1, we deduce a maximal regularity
result for solutions of linear equations of type d;u + a(t) Qs_lu 4+ b(t)u = f inlittle
Holder spaces using heat kernel estimates. Following ideas from [4], we then prove
short time existence and differentiable dependence on the data for the quasilinear
equation.

2.2.1 The linear equation

We will derive a priori estimates and existence results for linear equations of the type

du—+aQ lu+bu=finR/Z x (0, T)
u(0) = ug

using little Holder spaces, where b(¢) € L(hﬁ(]R/Z, R™), hﬁ(R/Z, R™)) and a(?) €
WP (R/Z, (0, 00)), s € [3.4).
For6 € (0,1), 8 > 0,and T > 0 we will consider solutions that lie in the space

X0 = {g € C((0, T), WP (R/Z,R") N CL((0, T), WP (R/Z, R") :

sup "7 (19, gllcs + gDl eses) < oo}
te(0,7T)

and equip this space with the norm

lgllyor = sup '~ (13,8 (llcs + 18D css) -
T 1€(0,T)

The right hand side f of our equation should then belong to the space

vyl =g e o, 1), P R/Z,R") : sup ' P)g(®)llcs < oo}
te(0,T)

equipped with the norm

lgllyes = sup '~ lig@llcs.
te(0,T)
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The gradient flow of O’Hara’s knot energies

From the trace method in the theory of interpolation spaces (cf. [21, Section 1.2.2]),
the following relation of the space Xy g to the little Holder space hP+s9 is well known
if B 4 56 is not an integer:

Ifue X‘;’ﬂ then u(¢) converges in 159 to a function u(0) as ¢ \ 0 with

e @)l cpese = Clluell yop.- (2.6)

On the other hand, for every ug € h#+5% thereisau € X (;’ﬂ

in h#+5% to 1 (0) for t — 0 and

such that u(z) converges

llull yo.6 < lluoll cpese (2.7
T
Given uo we will see that the solution of the initial value problem

du—+ (—A)2u =0 on(0,00) xR
U = ugp att = 0.

satisfies (2.7). The well-known embedding X" ¢ C?((0, T), C#(R/Z, R")) will
also be essential in the proof (cf. [21, p. 20].

The aim of this subsection is to prove the following theorem about the solvability
of our linear equation:

Theorem 2.6 Let T > 0,8 > 0,0 € (0, 1) with B + 50 ¢ N, and
a e C([0,T], P (R/Z,[0,0))), be CO(0, T), L(h#(R/Z,R"), hP (R/Z, R")))
with

1-6
lallciqo,rr.c6y + sup & IO s ey < 00
te(0,7)

Then the mapping J : u +— (u(0), d;u + aQ*~'u + bu) defines an isomorphism
between X?’ﬂ and hP+95 (R 7, R") x Yﬁ’ﬂ.

This will be enough to prove short time existence of a solution for some quasilinear
equations later on using Banach’s fixed-point theorem.

Equation (2.6) already guarantees that J is a bounded linear operator. So we only
have to prove that it is onto for which we will use some a priori results (also called
maximal regularity results in this context) together with the method of continuity.

To derive these estimates, we will freeze the coefficients and use a priori estimates
for o;u + A(—A)S/Zu = f on R where A > 0 is a constant. He observed in [16], that
the fractional Laplacian can be expressed by

cs(—A)Pu = P.v./ <2u(x +w) —ul) — wi'x) — u”(x)) dw (2.8)

lw? |wis=!
—00
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foracy > Oforallu € H®(R, R"). We will use this identity together with a localization
argument to get from (—A)*/? living on R back to our operator Q*~! which lives on
the circle R/Z.

Note that the fractional Laplacian (—A)*/? on R is bounded from Cgﬂj (R, R"™),
the space of all C**# function with compact support, to C#(R, R") for all 8 > 0,

B ¢N.

Let us consider the heat kernel of the equation d;u + (—A)*/?u = 0 which is given
by
1 . 5
Gi(x) = — / @ik 1127 kE g (2.9)
2
R
forall > 0 and x € R.
Since k — e !I27kI" ig a Schwartz function, its inverse Fourier transform G, is a
Schwartz function as well. Furthermore, one easily sees using the Fourier transforma-

tion that
9,G, + (_A)S/zG, =0 onR V¢ >D0. (2.10)

The most important property for us is the scaling

Gi(x) =t V5G (175 x), (2.11)
from which we deduce
3G (x) = =R kG 1o x) (2.12)
and hence
105Gl 1 my < Crt 105Gl 1 gy < Cat 7. (2.13)

Combining these relations with standard interpolation techniques, we get the fol-
lowing estimates for the heat kernel

Lemma 2.7 (Heat kernel estimates) For all 0 < 81 < Bo, and T > 0 there is a
constant C = C(By, B2, T) < oo such that

IG: % flles, < Ct=B=POS| £l g Ve CPUR,R™), 1€ (0, T].

Proof Letk; € Ng and B; € [0, 1) be such that g; = k; + B; fori = 1, 2.
Forl > m,l,m € Ngand 8 € (0, 1), we deduce from fR ch_mGt(y)dy = 0 and
the fact that G is a Schwartz function

00(G % fH(x)| = /3i7mGz(y)(3§Z1f(x —y) =8l f(x))dy

R

2.12
e / 1= U=/ GIm Gy (/115 [ f (e—y) =0 £ () |dy
R
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The gradient flow of O’Hara’s knot energies

=y/1'V ,
L / =M1 G ) ()] - 180 f (x — t1/52) — 8 f (x))|dz
R

< U= BN St (9 f) f 137G 1) (2)|1z1P dz
R
< Cp . pt U= HBI/Sh515 (9™ f).
Foralll > m, B € (0, 1) we have
holg(34(Gy * f)) < Cromt™ " hilg (3" f)
asforall x;,x» € R
10L(G, % f)(x1) — 3L(Gy * £)(x)]

= /dfmGz(y)(B;"f(m =) =& f(x2 — y)dy

R
< 1857 G || 106l (3 £)lxy — x2)?
2.13) )
< Cromt=MhE1 (0™ £)|x1 — x2/P.

In a similar way we obtain for all/ > m
184(Gr % Pl < Cropt ™37 f 1.

Combining these three estimates, we get

1Ge s fll ayepy < Ct™ B L s (2.14)
”Gt * f”ck2+1 S th((k2+])7(kl+ﬁl))/s||f||Ck1+ﬁ1 , (215)

and if kp > k
1Gs % fllce < CemCmCatb oy gy s (2.16)

Furthermore, we will use that for0 <o < <y < 1l,a # y and f € CY we have
the interpolation inequality

f=a  y=p
Iflles < 21F 1" L 1l ge” - 2.17)
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which can in the case of &« > 0 be obtained from

F) = Fa)l < 1F @) — Fa)l7= 1 f () — f Gl
< (0, (1 — x2l7) 7% (8l (et — 2] 7

and in the case that « = 0 from

1f ) — fa)] < FGDfGI 7 1f ) — FO) T
< (08L, (F)x1 — x2l”)7 QU Flle) T

For ,52 > /§1 we get

1G: * Fllgigess = € (1022(Gr  Pll gy +1Gr# fllie)

@.17) e oo ot
< c<||a!§2<Gt*f)uc,;l'||a;’§2+ (Grs Pl + £ L)

2.14&2.15)
< Ce= PP L 1) flics -

For ,5 1> 52 and hence k| < kp, we obtain

1G: # Flligiss = € (182(Gi % Dllgs, +11Gr # )
17) )12 51552
) k B1 ko B1
< C(19;*(Gy *f)llc,;l 10:2(Gr s f)ll o +1Gr* fllzee)
2.14H&2.16)
<

Q2

Ce=B=POls L D) fll s -
O

To derive a representation formula for the solution of d;u + (—A)*?u = f, we
need the following simple fact

Lemma 2.8 Forallt > 0 we have

/G,(x)dx = 1.

R

Furthermore, for all f € WP (R, R"™), B ¢ N, there holds
G+ 2% r iR RY.
Proof For g € L*>(R) let ¢ denote the Fourier transform of g.
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The gradient flow of O’Hara’s knot energies

Fort > 0 and f € L*(R) we obtain from Lebesgue’s theorem of dominated
convergence

s A 0 A
Grx ) =Pl f 10 a2,

Hence, Plancherel’s formula shows
G, * f— f inL>

Setting f = x[-1,1] and observing

lim(G =i Gidy = | Gidy, Vxe(-1,1),
lin (G, + /() = lim / dy = [ Gidy. ¥xe 11
=15 (e—=1), 0715 (x41)] R

/Gldy =1

R

we deduce that

To prove the second part, let f € h# (R, R"). From convergence results for smooth-
ing kernels we get for all f € C*(R)

limsup | /=Gy % flles < limsup { (/=) = Go 5 (f = Pllca+1=Gr flles}
t]0 110

=limsup |(f — ) — Gs % (f — Plies

110
Lemma 2

LN = Plles.

Since h# (R, R") is the closure of C*®°(R, R") under || - Il c#, this proves the statement.
m}

Linking the heat kernel G, to the evolution equation d;u 4+ A(—A)*/?u = f for
constant A > 0 we derive the following a priori estimates.

Lemma 2.9 (Maximal regularity for constant coefficients) For all § > 0, 6 € (0, 1)
withB+s50 ¢ N, and0 < T < oo, A > 0 there is a constant C = C(B,0, T, \) such
that the following holds:

Let u € CY((0,T), h*(R,R™) N C°(0, T), *R)) N CO([0, T), kP9 (R))
such that u(t) has compact support for allt € (0, T). Then

sup 170 (I19,ullcp + llullcsin)
1€(0,T]

<C ( sup 11770Y0,u 4+ A=A u| s + ||u(0)||hﬁ+se> (2.18)
te(0,T]
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Proof Setting ii(z, x) := u(t, A'/*x) and observing that 8, (x, 1) + (—A)*/2ii(x, t) =
Bu(t, M5 x) + A(—A)*"%u(r, A1/5x), one sees that it is enough to prove the lemma
foraA =1
To this end, we first show that Duhamel’s formula
t
u(t, ) = / Gi—r * f(t,)dt + G; % u(0) (2.19)
0

holds, where f = d,u + (—A)*/?u. For fixed r > 0 we decompose the integral in
equation (2.19) into ‘
I, = / Gi_¢ % f(r,-)dt

t—e

and

t—e
Je = / Gi—¢ * f(1,)dt
0

and see that Lemma 2.7

. el0
IHellze = Ce sup | f(7,)llge —> 0.
te(t—e,t)
As our assumptions imply that u(t) € H*(R, R"), we get, comparing the Fourier
transform of both sides,

(Gime # (=8)Pu(r, ) @) = ((=8)C 0 #u(r,)) (0. (220)

Partial integration in time and equation (2.20) yields

t—e t—¢&
J, = / Gi_p * du(z, )dt + / Gi_r % (=A)*%u(z, Hdr
0 0

&

t_
=Gy *u(t—e,-)— Gy *u(,-) + /(a,(GH) + (=AY/?G,_;) *udt
0

@10 Gexu(t—e,-) =Gy xu(0,-) Lemma 2.8 u(t, ) = G+ u(0, ).

in C# as ¢ \ 0. This proves Equation (2.19).
From Lemma 2.7 we get

G * uollcses < Ct¥ugl cpsss (2.21)
We decompose v(t) := fot Gi—¢ * f(t,)dt = v1(t) + va(t) where

t

W10 = G ¥ v(t/D),  va() = / Gie % (2, ).
t=t/2
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The gradient flow of O’Hara’s knot energies

Then the definition of | - ||,0.s and the estimates for the heat kernel in Lemma 2.7 lead
o

to

t/2
Iv1@lieses < CE/D7 S Ny / o ldr < /" S lyps. (222)

0

As .

I-n
gl /(t e T =S e oLy <

1—n 2 1—n

2

for§ > 0and n € (0, 1), we get

t

I6'71(Ge # va )l cavsnss = 617 / (Giocrs * 7|

t/2

C2s+B—sn

t
L 2.7
ML cglem /(r -4+ E)’“”r"*‘drllfllyg,ﬂ

t/2
< Ct/2" S llyos

and

t
d _
e A ]

dé Cs+B—sn
t/2

t
<cs1 =0 il
T
t/2

= C/" M f .

Hence, by the estimate (2.6) for X ;/S; p=sn

lva ()l cs+e
<C sup (E7Ge x vl casn + 13 (Ge 20l crep)
£€(0,T/2)
<t fll o
T
(2.23)
From (2.19), (2.21), (2.22), and (2.23) we obtain the desired estimate for |[u||cs+5.
The estimate for d;u then follows from d;u = f — (=A)/?yu and the triangle
inequality. O
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Lemma 2.10 (Maximal regularity) Let A, T > 0,n e N, and g > 0,0 € (0, 1) with
B + 56 ¢ N be given. Then there is a constant C = C(A, B,0,n,T), < oo such that
the following holds: For all

a € CY 0, T1, WP (R/Z,[1/A, 0))),
be (0, T), LlPR/Z,R™), hP(R/Z,R")))

with
lallcrqo.ry.cry + 1 NN Lo poy < A

and all u € C'((0, T), W (R/Z,R") N C°((0, T), *+#) N CO([0, T], hP7) we
have

lullyos < € (I +a Q" u+ bull o + (@) l0 )
T T

sup ' 7 {11B,u(®)llce + lu@)lcss )
t€[0,T]

<C ( sup ]r1—9||a,u(t) +a(t)Q* ut) + b(t)ut) | cs + ||u(0)||,,ﬁ+se) .
tel0, T

Proof Note that it is enough to prove the statement for small 7. Let us fix 7p > 0 and
assume that T < Ty. Furthermore, we use the embedding hP R/Z,R") — hP (R, R™)
and extend the definition of Q*~! to functions f defined on R by setting

O f(x) = pv
[—1/2,1/2]

St w) — f) —wf'() _f//(x)> dw

w2 |w|x—l'

Step1 8 (0,1)and b =0
Let ¢, ¥ € C®°(R) be two cutoff functions satisfying

XBi0) = @ = XB1(0)
XBy0) =V = XB4(0):

and ¢, (x) := ¢(x/r), ¥, (x) = ¥ (x/r). We set
f=0u+aQ u
Forr < 1/8 we set ap = a(0, 0) and calculate

B (uepy) + aocs(—AR)* (ugy)
= (Qu+aQ  'we, —a(Q* W, — 0N (ugy))
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+ (@ —ap) Q" (ugy) — ap(Q* " udy) — cs(—AR)**(udy))
=for—fi—fr—f

where

fii=a(Q N wyg, — 0 uey))
= (a—ap)Q*  (ugy)
3= ao(Q* 7 ugy) — s (—AR) > (ugy)).

From Lemma 2.9 we get

WU llcs + @)yl ses)

§C< sup T 0 (1 F@drllcs + AN es + 1 L@ s + 11O es)

7€[0,T]

+ ||u(0>||cﬁ+se)

< c( sup T 0 (1F@lles + AN es + 1 L@ ler + 1O es)

7€[0,T]

+ ||M(O)||Cﬁ+50).
Using Lemma 7.1, we obtain

lfillep < Cllu)llcpre—n ll@rllcs+5-

Using |a(x, 1) — ag| < (x| + T), we derive

I Aalles < ¥y (@ —ap) Q') lice + I1(Wr — D(a — ap) Q°~ (ugy) s
< C1(@r)P + T)uy |l css + Cllugsrlles + 1y — Dia — ao) Q° )|l cs

where C does not depend on r or T'. Since spt(1 — v,) C R — B»,(0) and spt ¢, C
B, (0), we see that

Wy — Dla — ap) Q* " (upy) (x)
= (Y, (x) — D(a(x, 1) — ag)

[—1/2,1/2]—[—r,r]

ulx +w)gp,(x +w) dw
2
wz |w|s—1

and hence

Iy — D(a —a0) Q°~ wgr)lics < C(pr, b, r)llulcs-
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This leads to

1A2@lles < CLEN? + T u(@)gy lleses + Cllu@) e

Furthermore,

If3llcs = C(@, r)llulica+s

since for v € C*T#(R) with compact support we have

0 (W) — ¢ (—AR) () = —
R—[—1/2,1/2)

2v(u +w) —v(u) B v”(u)) dw '
w2 |w|s—1

and hence

o0
_ 1
10° ' W) =cs (AR P W)l cr < Bllvllcs+Ivlicas)-2 / oW = Clvlicars.
1

2

Summing up, we thus get

sup ' 7 (118, (udr) (O Nl cp + Uy llcsvp)

te(0,T]
< CIA@HP+T) sup ' 77 lug, llcors
t€(0,T]
+C(p, ¥, 1, A))( sup (¢! £ (D)l
t€(0,T]

1-6 1-6
+ 7 u(@llcprs—r + 7 lulzlles) + ||u0||cﬁ+s9>’

where C; does not depend on r. Choosing r and 7 small enough and absorbing the
first term on the right hand side, leads to

sup 1177 <||atu||cﬂ(3,/2(o)) + ||u||cs+ﬁ(8,/2(0)))
te(0,T]

<C(p, ¥, A))( sup <r1—9||f(r>||cﬁ+r1—0||u<r>||cﬂ+s_.

te€(0,7]

+ rl_gllu(fllcx> + ||u(0)||cﬁ+s9).

Of course, the same inequality holds for all balls of radius r/4. Thus, covering [0, 1]
with balls of radius /4 we obtain

@ Springer



The gradient flow of O’Hara’s knot energies

sup 1 O (1Bu()ll s + Nu @)l cses)
te(0,T]

<cC ( sup (1" FONes + 170 Nu@)ll cpr

1e(0,T]

@) lle) + 1) epeo)
Using the interpolation inequality for Holder spaces
lullcps—1 < ellullcs+s + C(@)llullce
and absorbing, this leads to

sup 170 (18,u @)l cp + lu()lleses)
te(0,T]

<C < sup (1PN Wlles + 1" Nu@les ) + ||M(0)||cﬂ+xa) :

1e(0,T]

Since

t
lu(llcs = / 10 ()| codt + (0| cps6
0

7 lde sup T ONQu (o)l + 1u0) | cpien
7€(0,T]

IA
—

| = ©

=<

7% sup ' 709u(t) s + I1u(0)llcpsst,
7€(0,T]

we can absorb the first term for 7 > 0 small enough to obtain

sup £ 70 (19u®) s + Nu(@)llcsve )
te(0,T]

<cC (( sup fl_e”f(l)”cﬂ) + ||u(0>||cﬁ+sg> .
1€(0,T]

Step 2 General g butb =0

(2.24)

Letk € Ny, B € (0,1) and let the lemma be true for g = k + B. We deduce the

statement for § =k + 1 + .
From d,u + aQ* 'u = f we deduce that

d () +aQ ' u =8y f — (3:@)Q* " u
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and we obtain by applying the induction hypothesis to get

el yosp < € <||axf||yg,k+,; + 11 @) @l s + ||axu<0>||c,s+so>
T T T
=c <||f||yg,k+,§ el o + ||axu<0)||cﬂ+w>
T T
=xe (ufuye,kﬂg + ||axu(0>||cﬁ+se) :
T

Step 3 General 8 and b
From Step 2 we get

lull o = € (IF llyss + 1. 2) 7> BE @)Dy + luolicasn )
As

1, x) = bO@@) @) llyos= sup '~ Ib@)@(@)lcs < C sup fu(@)llcs
T e(0,T] 7€(0,T]

and by (2.24)

1 _
lullcs < =T% sup ' O3u()lcs + 110l cprso-
7€(0,T]

we get, absorbing the first term for 7 > 0 small enough,

lullgos < € (IF1yos + Nuollcass ).
T T

Now we can finally prove Theorem 2.6.

Proof of Theorem 2.6 1t only remains to show that this mapping J is onto. To prove
this, we use the method of continuity for the family of operators J; : u — («(0), d,u+
(1=D20 '+ 1@Q°'u+bu)). In view of Lemma 5.2 in [15], we have to show
is that Jy is onto.

By [17, Lemma 2.3] and [24, Proposition 1.4] we have for all f € H*(R/Z,R")

0 (N (k) = Mil2mk|® £ (k)

1
)\.kZCS-FO(%).

where
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for some positive constants ¢. For ug, f in C* a smooth solution of the equation

Qu—+210"lu=f Vte(,T]
u(0) = ug

can be given by Duhamel’s formula

keZ keZ

t
Lt(t, x) — Zﬁo(k)eft)»)»kﬂnkPeZnikx + / Z(f(t))/\(k)ef(tff))\)»kmnk\‘vdt'
0

This formula can easily be checked comparing the Fourier coefficients.
Let now ug € h#+9(R/Z,R") and f € YoP We set fi(t) := f(t + 1/k) and
observe that
fe = f inC°%0, T — ], P(R/Z, R"))

for all ¢ > 0. Since f; € CO([O, T — 1/k], hﬁ(R/Z, R™)), we can find functions
fok € C®(0, T — 1/k] x R/Z, R") such that f, x — fi in C°([0, T — 1/k], CP)
forn — oo and smooth ué”) converging to uq in B9 Let un k € C* be the solution
of

8tuiz,k + QSilun,k = fn,k

n 1 (0) = .

Using the a priori estimate of Lemma 2.10, one deduces that the sequence {u, r}nen
is a Cauchy sequence in X t;f . for every & > 0. The limit u,, solves the equation

ur(0) = ug.

{azuk + 0wy = fi

Using the a priori estimates again, one sees that {uy}ren 1S bounded in X?E o

Since X?’_ﬂs is embedded continuously in CO2([0, T —¢], hﬁﬂ%) and C1=([8, T —
], hﬁ“”) foralln € (0, 1),¢,8 > 0, we can assume, after going to a subsequence,
that thereisauq € X ?’ﬂ such that

Up — oo in CO((0, T — &), C*+F)

forOfB < B,e& > 0and
Uso(0) = ug.

Hence we get
dur = fr =10 'wp > f 420 us in CO0, T — &), C*HF)
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for all ¢ > 0 which implies that u, solves

dtoo + 20 use = f
Uoo(0) = uyg.

2.2.2 The quasilinear equation

Now we are in position to prove short time existence for quasilinear equations and
C'-dependence on the initial data.

Proposition 2.11 (Short time existence) Let0 < 8,0 <0 <o < 1, 8,8+s0,8+
so ¢ Nog, U c CPH9(R/Z, R") be open and let a € C'(U, CBE(R/Z, (0, 00))),
fecl(u, cFR/zZ,RY)).

Then for every ug € h#+5°(R/Z, R") N U there is a constant T > 0 and a unique
u e CO10, T), Ao R/Z,R") N C((0, T), PR /Z, R")) such that

dyu +aw)Q " u) = f(u)
u(0) = uop.

Proof Let us first prove the existence. We set f(‘;’ﬁ ={w e X(;’ﬁ : w(0) = ug}. For
weX ‘;’ﬁ (R/Z, R™) let dw denote the solution u of the problem

o + Apgu = Bw)w + f(w),
u(0) = ug

where Ay = a(up)Q*~! and B(w) = (a(ug) — a(w))Q* L.
Let v be the solution of
drv + Aov = f(uo)
v(0) =up

and B,(v) = {w € f(;”s D llw = vllyes < r}. We will show that @ defines a

contraction on B, (v) if r, T > 0 are smallTenough.
Since a € C1(U, hP (R/Z,R")), we get

I1B(z) = Bl Lct+s cpy < la(z) —a)lcs = Cllz — ullcpeso

forall z, u € CP*5? close to uo.
Let wy, wy € By (v), r < 1. Using that the space X ;’ﬁ is embedded continuously
in C°~?([0, T1, hPT9(R/Z, R™)) and w1 (0) = w1 (0) = v(0) = ug we get

lwa () = uollcpsss < Ct7wallyop < Ct77 (0l s +7),  (2.25)
T T

lwi (@) = wa®lleprso < C177 llwr = wal go- (2.26)
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The gradient flow of O’Hara’s knot energies

Using Lemma 2.10, we estimate

IPwy = Pwallyop = CliBwwi = Bw)wallyos + Cllfwi = fwallyos.

As
0N fwi@) = faa@)lles < Cr 0 Nlwi () — wa )| eprso
(2%6) CT' " |lwy — w2l o
and

1Bwwy — Bw2)walyos
< [(Bwr) = Bw2)willyes + 1 B(w2)(wi — w2)llyas

<C sup "0 (Jlwi () — wa Ol cprso lwi (Ol s+s
1€(0,T]

+ lwa () = uoll cpso llwi (8) — wa ()|l os+8)

(2.26)&(2.25) b
< C sup (177 lwi — wall yos lwi ] o
te(0,T] T T

— 1—
+ 177 Ul yop + )67 i (6) = wa(0)llesos)
< CT7 (o + )llwn = wall s
we get the estimate

1@ @w1) = @)l yos < CT' 7 + T (vll yos + r)llwi — wall yos.
T T T

Hence, @ is a contraction on B, (v) if T and r are small enough.
Similarly, we deduce from

0 (D (w) —v) + Ag((P(w) —v)) = B(w)w + f(w) — f(uo)
®(w)(0) — v(0) = 0

using Lemma 2.10 that
1P (w) = vl yos < CUB@WIlyap + 1L W) = f @o)ll s
< CT7flwllyos lw = vllypo + CT' = w = vll yos + CT' |l — ol o
T T T

1
< —|lw="vllyops +CT" P +CT'" <~
2 Xr

if T and r are small enough. Then ¢ (B, (v)) C B, (v). Hence, by Banach’s fixed-point
theorem there is a unique u € B, (v) with d;u + a(u) Q* " (w)u = f(u).
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For the uniqueness statement, we only have to guarantee that every solution is in
Y}T’ﬁ . But this follows from Lemma 2.10. O

Proposition 2.12 (Dependence on the data) Let a, b be as in Proposition 2.11 and
ue Y?’ﬁ be a solution of the quasilinear equation

du+aw)Q* " w) =0
u(0) = uog.

Then there is a neighborhood U of uq in hW#+59 such that for all x € U there is a
solution uy of

u+aw)Qlu=0
u(0) =x

Furthermore, the mapping

0.p
U — YT

X > Uy
is CL.

Proof We define ¢ : h#+*0(R/Z, ") x X7° — ¥7"’ by

¢ (e, u) 1= u(0) — x, du +a@)Q*~'u)
Then the Fréchet derivative of ¢ with respect to u reads as

8¢(x ”)<h) ((0), 9 + a() Q*'h + d'(w)h Q*~u).

Setting a(t) = a(u(r)) and b(t)(h) = a’(u)h Qs_lu, Theorem 2.6 tells us that this is
an isomorphism between X é;,ﬁ and hPH50 x v, ?’B . Hence, the statement of the lemma
follows from the implicit function theorem on Banach spaces. O

2.2.3 Proof of Theorem 2.5

Since the normal bundle of a curve is trivial, we can find smooth normal vector
fields vi,...,v,—1 € C®(R/Z,R") such that for each of x € R/Z the vectors
v1(x), ..., vy,—1(x) form an orthonormal basis of the space of all normal vectors to cq
atx. Let Uy p(co) = (@1, .- b1) € WPR/Z R - S0 vy € V) (o).

If we have N, = Z;:]l ¢l,tv,, (@145 - Pu—1.1) € Vr.p(c), then (2.5), using Theo-
rem 2.3, can be written as
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The gradient flow of O’Hara’s knot energies

n—1 n—1
Z (8l¢i~’) (Pj(u)vi) B | %|v c (Qa (CO + Z¢’ ’v’)>
i=1 i=1
n—1
— F(co+ ) piovi) + ke
i=1

) n—1
|C/|S Z Qa¢zt P+Vl
i=1
n—1
|C|SPCJ’_(ZQ0[ ¢tt‘)z ZQ¢1[ V1+Q CO)
i i=1

n—1

— Flco+ Y ¢iavi) + ha

i=1

2 n—1
—Top > (0“i) Parvi + Fey($r) + M
i=1

where

n—1

Fey(@) = —F(co+ Y $iavi) —

i=1

2 n—1 n—1
+ o (Z (Q“i) Pivi — Py (Z Q“¢l-,,v,->) :

i=1 i=1

2
— P (Q%)

le’*

Using Lemma 7.1 we see that F e C*(C**# CP) for all B > 0 and hence espe-
cially F € C¥(C**P, CP) for all B > 0. Furthermore, the term Ax belongs to
C(C**P, CP). Since (2.3) implies that {P7v, : r = 1,...,n — 1} is a basis of

the normal space of the curve ¢ at the point u, the mapping A : R"~1 — (Rc/ (u))l

(X1, ..., xXp—1) > Z 1 X; C(u)vl is invertible as long as ||¢’ — C6”L°° < 1.
So we have brought the evolution equation into the form

bty = ——= 0% + A (F() + x) 2.27)

| ’IS

where A1 (ﬁ(d),) + AK) € C®(h*+P hP)forall B > 0. Now the statement follows
from Proposition 2.11, Proposition 2.12, and a standard bootstrapping argument.
2.2.4 Proof of Theorem 2.1

From Theorem 2.5 we get a smooth solution of

(c)t = =B (cr) + e,
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Let ¢:(x) for (x,t) € R/Z x [0, T) denote the solution of

— {1 (@ (0))), ¢ (¢ (1))

0 (x) = [EACAENIE

We calculate for ¢; = ¢; o ¢
0i(E) = (9rcr) " o ¢ = —VE + hicz,.
2.2.5 Proof of Theorem 2.2

The proof of Theorem 2.2 is an immediate consequence of Theorem 2.5 and the
following approximation argument

Lemma 2.13 Letr : hiz;rﬂ R/Z,R™) — (0, 00) be a lower semi-continuous function.
Then for every camma € hlz—:ﬂ R/Z,R") thereisa y € C;"; R/Z,R™"), N € V,(y)
and a diffeomorphism v € C**P(R/Z, R/Z) such that éamma o =y + N.

Proof of Lemma 2.13 Let & € h; P (R/Z, R") and let us set co = ¢ and ¢ 1= ¢ % &
where ¢, (x) = e~ ¢(x/¢) is a smooth smoothing kernel. Since h?—:ﬁ (R/Z,R™) is an
open subset of /2TA(R/Z, R") and (¢ — ¢,) € CO([0, 00), h*tF(R/Z, R™)), we get
ce € hi ¥ (R/Z,R") for ¢ small enough.

Since ¢, € CO([O, 00), 2P (R/Z, R™)) there is an open neighborhood U of the
set c(R/Z) and an gy > 0 such that the nearest neighborhood retract r, : U — R/Z

onto ¢, is defined on U simultaneously for all 0 < ¢ < gg. Note, that these retracts r¢
are smooth as the curves ¢, are smooth and

[0,e0) x U - R/Z

(&,x) > re(x)

belongs to C°([0, &), C'1P).

We set Yre(x) = re(c(x)). Now g = idr/z, ¥e is a C'*# diffeomorphism for
¢ > 0 small enough since the subset of diffeomorphism is open in C'*#. Hence, we
can set No(x) = ¢, (W{l (x)) — co(x) for g9 small enough. We will show that ¢ := ¢,,
N := N, and ¥ := . satisfy the statement of the lemma if ¢ is small enough.

From v (x) := r.(c(x)) we deduce that v, is in fact a Cc*th diffeomorphism, as
r¢ 1s smooth.

Since

Ne = ce oy —¢p € CO([0, 00), CTP(R/Z, R™))
and Ny = 0, we furthermore get

0
INeller 25 0.
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Since r is lower semi-continuous and r(cp) > 0, we hence get | Ng||o1 < r(ce) for
small . As N, € h?tP we deduce that N, € V,(c,) if ¢ > 0 is small enough. O

Proof Letcy € hfr (R/Z).By Lemma 2.13 there is a curve cp € Ct?f‘r’, an No € V, g(c)
and a diffeomorphism v € C# such that

coo Y =co+ Np.
Theorem 2.5 tells us that there is a solution ¢; = ¢g + Ny, of
@re)t = =B (er) + Mg,
The family of curves ¢; o ¥~ ! is a solution we were looking for.

If on the other hand ¢, is a solution as in the theorem for the initial dfita Co, then
for some time there is a N; and a smooth family of reparametrizations v such that
¢ o Yy = ¢o + N; and

0 (co + Np) = =% (co + Ni) + Megyn,

The uniqueness now follows from the uniqueness of the solution to the above equation
in Theorem 2.5. O

3 Long time existence

The aim of this section is to prove the following long time existence result.

Theorem 3.1 Let ¢cg € C®(R/Z,R"). Then there exists a unique solution ¢ €
C0([0, 00), C®(R/Z, R™)) N C®((0, 00), C*®(R/Z, R™)) to (1.4) with initial data
¢(0) = co. This solution subconverges, after suitable re-parameterizations and trans-

lations, to a smooth critical point of E* + LL.

Let me first sketch the strategy of the proof. Since we are looking at negative
gradient flows of E“ 4+ AL we have for a solution ¢(¢) of Eq. (1.4)

E*(c(1)) + AL(c(1)) < E*(c(0)) + AL(c(0))

forallz € [0, T'). So both, the energy and the length of the curve, is uniformly bounded
in time. As Abrams et al. [1] have shown that

E%(c) = E“(S") =my > 0
for all closed curves c¢ of unit length, we get from the scaling of the energy

EC{(C) — L2—aEa <L) 2 L2—ama
L(c)
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and thus

_1 _1
Lie) = ( Mo ) > (—’” )
E%(cy) E%(¢c/) +AL(ct)

ol (P S >0 3.1)
(E"‘(CO) + kL(Co))

uniformly in 7.
We will show that the energies E* are coercive in W%*z (cf. Theorem 3.2) in

Sect. 3.1. Together with the above inequalities this implies that the W "2 *2 norm of
the unit tangents of the curve is uniformly bounded.
To get higher order estimates, we calculate the evolution equations of the terms

&k = / 10k k|2 ds
R/Z

(cf. 3.3)in Sect. 3.2 and show that the resulting terms can be estimated using Gagliardo—
Nirenberg—Sobolev inequalities for fractional Sobolev spaces and Besov spaces.

In the Sect. 3.4 we put all these pieces together to show that the solution to the flow
exists for all time and subconverges after suitable translations and re-parameterizations
if necessary to a critical point.

3.1 Coercivity of the energy

Theorem 1.1 in [5] states that for curves parameterized by arc length, the energy E“

is finite if and only if the curve is injective and belongs to WQTH’Z(R/Z, R™).
One of the most important ingredients in the proof of the long time existence result
is the following quantitative version of the regularizing effects of Theorem 1.1 in [5]:

Theorem 3.2 (Coercivity of E%) Let ¢ € C'(R/IZ,R"), | > 0, be a curve
parametrized by arc length and o € [2, 3). Then there exists a constant C = C(«) <
oo depending only on o such that

Proof We have

!

2
E%(c) = / /( ! _ ! )dwdu
le(u +w) —c@)|*  |w|*

1
R/IZ L

1

w|® 1— \C(u+w);tf(u)|“
= / / — " ‘:l dwdu
le(u + w) — c(u)| [w]

1
R/IZ L

[N
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_ leutw)—c@)|*
[e(utw)— C( )=lw] @
! ! / / B 7 G dwdu
[w]*

R/IZ _
5 2 (1 _ lewtw)—cw)®
1—a*>1-a* for a€[0,1] (w2
> f dwdu
[w[®
R/IZ |
1-— d(u+nw), cdu+nw)drdr
//( fofo ( 1| )|a( »w))dr 2>dwdu
w

R/IZ _

!

2 1 el ’ 2
=1 1 +tiw) — '(u+ nw)|“dridrt
et 1 (/‘Ofo €'+ Tw) — ' + rw) Py 2>dwdu.
R/IZ

lwl|*

Using Fubini and successively substituting # by # + 7w and then w by (12 — 11)w,
we get

E%(c) =

[w]®

1 1
/ _ 2
f/('c (u +niw) =+ vw) )dtldtzdwdu
0 0

R/IZ _

N‘N\..N\N

|[tp =11l

11 >
/ _ 2
Z//(hz—nlal / / <|c @) |c|(:+w)| )dwdu)drldtz
w
00

R/lZ_Ifz—zfl\l

L

! H / o 2
f /('C W) —c+w) )dwdudrldrz
lw|®
a+3 / / 2
= <l> /('C W) — '+ w) )dwdu
2 [wl
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and finally
1
- [ (1¢ ) — ¢ + w)?
e e = / /( ] )M”
R/IZ L
1
P 1c ) — ¢+ w/2)?
<cC f f( a )dwdu
R/IZ L i
é 2
+C / /<|c/(u+w/2)—ac’(u+w)| )dwdu
R/IZ o]
I3
[ 1e'w) — ¢ + w)?
<C / f( m >dwdu
R/IZ L ]
< CE“(c).

3.2 Evolution equations of higher order energies

As for most of our estimates the precise algebraic form of the terms does not mat-
ter, we will use the following notation to describe the essential structure of the
terms.

For two Euclidean vectors v, w, the term v * w stands for a bilinear operator in v
and w into another Euclidean vector space. For a regular curve c, let 9y = % denote

the derivative with respect to arc length denoted by s and let T = d;¢ = ﬁ be the
unit tagent vector along c¢. For u, v € N, a regular curve ¢ € C®(R/Z, R") and
a function f : R/Z — RF we let P}'(f) be a linear combination of terms of the
form 3" f s --- % 8" f, j1 +--- + j, = w. Furthermore, given a second function
g : R/Z — R¥ the expression P} (g, f) denotes a linear combination of terms of the
form d{' g« 3 f 0 fx- %0l fo i+ +jh=n

Let ¢; be a smooth family of smooth closed curves moving only in normal direction,
i.e., V := 9;¢; is normal along ¢,. For the convenience of the reader let us derive some
basic evolution equations which in similar forms can be found in (cf. [12]. Using that
V is pointing in a normal direction we get

0, (1)) = <ﬁ 8x8,c> = (1,8, V) =0, (t, V) — (8,7, V)

— e V)|, (3.2)
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Hence,
Oy 0x9;  (Ic])
00 =0, | — ) = — b
tYs f(|c/|> |C/| |C/|2 X
= 050; + («, V) 05 (3.3)
and thus
0;T = 0;05¢ = 0s9;c + (k, V) dsc = o5V + (k, V) T.

Furthermore,

Ok = 0,0sT = 050, T + (K, V) 05T
= 82V +8,((k, V)T) + (k, V)k. (3.4)

Using these equations, we inductively deduce the following evolution equations of
arbitrary derivatives of the curvature.

Lemma 3.3 Let I C Rbeopenandc :R/IZ x I — R be a smooth family of curves
such that V := 0;c is normal along c, i.e. {(V (s, t),c (s, t)) = 0. Then

8 (8kic) = 8k+2v + g (PZ'C(V, K)‘L') + PE(V. k)

forall k € Ny.

Proof By (3.4) the statement is true for k = 0. If the statement was true for some k
then

3 (05 ey = 858, (%K) + (i, V)ok i
=0, (31°2V + 0, (PE (V. 07) + PV, 0)) + (i, V)i
=0, (02V + PE (V0T + PRV + PRV, ) + (e, V)ak T e

— 8§k+1)+2v + ax <P2{<+1(V, K)T) + P3k+1(V, K).

Hence, induction gives the assertion. O
An immediate corollary of Lemma 3.3 and (3.2) is the following.

Corollary 3.4 Let ¢ be a family of curves moving with normal speed V. Then

3 f |a§;c|2ds=2/<a§+zv, afx>ds+2/<P2’<(v,,<)r, o ic)yds

R/Z R/Z R/Z
+2f<P3k(v,x),a§x)ds— / 10511 (1e, V)ds.
R/Z R/Z
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Proof We have
) / 10k kc|2ds = o, / 105 kc1?| ¢ |dx
R/Z R/Z

- / Q@ (a@c, a,a§/<> ' + [0k 8, (| dx
R/Z

Together with Lemma 3.3 and (3.2) we get

o / 10k |2ds =2 f (952, E)f/c)ds+2/(33(P2k(V, )7), Oic)ds
R/Z R/Z

+2/(P3"(V, K), 0ic)ds —/|a‘§x|2<x, V)ds.

Partial integration for the second term on the left hand side yields the claim. O

3.3 Interpolation estimates

In this section we will prove several estimates that will be needed later in the proof of
the long time existence result. In a natural way the Besov spaces B;’p appear during
our calculations.

Lemma 3.5 (Gagliardo—Nirenberg—Sobolev type estimates for a typical term) For

ae[2,3)letj,..., w2 €N, j1,...,Jy =2, and s > %be such that there are
Pls .-+ Pvy2 € [1, 00] with

v42

1

IR

izt Pi
%fji—%fs—l—%fori:l,...,vandji—%§s+%f0ri=v+1,v+2.Let
0 = (2F ji —v§ —2)/s.

Then for all A < oo there is a C = C(A) such that

1

/ / (]‘[ 09 £ -|—al-w)|)

R/IZ 1 i=1
2 1 ,1 i ;.
5 V2109 Tiw) — 89 f (u + ow)ldTidT i
. |w|
i=v+1
0 v+2—0
SO ot M2,

holds for all f € C®°(R/IZ,R") if A~' <1 < A, 0; € R.
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Proof Using Holder’s inequality for the integration with respect to u, we get

1

f /2 (H " f (u +0,-w)|)

R/IZ L i=1
v+2 1 rl i ;.
a/i + Tyw) — i + npw)|dtidT
X(l_[ Jo Jo 187 f(u 1)| . [+ nw)ldt z)dwdu
w
i=v+1

1

v 113 V42 ji i
; N0 f G+ (= m)w) — 9 pi
§ (1—[ |3,1f|L,,i>/// [0, 197 £ <|wl‘ ow) =0 s
i=l 00

1
11
( |3”f|w>//
i=1 00

2
Substituting w by (71 — t2)w we can estimate this further by

v 1 1
§C<l_[ ||3j"f||w>//lf1—rzl"“]
' 0 0

i=1

ol—

”“ 189 £ (- + (11 — )w) — 3 fIILp,

lea d‘L’]d‘Ez.

~ \m\\

i=v+1

2

dw | dridn

“” / 189 £ (- 4 w) — 37 £113,,

o
i=v+1 , |w|

<C<]"[ ||3”f||w> 1871 £ . 189+ £l e

i=1

Scaling the Gagliardo—Nirenberg—Sobolev estimates (Theorem 8.1), the last term can
be estimated from above by

v+2

C]_[Hfll eI al
i=1

1 o . 1 1

i 3 ( ~_T)_,
where 6; :=wfori=1, ,vand6; +forz—v—i—lv—i—Z
Thus the assertion of the theorem follows. O

We will now use the lemma above to estimate a typical term that repeatedly will
appear in the later calculations.

Lemma 3.6 (Estimates for terms containing the energy integrand) For all A < oo
there is a C(A) < oo such that the following holds:
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Let A= <1 < A and c € C®(R/1Z,R") be a curve parameterized by arc length
satisfying the bi-Lipschitz estimate

lw| < Alc(u +w) —c(u)|, YueR/IZ, wel-1/2,1/2].

Then for B > 0 the functions

L

i 8 8
gp :R/IZ — R, gp(s) ::[( wl [l >dw

le(s +w) —c(s)[*+F  w[ath

1

(S}

are in C*(R/1Z,R) for B > 0. If furthermore u < s + 5 and k + 1 < s, we have

L

k wi” jw]? :
/ . /<|C(S+w)—c(s)|“+ﬁ_|w|a+ﬁ)dw P} (c)(s)|ds

DI~

k
6, m—+v+2—06,
<CY el lel™ G (3.5)
w2 "TN(R/IZ,R™) w2 “(R/IZ,R")

m=1

where Oy := (k+(m+2)+u+v—(m+v)5—2)/s < (k+p)/s. If (k+un)/s <2,
this implies that for every ¢ > 0 there is a constant C (e, ||C||W%’2(R/ZZ,R")) < 00
such that

1

k |wl” jwl :
/ g /(|C(S+w)—c(s)|01+ﬂ_|w|a+ﬂ>dw Pl(c")(s)|ds

1
R/IZ -1

atl s o
=< 8||(_A) 4 +ZC”L2(R/IZ,]R”) + C(S, ”C”W%

) (3.6)

2(R/IZ,R")
Proof Note that d; = 9, since c is parametrized by arc-length. For % > ¢ > 0and
Le=[-5 51\ [—e e] we set
gy (s) = / hg (s, wydw
wel ¢

and

lw|? lw|?

h . = —
W) = T — e TwetP
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foralls € R/IZ and w € [—1/2,1/2], w # 0. Then due to the bi-Lipschitz estimate
for ¢ we have g(s) C*®(R/IZ,R") and

kg (s) = / F*ng(s, wydw.

wel] ¢
1— a+p
With Gg(v) := Ivl"‘*ﬂ 1|_U‘|v|2 we get
a2
|wl|? B |wl|? _G c(s+w)—cls)\ 1-— —‘C(lejz 2(s)]
le(s + w) — c()@tB  JwlerE ~ P w |w[

1 1
_ / A 2
zlGﬁ (C(S+w) C(S)) //IC(ernw) (s + nw)| dridos.
0 0

2 lwl|*

Note that G g is a smooth function on R" \ {0}. Since fors € R/IZ,w € [-]/2,1/2]—
{0} wehave 1 > |W| > A~ for every k € Ny there exists a constant C < 0o
such that

<C VseR/IZ,wel[-1/2,1/2]—-{0}. (3.7)

‘(okcm(—c“ ey

Using the product rule together with Fda di Bruno’s formula for higher derivatives of
composite functions, we conclude that

|w|” |w|? )

k — ok -
O5hp (s, w) = 9 <|c(s +w) —c@HF qwlets

is a linear combination of terms T,

.....

ko OF the form

.....

. <c(s +w) — c(s)) (ajf' s +w) — o e(s) A (s + w) — 3,5"‘c(s)>
D" Gg

w w w
. <Bf”’+‘+lc(s +w) — 1+'+lc(s + nw), Bf’”“ﬂc(s +Tiw) — af'”ﬁlc(s + rzw)>
X// d‘[ld‘[z
[w]®
00
3.8)
where m, k1, ... ky42 € No,m <k, ky,...k, > 1,and
m+2

Zki = k.
i=1
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Using (3.7) and the fundamental theorem of calculus, the absolute value of such terms
is bounded by

1
[ a{."Hc(s + ojw)do;
0

m
[l

i=1

Ll <Bf’”“+lc(s +w) — Bsk"‘”“c(s + nw), Bf’””“c(s +w) — ask"’”Hc(s + rzw)>
X // dtidt
[wl®
00
B cucnzkt?
|w‘oc—2
Hence,
i _ Cleligh:
|0 hp(s, w)| < o
From this we deduce that for &1 > ¢ > 0 we have
k (¢ k(& k
R SICTE NI

wel[—er,e1]\[—e2,62]

€1

1

k+2 +2 3—

=< C||C||Ck+2/ |w|a_2dw = C”C”’an+281 N
&

Aso <3, g/(;) converges smoothly to a smooth representative of gg and

1 !

. 2 . 2 . |w|/3 |w|/3
0588(s) = | O hg(s, wydw = [ 0 dw

lc(s + w) — c(s)[*FF  Jw|e+h

N~
N~

Using that 8Afh (s, w) is a linear combination of terms like (3.8) together with Lemma
3.5, we obtain

k
Om 20
/ |(42p) PLI®)|ds <€ 3 el el ™41
—1 w2 TR/ IZRY) W 2 “(R/IZ,RM)
R/IZ m=

where 6, := (k+(m+2)+pu+v—(m+v)5—-2)/s < (k+m+pu+v—m—v)/s <
(k 4+ w)/s. This proves inequality (3.5) from which one obtains (3.6) using Cauchy-
Schwartz. O

3.4 Proof of long time existence
First we will derive the following estimate from the evolution equation of the

higher order energies in Corollary 3.4 using Lemma 3.6. For a periodic function
f € C*®°([R/IZ,R"™) we use the shorthand
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The gradient flow of O’Hara’s knot energies

D'f=(=A)f
for the fractional Laplacian.

Lemma 3.7 For every k € N and & > 0 there are constants C; < 00 such that

3, / 10k, (8)12ds + cq / |(DS)’<+°‘T“K|dsgs/|(DS)’<+°‘T“K|2ds+c8.
R/Z R/Z R/Z

Proof Corollary 3.4 tells us that

) f |a§x|2ds=2/<a§+2v, afx>ds+2/(P2’<(v,K)r, o i)ds
R/Z R/Z R/Z

+2/<P3’<(v,/<),a§x>ds— / 10k k|2 ke, V)ds (3.9)
R/Z R/Z

where V = —0% + ik = —Pj‘i]“c + k.

Let us now fix the time ¢ and let us re-parameterize c; for this fixed time by arc
length to estimate the right-hand side of this equation and let / denote the length of
the curve at time .

We decompose®

V¥ = a Q% — 2R c + 2aR5c (3.10)
where

!

o . c(s +w) — c(s) — wc'(s) o dw
Q0 = pa. | {2 e ‘ (S))}|w|a’
y
1
2 | 1
(Rl C)(S) = [ Cc (S)<|C(S+U)) —C(S)|a - |w|ot>dw7
.
2 1 1
(R§e)(s) = / (c6s +w) = c(s) —we')) <|c(s +w) = e()2 |w|“+2)dw'
1
-2

2 Since the curve now is parameterized by arc-length, the decompostion we use here is much simpler than
the one given in (2.2) - though still we get it in the same spirit.
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Using the fundamental theorem of calculus, we rewrite (R5¢)(s) as

1 5

o Vi w2 w2
(Ryc)(s) := /(1 —1) [ (s + le)(|c(s ) — e — |w|a+2>dwdrl.
0 &
and set
R%c := —2R{c+2aRjc.
Hence,

V = —PF(@Q% + R%) + k. (3.11)

Now we first estimate all the terms appearing in (3.9) after plugging into it the
decomposition (3.11) except for the term

k+2 p L k
(0572 P 0%, 3 k)ds
R/IZ
using Holder’s inequality together with the standard Gagliardo—Nirenberg—Sobolev

inequality or the version in Lemma 3.5. We get that for all ¢ > 0O there is a constant
C. < oo such that all these terms can be estimated from above by

k42+2EL 2
|| DT ce||7, + G

We will only give the details for some exemplary terms as all the other terms can
be estimated following the same line of arguments. We start by estimating the terms
containing the remainder R“. For the first term in Eq. (3.9) we calculate

‘/<a§+2(PC+R“(c)),afx>ds =‘ / <a§+1(PjR“(c)),a§+1K>ds
R/IZ R/IZ

s' / <as"+‘(R°‘(c)),a§+‘K>ds

R/IZ

+ ‘ / (85“ ((R“(c), c’) ), Bf+lfc>ds

R/IZ

Using the definition of R{ and the Leibniz rule together with Lemma 3.6, we
obtain
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The gradient flow of O’Hara’s knot energies

‘ /(a§+1(R‘f(c)),a§+1K>ds
R/IZ

1

k+1

. 1 1 .
<C 3! — dw| |95 9k
= Z/ 5/(|c(s+w)—c<s>|“ |w|a> w I ellog s

=lriz |~

=

B—=

k+1

i ! — ! 2k+2—i o 11
SCZ / /as<|c(s+w)—c(s)|“ |w|a>dw 1P (cM)lds

i=1 .
R/IZ |

1

k+1

i ! — 1 2k+4—i,
SCZ / /as <|C(s—|—w)—c(s)|“ |w|a>dw 1Py (c)lds

=gz |

09—

atl
<e| DT |3, + Ce

since (i +2k+4—1i)/(k+2) = (2k+4)/(k+2) = 2. Along the same lines we get

/ ‘(3}?“(1?5(@), 3 i) |ds

R/IZ

atl
<e| DT |3, + Ce

Furthermore, we can estimate

<8sk+1 (<R“(c), c’)c’) , af'HK)ds

R/IZ
<c Y <<<a"R°’(c), 8j+lc>8m+lc) , 3Sk+ll(>ds
i+jtm=k+1'R717
k+1
<CY / 3 RY(c) * PFFTTI(ds
i=0"r/17,

atl
<e| D" 2, + ¢,

Using the same line of arguments one sees that also the terms

‘/(P2k(PCJ,‘R“c,K)r,3sk+1K)ds, ‘/(Pf(Pj(R“c,K),a;‘K))ds
R/I1Z R/IZ
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and

/ 105k |2 (e, P7R*c)ds
R/IZ

can be estimated by
k4242t o
e DM |7, + Ce

For the terms containing A« we use Holder’s inequality and standard Gagliardo—
Nirenberg—Sobolev estimates together with Cauchy’s inequality as above, to estimate
these terms by

atl
e DT Il + C o).

To estimate the terms containing Q%, we will use the fact that Q% = ¢, D*t! + R
where R is a bounded operator from W32 to W*? [24, Proposition 2.3]. Forky, k> €
No with k1 4+ k» = k we estimate using Holder’s inequality and the Gagliardo—
Nirenberg—Sobolev inequality

‘ / (@51 0% % 3F210)T, 85 iyds| < Q¥ b el 2 11952k a 195 i 0

R/IZ

k k k+1
< ClI35 ellwarra 1872k | |05 ]| o

atl
<e| D" |, + Ce)

and thus

atl
<e| DM cl3, + Cle).

‘ /(sz(Q“c,K)t, 3 iyds

R/IZ

Similarly we obtain, using the Leibniz rule,

‘ / (351 P 0% * 8%10)T, 85 w)ds | < g||z)’<+2+°'7“c||§2 + Cs.

R/IZ

Hence,

a+l1
‘ f (PE(PE 0%, k)7, 05 i)ds| < el DFF2H )2, 4 ..

R/IZ

Similarly, one gets
/(Pf(Panc,K),afK)ds +‘ / 105k (e, P Q%c)ds
R/IZ R/IZ

atl
< | D" |3, + Ce.
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Let us finally turn to the term

/ (@52(PF %), dkic)ds = / (052(Q%¢), 9% k)dss

R/IZ R)IZ
- /<3§+2((QO‘C,C’)C’),8£‘K)ds
R/1Z
= /(Qa(ak/(),afl(>ds— /<8§+2((Qacsc/)cl),afl()ds
R/1Z R/IZ
= Ca / (D (0 k), 95 xc)ds + / (R(0%k), 8%k )ds
R/I1Z R/IZ
- [ @agte e, s
R/IZ

= ¢y / (DT (9*x), DT 0kk)ds — /(R(ak—lx),ajf“,c)ds
R/IZ R/IZ

= [ @agte e stas
R/IZ

Using Taylor’s approximation we see that

L
2

0% f (%) =p.v./ (2f(x+w) — S0~ wfi) —f”(x)> dw

w2 |w|®

I~

lw|*

l

2l " Y
:p‘v./ o200 =) (f'x+tw)— f (x))drdw

!

(S}

and hence
/(Q“f(x),g(x»dx
R/IZ
1
Z ol " Y
= p. Jo2a=)(f <x+|r|z§) @), gGndr
w
R/ZZ,%

dwdx

% 1 " "
__ / /fo(l—f)((f (x+1w) — [ (x), gx + Tw) — g(x))) dr

[w|*
R/IZ |
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and substituting first X = x + tw and then W = —w shows

1
[ = + Tw) — (), g(x))dT

lwl*

dwdx

1
R/IZ -}

wdx

% 1 e e ~
B / /fo(l—f)(f x —tw) — f(x), glx —Tw))dt

[w]®
R/IZ _L

1
Z ol "o =N ez = ~
_ /‘ /fo(l—r)(f (x—i—tw)~ f (x),g(x—i—rw))drdlbdi.

[w]*

1
R/IZ ]

The Leibniz rule now tells us that

‘ f (0F2((Q%, )¢y, Bbi)ds

R/IZ

<Cc ) /<(<Q"‘(8"c),a-"+1c>a’"+1c),a§/<>ds

i+j+m=k+2 g7

Setting g, ; = 3/ 1c(d"* ¢, 9%k) and using the formula above for Q% we get

!

2
/ (@ F2(Q%. &) dfkyds| < © ’ f /
R/IZ t+j+m k+2 R/1Z 7%

Jia=o (<ai+2c(x +rw) — 9 2e(x), g, (x + Tw) — g,,,,j(x») dt
X

lw|*

dwds

i+2 .
=C 0 1 e lgml
i+j+m=k+2

a—1
w2z 2

Using the fractional Leibniz rule Lemma 8.2 and then the interpolation estimates, we
can estimate this again by
atl
e| D" T )2 4+ Cle).
As furthermore

/ (R '0), 95 kyds < 1105 kel 2 IIROE i) 2 < Cllaf ki3,
R/1Z

atl
< | DM ¢ 2 + Ce
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we finally get

atl atl
/ (02 (P7 Q%) d5k)ds <—cq / Dy ke Pds+e / 1Dy ks + Ce
R/Z R/IZ R/IZ
Summing up these estimates proves Lemma 3.7. O

A standard argument now concludes the proof of Theorem 3.1:

Proof Theorem 3.1 Let us assume that [0, 7') is the maximal interval of existence and
T < oo. If we apply Lemma 3.7 with & = % we get

d C atl
&+ TIDEE R e, < G
Together with the Poincare inequality

atl
&8 < DM 2,

this yields
d k k
—E + & < Cy (3.12)
dt
for a constant ¢ > 0. Hence,
195 ke, 1172 < C(k) (3.13)

for a constant C (k) < oo depending on the inital data but not on 7'. Furthermore,
¥lc'l = —(V, k)]
which can be rewritten as

dl N=—(V
7 og(lel) = —(V, k).

Since (V, k) is uniformly bounded there is a constant C > 0 depending on 7" such
that

cl'<id|=cC.

It was shown in [12, end of p.7], that this estimate together with the uniform in time
bounds on all derivatives with respect to arc-length yield

okl < Cx

for constants Cy that are independent of ¢.
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Thus, there is a subsequence #; — T such that ¢;; converges smoothly to a ¢(7T')
and we can use the short time existence result Theorem 2.1 to extend the flow beyond
T.

Let us finally prove the subconvergence to a critical point up to translations and
reparametrizations. Let the re-parametrizsations v, be such that the curves

¢ R/Z — R"
s = ¢ (Y (5)) — ¢ (0)
are parametrized proportional by arc-length. As the uniform in time estimates (3.13)

hold, there is a subsequence #; — oo such that the curves ¢;, converge smoothly to a
curve coo : R/Z — R™. Since

o0
/ |8,5,|2ds)dt < E%(co) + AL(co) < oo,
0 R/Z
we get
ti+1 ti+1
f(/ |Q3a(5,)+kkgt|2ds>dt= / (f |a,5,|2ds)dtﬂ>o.
ti R/Z t; R/Z

Since our uniform estimates further imply

d
- / 0% (&) + Az [2ds| < C
R/Z

for a constant C < oo independent of time, we deduce

/ 1% (&) + Mz, |2ds —=> 0
R/Z

which shows that ¢ is a critical point of E* + AL. O

4 Asymptotics of the flows
4.1 Lojasiewicz—Simon gradient estimate

In order to prove convergence to critical points of the complete flow without taking
care of translations, we will prove a Lojawiewicz—Simon gradient estimate.
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Theorem 4.1 (Lojasiewicz—Simon gradient Estimate) Let cy be a smooth critical
point of E* 4+ AL for some o € (2,3) and A > 0. Then there are constants 6 € [0, 1/2],
o >0, C < oo, such that every c € Hi“r"'l(R/Z, R™) with ||c —cp || get+1 < o satisfies

1/2
|E(c) — E(eca)]'™? < C( / |(Vc)<x>|2|c’<x>|dx> : 4.1)

R/Z

where Ve = —0%c + Ak,.

Proof After scaling the curve we can assume that ¢y, is parameterized by arc length
and that the length of the curve ¢y is 1.

Let H*T\(R/Z, R")ﬁ-M denote the space of all vector fields N € H*t(R/Z, R")
which are orthogonal to ¢/,

We will first prove that there are constants 6 € [0, 1/2],6 > 0, and C < oo, such
that

1/2
|E(cm+N)—ECem|'™ <C f |V (em + N)|Pdx (4.2)
/7

forall N € H**'(R/Z,R"). with |[N| fa+1 < 6. That is, we show that the func-
tional

E:H"'"R/Z,R). — R
N+ E%(cy + N) +AL(cy + N)

satisfies a L.ojasiewicz—Simon gradient estimate. By [10, Corollary 3.11] it suffices to
show that E’ is analytic with values in L? and that E” is a Fredholm operator from
H*TY(R/Z,R")L to L*(R/Z, R").

It is easy to see that k defines an analytic operator on a neighborhood of 0 from
(H*+! )fM to L? using the fact that H**! is embedded in C2. That the same is true for
0% can be seen from Theorem 2.3, using the fact that H*T!(R/Z, R") is embedded
in C*P for every 0 < 8 < 1/2 and C# is embedded in L.

We calculate the second variation of E at 0 and try to write it as a compact pertur-
bation of a Fredholm operator of index 0. Using |c},| = 1 and the fact that V is the
gradient of E“ 4+ AL, we get

E"(0)(h1, h2)
o Jrgn Ve ) ha) ey o hldw = fo g (V ean), B2) Iy ldw
t—0 t
= (5},1 Veu, h2>L2 + (L1hy, h2) g2 “4.3)

where L1hy = D%y - (c;vl, h/l) is a differential operator of order 1 in /7.
We know from Theorem 2.3 that
a

— o [
Ve =0% + k. = o

P (Q%) + F*(c)
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where F* € C*(C**tP, CP) for all B > 0. Thus

1L o L
PGV () = 1o (PH(QR) + La() (4.4)
where
Loty = =28 Dl W)PEQ%eu) + PE (50F*(can) + (@ PHY(Qeur)
2T |c/|e+3 Cums o (Q%cm T\ SnF¥ (em) +a(Bn Pr)(Q%cm
e CY(C*tP, cPy vB > 0.
Now letv;,i = 1,2, ..., (n — 1), be smooth functions such that vi(u), ..., v,—1(u)

is an orthonormal basis of the normal space on cp at u. Then each ¢ €
H*M(R/Z,R")} can be written in the form

n—1
¢ = divi,
i=1

where ¢; := (¢, v;) € H*T'(R/Z). We calculate
PE(0%9)

n—1 n—1
=P (Q" (Zm)) =Y (Q%¢1) Py (vi) + PFH(Q%($ivi) — (Q“di)vi)
i=1 i=1
n—1
= (0%¢i) Prvi+ L3(@) 4.5)

1

i

where L3 € C®(C*tA, C ’3) by the fractional Leibniz rule Lemma 7.1.

From [24, Proposition 2.3] we know that there is a constant ‘® > 0 such that that
Ls = Q% —a%(—A)@*tD/2 is a bounded linear operator from H? to L2. Combining
(4.3), (4.4), and (4.5), we get

n—1
E"(©O) . h2) = <Z a ((=A") (b vi) ) vi + L, h2> (46)
i=1
where
L:=Li+L+ L3+ Ly

is a bounded operator from C**¢ to L? for all & > 0.
Since the linear mapping

(hy,v1)
h] — .
(h1, va—1)
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defines an homeomorphism between H*(R/Z,R"). and H*(R/Z,R""") for all

s > 0and (—A)@*tD/2 is a Fredholm operator of index zero from H**!(R/Z, R"~1)
to L2(R/Z, R*™1), the operator

A HY'R/Z,RYY, — LA(R/Z,RM,

.S (0% @) v
i=1

is Fredholm of order 0. Hence, 3 /—} a@ (=AY (hy, vi)vi + Lhy as a compact
perturbation of A is a Fredholm operator as well. This implies that E” is a Fredholm
operator from H**(R/Z, R")ﬁ-M to L>(R/Z, R")ﬁ-M of index 0. The proof of (4.2) is
complete.

To prove the full estimate of Theorem 4.1, we use Lemma 9.1 to write curves close
to ¢y as normal graphs over cjys. More precisely, we can choose ¢ € (0,6) such
that for all ¢ € H*H! (R/Z) with ||c — cpm||ge+1 < o there is a re-parameterization
Vv € H**Y(R/Z,R/7Z) and an N, € H**!(R/Z, R")* such that

coYr =cy + N
and
”NC”H“JFI f C . ”C — CM||Ha+l.

Making o > 0 smaller if necessary, using that ¢y is parameterized by arc length and
that H*+! is embedded continuously in C ! we furthermore can achieve that

/ / / /
|C|>|CM|_|CM_C|2§-

Thus,
|E(c) — E(ca)'™ = |E(cm + Ne) — E(ep)|'™?
1/2

<c / V(ew + No) () Pdx
/7
12

BN f IV (ear + No) Pl ()ldx

/7

O
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4.2 The flow above critical points

In this section we apply the Lojasiewich—Simon gradient estimate to reprove long-
time existence for solutions that approach a critical point from above as stated in
Theorem 1.2. Using the techniques from this section, we will show that even the
complete flow converges to a critical point without applying any translations.

Theorem 1.2 will follow easily from the following long time existence result for
normal graphs over a critical point of the energies £ = E* + AL:

Theorem 4.2 (Long time existence and asymptotics for normal graphs) Let ¢y €
C®([R/Z,R") be a critical point of E and letk € N, § > 0 and B > «. Then there is

an open neighborhood U’ of 0 in (C’S)L such that the following holds:
Suppose that N € C([0, T), hf (R/Z, RME ) N C'((0, T), C®(R/Z, RN, ) isa
maximal solution of the equation

O (cm + Ni) = —=0%(cp + Np) + rie

with
Ny e U’

and
E(c;) = E(cm)

whenever || Nt cx < 6.
Then T = oo and N; converges smoothly to an Noo € C°(R/Z, R”)L%M satisfying

E(cpy + Noo) = E(cm)-

Furthermore ¢y + Noo is a critical point of the energy.

Proof Let k = max{4, k, [B + 11}, where [B + 1] denotes the smallest integer larger
or equal to B + 1. Then of course we still have

E(c) = E(cm)

under the stronger condition || V|| ci = S.

We first use Theorem 4.1 to getan gy > 0, a6 € (0, %), and a constant C < o0
such that

1/2

|E(cy+N)—E(Cw)|'? <C f IV (cp + N)|Pdx 4.7)
/7,

forall N € CK(R/Z, R with | N|| . < 0.
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Making g9 > 0 smaller if necessary, we can furthermore achieve that | N| o1 < %
forall N € H*M'(R/Z,R"), with | N|| ye+1 < 8 and hence

1
1 1L
1Py = PLwll <5 “8)
and |
|C§v1 +N'| > 3 inf |c§w| 4.9)
on R/Z.

It is now crucial to use the smoothing properties of our short time existence result
Theorem 2.5. This theorem tells us that there is a radius » > 0 and a time 7 > 0 such
that the solution N; = Ny, ; to

3 (e + Nio) = H(ey + Ni) 4 Aoy +n,

with initial data Ng € U = {N € h# (R/Z, R")#M 2 |IN|lps < r}existsfort € [0, T).
Furthermore, these solutions exist as long as they stay inside of U as one can then
always continue the solution.
Since the mapping
(No,t) = Nyt (4.10)

belongs to C*°(U x (0, T), C*°(R/Z)) and hence is especially continuous and that
No.; = 0, by making r smaller if necessary we can guarantue that

[Ntll i < €0 (4.11)

for all r € [T /4, T /2] and all initial data Ny € U.

Lete € (0, min{r, eo}) to be chosen later. Using again that the mapping in Eq. (4.10)
is continuous together with Ny ; = 0 one sees that there is a § € (0, r) such that for
Ny € U with || Nol|,s < 6 we have

INilcs <& YtelT/4,T/2]. (4.12)

Now let N € C([0, Tnax). h* R/Z,RME ) N C®((0, Tax), CXR/Z,RME )
be a maximal solution of the equation

3 (e + Ny) = B (epmr + Nyp) + Mceyy+n,

with [|[No|l,s < 8. Weset ¢, = cyr + N;.
We know from the considerations above that T,,,, > T,

IINg lcs <, (4.13)
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and the solution exists at least as long as || N ||cs < r. If the solution does not exist
7
for all time, there hence is a ty > % such that

T
INillcs <7Vt €l 10).

but
INyllcs =7

which leads to a contradiction for ¢ > 0 small enough.

We will now show that
Nl cp < Cef°

l

— k=B
where o = ol
Applying (4.11) for all times ¢ € [%, to] we get

T
INilgs < e, Vi €510

and hence N; satisfies a L.ojasiewich—Simon gradient estimate (4.7) and (4.8) and (4.9)

forall t € [Z, t].

‘We calculate
(8;-¢,, V(E))I¢)|dx

d E(c;) =
di V=
R/Z

=— | 155 PIEldx
R/Z

:—/|V5t|2|5;|dx
R/Z

and hence

d
—— (E@) - E(em)’ = =0 (E@) — E(ey)’™! —E@)
1/2

) P
2= / E AR
/7.

1/2

>c /|a,i5,|2dx
/7

@ Springer



The gradient flow of O’Hara’s knot energies

for a constant ¢ > 0. Integrating the above inequality over (%, t) yields

1/2
: /

[| [ oeecras| ar=c ((E(Eg» ~ Etew) — (EG) - E(cM)>9)
o

0

= C(E@p) —En) -

By (4.8) we have
o1
19cNi = [Pz dhNil < [Pz dyNil +1(Par = P 0Nyl < 107781 + 510, Ny .
Thus [9;¢;| = |0; N;| < 2|8IJ-E, |. Plugging this and (4.9) into the above inequality, we

deduce

) 1/2

[| [ ecrax|  <c(B@p - Een)
/Z

[%
T

2

Hence,

e — emlli2@/zax) = N€T = Emll2@yz.ax) + 167 = Cill2@/z.ax)

D=

2
t
= ”5% - CM||L2(R/Z,(1X) + / /arfdr dx
R/1Z |T
1
t 2
<17 — eml@zan + / / ovéds | dr
T \R/Z

2

< Clléz —cmligy.
Using the interpolation inequality

1—
I les < IS NN 2
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where o = ,; (cf Lemma 8.3), we get for ¢ € [2 , 1ol
+3
e — emlleswyz,rm
~ ~ Oo
= C”Ct M ”Ck(R/Z R") ” CM”LZ(R/Z dx) = C”C% —CMm ”Cﬁ
4.12)
< ce%. (4.14)

So if ¢ > 0 is small enough we have

,
N(t —
INDles < 7

for all r € [T, ty] which contradicts our choice of fy. Hence, we have shown that the
flow exists for all time and satisfies

,
N(t —
INOles < 7

forallt > T.
From Theorem 2.5 we get Sup,. Icillct < oo forall / € N and hence there is a

subsequence #; — oo such that

Cti — Cxo
smoothly.
Since
o0 o0
/(/ EX dx> C/( / |8tct|2ds)dt§CE“(co)+CXL(c0) < 00,
0 R/Z 0 R/IZ
we get
ti+1 ti+1
/(/ |m“(c,)+xxc,|2dx>dt= / (/ |a,c,|2dx)dtﬂ>o.
i  R/Z i R/Z

Since our uniform estimates further imply

d

o / |5 (ct)+AKCt| dx| <C

R/Z
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The gradient flow of O’Hara’s knot energies

for a constant C < oo independent of time, we deduce

f D% (c1) + Ake, [2dx =50
R/Z

which shows that ¢, is a critical point of E* + AL.
Using the L.ojasiewicz—Simon gradient inequality again we get

1/2

(E(coo) — E(em))' ™ = C /|Vcoo|2|c;o|dx =0
/7

and hence E(cx) = E(cy).
To get convergence of the complete flow, we repeat the estimates that led to (4.14)
with ¢ in place of ¢y to get

. . 0
icr — coollcpryzrry < Clicy — Coo”C(;

forall r > ;. So the complete flow converges in C# and hence by interpolation in C>
10 Co O

Proof of Theorem 1.2 DuetoLemma9.1 forallc € C#(R/Z, R") with ||c—cy lcg <
¢ there is a diffeomorphism ¢, and a vector field N. € C B (R/Z, R™) normal to cpy
such that

co¢pe. =cm + N (4.15)

and
[Nellep < Cllc — emllice (4.16)

if ¢ > 0 is small enough.
For ¢ € C*** with
lc —cmllcora < €

let (Ny) be the maximal solution of

1€[0,T)

d-(cm + Np) = H%(cpm + Ni) + Aoy 4N,
No = N,.

Then T < T and for all ¢t € [0, f") there are diffeomorphisms ¢; such that ¢; =
(e + Ny)(¢;). Hence N satisﬁ~es all the assumptions of Theorem 4.2 if ¢ is small
enough and thus oo = 7. From 7' < T we deduce T = oo. O
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4.3 Completion of the Proof of Theorem 1.1

It is only left to show that we get convergence of the flow without applying translations
from the smooth subconvergence of the re-parameterized and translated curves we get
from Sect. 3.4.

Let ¢; be the re-parameterizations of ¢; and let f; — oo and p; € R” be such that the
curves ¢(t;) — p; converge smoothly to a curve ¢, parameterized by arc length. Due to
the smooth convergence, the data ¢;, — p; satisfies all the assumptions of Theorem 1.2
for i large enough and c); = c. Hence, the statement follows directly from the
conclusions of Theorem 1.2.
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5 Appendix: Analytic functions on Banach spaces

We briefly prove some lemmata about analytic functions on Banach spaces. A thorough
discussion of this subject can be found in [18, Chapter 2, Section 3].

Definition 5.1 (Analytic operator) Let (X, || - [|x), (¥, || - [ly) be real Banach spaces.
A function f € C*°(A,Y), A C X open, is called real analytic if for every a € A
there is a open neighborhood U of a in X and a constant C < oo such that

|ID" f(x)| < C™m! VmeN, x € U.

In this context || - || denotes the operator norm. The next lemmata show how to construct
analytic functions:

Lemma5.2 Let g : U — R! be a real analytic function, U C R" be an open
subset, and let V.C CH*(R/Z,R") (k € Ng, a € (0, 1)) be an open subset such that
imf CUforall f € V.Then

T:V — CHR/Z, R

X —>gox

defines a real analytic function.

Proof Let fp € V. Since im fy is a compact subset of the open set U thereisane > 0
such that K, := Uyeim 5B CU.

Since g is real analytic and K, C U is compact, there is a constant C < 0o such
that

ID"gIl < C"m!, VmeN, yeK,.
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As

D"T(y)(hi,....hw) = D"g(y)(h1, ... hp)

(can easily be deduced from the Taylor expansion of g) and since C*%(R/Z) is a
Banach algebra, we get

ID"T ()| < (k+ D" m 4+ k 4+ 1)! < C"m!

forall f € B:(fo) ={fo+y e C%: ||ylcke <&} where

~ ((k+1)cm+k+1(m+k+1)!)”’”
C := sup .
mENQ m'
O
Lemma 5.3 Let (X, || - ||lx) and (Y, | - |ly) be Banach spaces and assume that T; €

C®(X,Y) fort € I is such that the functions t — T; are measurable and for all
a € X there is a neighborhood U of a in X such that

/ (SUP IID’”Tf(y)II> dt < C"m!. (5.1)

yeU

Then the mapping T : X — Y defined by
Tx = / T:xdt
I

is real analytic.

Proof We want to show that

D" Tx(hy, ..., hy) =/D’”T,x(h1,...,hm)dt.
I

from which we get that T € C®(X, Y) using the estimates (5.1). In fact this follows
from well-known facts about differentiation of parameter dependent integrals. O

Remark 5.4 Inthe casethat Y = CX%(R/Z, R") we get from the fact that foru € R/Z
the evalution mapping

F:Y >R
y = y(u)

is a bounded linear operator form Y to R". Hence, the interchangability of the Bochner
integral with linear operators (cf. for example [28, p. 134, Corollary 2]) tells us that
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(Tx)(u) = F(Tx) = / F(T,)xdt = / (T)x(ydt,

1 I

i.e., the value of function 7'x given by the Bochner integral at the point u is equal to
the Lebesque integral of the functions 7;(«) evaluated at the point u.

6 Estimates for a generalization of the multilinear Hilbert transform
Lemma 6.1 Letax € (0,1). For 1 —a > > 0,m € N, and t; € (0, 1) the singular

integral

T(ct,...,cm)(m) := p.v. i (U + tiw)dw

=

defines a bounded multilinear operator from (C*P(R/Z, R))"™ to CP(R/Z, R).
Proof Foru,v e R/Z and a € (0, %) we get

IT(cr1,....cm)@) = T(cr,....cm))|

=< / lei‘“ Hc,(u—l—t,w) Hc,(v—i—t,w) dw
1/2zwl|za i=1
1 m m
+ f |w|—°‘+1 l_[ci(u—i—t,-w) —Hci(u) dw
a>wl i=l i=I
+ / o l_[cl(v+t,w) nc,(v) dw.
a=|w|
Since |t;] < 1, we obtain
m m m
l—[ ci(u+tiw) — Hci (u)| =m H llci ||c0t+ﬂ(]yg/z,]1§n)|w|a+lS
i=l i=1 i=l

and hence, using the Holder-continuity of the c;,

T (..., em)W) —T(c, ..., em) (V)|

m

1 1
<m l_[ ||Cl'HCd+ﬁ(R/ZyRﬂ) / |w|1+a Iu —_ vl“‘HS dw + 2 / de

i=1
%z\w\za lw|<a

m

2 4
<m l_[ ||CiHC"+ﬂ(R/Z.R") <&a o |lu — v|0¢+/3 + Eaﬁ) .

i=l1
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. 1
Choosing a = |u — v| for [u — v| < 5 we get

T (1. .oem)@) = T(cr,....cm)(W)|

m
< C[Jlleillcors gz mm lu — vIP.
i=1

m}

Lemma 6.2 For arbitrary 8 > 0, « € (0,1), m € N, and t; € (0, 1) the singular
integral

T(c1,...cpm)(u) = p.v./

1

lw|®

m
1_[ ci(u+ tiw)dw
i=1

Bl—

defines a bounded multilinear operator from (h*+P(R/Z, R))"™ to h? (R/Z, R).

Proof First, let us note that it is enough to prove the statement for 8 = 8 +n, n € N,
1 —a > B > 0. One then uses real interpolation to prove the full statement. For n = 0
the claim is the content of Lemma 6.1. So let us assume that the statement holds for
B = B—i—n asabove. Let (75, ) (x) := f(x+h).Usingtherelation t;, (T (cy, ..., cm)) =

T (ti(c1), ..., th(cy)) and the multilinearity of 7', the difference quotient can be
written as
Th(T(Clv U Cm)) - T(C]a LRI Cm) _ T(Tn(cl)ﬂ U Th(cm)) - T(C]a LRI Cm))

h B h

=Y T(cr... (tci) =)/ ho ... Th(em)) .
i=1

Since

(t(ci) — )/ h 225 ¢ incP
i) =% ¢ inch

and T a bounded linear operator from C# to C’g, we get

T (T(ct, ... cm) = T(Cl. ... Cm) h—>0 —
mh me 1z ZT(C], iy ,cm)
i=1
in C#. Hence, T is a bounded multilinear mapping from (C*+A#+1ym to CA+1, i

Remark 6.3 Let us state a simple extension of Lemma 6.2. Given a multilinear form
M:R'x...xR' > R 1 >q > 0,8>0,meN,and t; € (0, 1) the singular
integral
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1

T(ci,...cp)(u) = p.v./

M(ci(u+tw),...,cu(u+tyuw)))dw

wiw|®

D=

defines a bounded multilinear operator from (h*T#(R/Z, R))™ to h# (R/Z, R™).
This can be deduced by plugging

n
M(ciuthw), ... cmuttyw)) = Y M(eiy. ... e, )L (cj(uttw), ej,)
jl’-“ﬁjm:l
into the definition of 7', where ey, . .. e, is the standard basis of R", and by applying
Lemma 6.2 to all the coordinates of the resulting summands.

7 Facts about the functional Q*

In this section we prove a commutator inequality that we use as a substitute for the
Leibniz rule for Q¢.

Lemma 7.1 (Leibniz rule for Q%) For f € C*tP(R/Z,R"), g € C*TPYI(R/Z, R")
and B > 0 we have

10%(f8) — Q“(N)glics = Clee, ) fllcarsliglcativs.

Proof We have

(Q*(fg) — 0" () (w)
zf(u +w)gu+w) — fFu)gw) —w(f w)gw) — fu)g (u))

2

= p.v.

w

[=1/2.1/2]
" / ! " dw
—(fT)gu) +2¢ ) f () + f(u)g (u))} Tl

2f(u +w)gu) — fu)gw) —wf' (u)gu)
2

w

- f”(u)g(u)}

dw
—p.v.
p ol
[=1/2,1/2]

ylutw — f(u))gg(u +w) —gw) 2w ()

w
[=1/2,172]

+f(u)(2g(u + w) - g(u) - wg/(u) _ g//(u))} dw

w? Jwl|e
(f(u+w) — fw)(gu+w) —g)
2

w

dw

[w]*

=2 pw. - f/(u)g/(u)}
[=1/2,1/2]

+(f Q% (&) w). (7.1)
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Taylor expansion yields

1

G wuz ACRT7 S /(1 — 0 f" (u + tw)dt

g(u+w) g(u) o (u )+w/(1_t)g/,(u+tw)dt

and hence the first term in the last row of Eq. (7.1) can be written as

(fu+w) — fu)(gu+w) —gu)

2 - - g
[—1/2.1/2]
=2f'(u) Jo (1= t)g;(u +1w)dt |wd|;U—2
[-1/2.1/2]
+2g'(u) fol(l =) f"(u+tw)dt dw

w |w|a—2
[(=1/2,1/2]

d
+2 / / / (-0 (1—5)g" (u +tw)f”(u+sw)dzds|%
w
—1/2,1/2]1[0,1]10,1]

It is an easy exercise to prove that the last term defines a bounded operator from C2*#
to C# for all B > 0. Using Lemma 6.2 to estimate the first two terms, we get

10%(f8) — Q% (f)g — Q% (Nllcs
< C(ILf Icalg" Nca2ts + 1 Ncall Nl ca2es + 1 f s llg"lcr)

and hence

10%(f8) — Q% () — fQ*@lics = I fllcarsllglcate-

Together with the fact that Q defines a bounded linear operator from C**!*# to C#
this proves the estimate. O

8 Interpolation and Leibniz rule for fractional Sobolev spaces
For the convenience of the reader we present mutliplicative Gagliardo—Nirenberg—
Sobolev inequalities and a Leibniz rule in fractional Sobolev spaces and non-

homogeneous Besov spaces that we used in this text. We use the notation

s,p
Bq
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where s denotes the order of differentiation and p the integrability. So for s € (0, 1),
P, q € (1, 0o) the space Bf,’q (R/Z) consists of all L?- functions satisfying

1
1 q

Flggr = / (Ilf(-) — fe+ w)”LP(R/Z))q dw
0

w’ w

Theorem 8.1 (Gagliardo—Nirenberg—Sobolev Inequality) For p € [2,00), q €
[1,00) and s1, 52,53 € [0,00) withs1 —1/2 < so — 1/p < s3 — 1/2 there is a
C = C(s1., 52,83, p, q) < 00 such that

llll gs2r = Cllullf sgzllbtllwy1 2

for all smooth functions u € C*°(R/Z) where 6 := (sy —s1 — 1/p+1/2)/(s3 — s1).
Especially,
lullwszr < Cllull? ygzllullws1 2

Proof Using [22, Proposition 1.20], it is enough to show that the real interpolation
space (W12, W‘W’z)g‘] is continuously embedded in B;“’ . From [27, Section 1.6.7],

we get (W12, W53'2)9,1 = Blg’2 where 5 := 053 + (1 — 0)s1 > s7. Since p > 2, we
get s > s7. As furthermore § — 1/2 = 55 — 1/ p, the Sobolev embedding tells us that

B CBS2PCBSZP

and especially
BVZCBSZPCBSZP WSzp

which completes the proof. O
The following product rule goes back to Coifman and Meyer [11].

Lemma 8.2 (Leibniz Rule, cf. [11]) Let p;, gi, r € (1, 00), be such that % + qi[ = -
fori =1,2ands > 0. Then

ILf - gliwer < C(If e liglwsar + 1 fllws, p2 181 Lg2) -

We also refer to Runst and Sickel [25, Lem. 5.3.7/1 (i)].
Let us conclude this section with an elementary proof of the following well-known
interpolation estimate. For a subset A C R and a function f : A — R we set

O S Co b 1601}
X, yEA,XF£Y |-x - y|

Lemma 8.3 Forallk > m, B € (0, 1) there is a constant C < oo such that
1olg e f™ < 1| f N oy 1 15 g,
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forall f € CII‘OC(]R) where 0 = ﬁ Furthermore,

£ lembizy < 11w 15202

Proof Ehrling’s lemma together with the estimate || f||cx < C (|| f® ||z 4 || fll 1)
tells us that for every ¢ > 0 there is an C(¢) < oo such that

1F N s a0y < eULF R Moo 0 + I F e o) + CENFIlL25,0)
which for ¢ = % implies
hélg, 5,0 f ™ < I1F O N0 +2CA/ 21 £l 28, 0))-
Scaling this inequality yields
PP81s 5,0 £ < ML P Nl 0 + Cr 2 L2, 0)

for all r > 0 and hence we get covering R by balls of radius r € [0, 1/2]

. _B— —B—m—1L
ol f ™ < € (HP Ol + P2 )

1
k k+172
Hence, we get the first estimate by choosing r = ””ﬂ) .

A1 22 Ry
For the second estimate, we observe that Ehrling’s lemma gives

1 len &/ < 31 lemeaeyz + Clf iz
and hence
I fllen@/z) < b6l r f ™ +2C1 fll 2z -
Combining this with the first estimate gives

1f llempzy < Cholgrf™ + Cll fll 2z
< C||f||CL(R/Z)”f”iZ(R/Z) + Cll fll2wyzy

C||f||ck(M)||f||‘gz(R/Z).

9 Normal graphs

The following lemma is used in the proofs of Lemma 4.1 and Theorem 3.1.
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Lemma 9.1 Let ¢y € Cl.cff(]R/Z, R")y and W = C*(R/Z) or W = HH%(R/Z) for
some s > 1. Then there is an ¢ > 0 such that for all c € W with

lc —collw < e,

there is a re-parameterization ¢ and a function N € C*(R/Z, R™) normal to co such
that

cop=co+ N

and

[Nllw = Cllc —collw-

Proof Note that in the case W = H® +3 , still W is embedded continuously in C* Let
U be an open neighborhood of ¢( such that there is a nearest point retract ry, i.e. a
C° function ryy : U — R/Z such that

CcoOoFry ocy=co
and

lco(ru(p)) — pl = inf |co(x) — p| Vp e R/Z.
xeR/Z
We set

Ve(x) = ry(c(x)).

Since V¥, = id and the space of diffeomorphisms is open in C*, the function v is
a diffeomorphism for sufficiently small & > 0. Furthermore, the mapping ¢ — ¥
is smooth from C*(R/Z, R") to C*(R/Z, R/Z) in the case that W = C* and from

HS*3(R/Z, R") to H'*2 (R/Z, R/Z) in the case that W = H’*7. We set

b =Y.

and
Ne(x) =coy ' —co.

The estimate in the lemma now follows from the fact that c — N, is a smooth function
for W to W in neighborhood of ¢o with N, = 0. O
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