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1
I N T RO D U C T I O N

Flow networks consist of individual units called nodes connected by

edges transporting flows of some quantity – such as electricity, water

or cars. Each of us encounters more than one flow network every day.

They form the backbone of much of our technical infrastructure, such

as road networks and the electrical power grid. They also enable many

biological transport processes, such as venation networks in plant leaves

and trachea networks in animal lungs. To perform well, such networks

need to be stable - i.e. the flows must return to some steady values

following a reasonably small perturbation. They should also be resilient

- i.e. damaging small parts of the network should not render the whole

network dysfunctional. At the same time they should also be economical.

Since adding or strengthening edges costs money, nutrients or some

other resource, economy in most flow networks means having as few

or as weak edges as possible. The goal of this thesis is to understand

how, and to which extent, the topological properties of such networks

influence their flows.

1.1 preliminaries

1.1.1 Importance of topology in complex networks

Topology of a network refers to the connectivity pattern between its

nodes. Topology becomes important for studying a flow network, when

the collective dynamics of the whole network cannot be explained from

understanding the dynamics of each single node. In many networks,

flow network or otherwise, dynamics of each node is governed by quite

simple rules – for example that of harmonic oscillators – but never-

theless the system as a whole displays rich collective dynamics. One

common example is the so-called spontaneous synchrony in phase os-

cillator networks [1, 2]: Sinusoidally coupled harmonic oscillators with

various natural frequencies oscillate with a common frequency, if the

coupling is sufficiently strong. Similarly, groups of birds in flight man-

age to fly in flocks [3] by maintaining cohesion with their immediate

few neighbours.

Some insights into the dynamics of complex networks can be gained

ignoring topology. For example, one can use mean field techniques to

derive the “critical coupling” at which phase oscillators synchronize [4,

2], for infinite and all-to-all coupled networks. In this approach, one

treats each node’s dynamics to be effectively decoupled from all other

nodes, by assuming each node to be coupled to a common global vari-
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able called the “mean field”. Another example is the calculation of the

global magnetization of an Ising spin lattice at a fixed temperature

using the canonical ensemble technique of statistical physics.

Such approaches by construction ignore the fact that connectivity

patterns may differ between nodes, limiting their applicability outside

completely (all-to-all) connected or regular networks (i.e. each node

having identical degree, e.g. a square lattice). Certain dynamical proper-

ties derived using these techniques often hold true in general topologies

(typically with some restrictions), but many dynamical properties do

not. One example is the phase transition in oscillator networks from dis-

ordered (nodes oscillating with different frequencies) to ordered phase

(every node oscillating with a common frequency). Regardless of the

topology, such transitions occur upon increasing the coupling strength,

but the order of the transition depends on topology [5]. We find another

example of a universal dynamical property across different topologies

in the context of bond percolation in 2-D; where cluster sizes follow

scale free distributions with the same exponent independent of network

topology [6]; on the other hand the percolation threshold does depend

on the topology [7].

1.1.2 Role of Graph theory

The mathematical discipline of graph theory aims to establish rela-

tionships between different topological properties of a graph, ignoring

dynamical aspects by construction. Nevertheless, graph theoretic re-

sults often provide valuable insights into the dynamics of networks. For

example, the max-flow-min-cut theorem [8, p. 127] tells us the maxi-

mum current that can possibly flow through a network with a single

source and a single sink, no matter which dynamics governs the flows.

Although the network dynamics must still be taken into account to un-

derstand how a specific flow network behaves, graph theory provides a

strict upper bound.

In addition, graph theory provides many of the common tools in a

network scientists’ repertoire. Various graph theoretic concepts help us

to categorize networks in a quantitative way; e.g. centrality (how often

a node falls in a shortest path between two other nodes), clustering

coefficient (how likely two neighbours of a node are to be connected to

each other) and connectivity (if each node can be reached from every

other node. Graph theory also provides us with many algorithms to

numerically compute various graph properties, e.g. Dijkstra’s shortest

path finding algorithm [9] and Bor̊uvka’s minimal spanning tree finding

algorithm [10].
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1.1.3 Dynamics of complex flow networks

In flow networks, each node either generates or consumes a certain

resource, which flows via the edges from generators to consumers. We

call this resource “input”: positive for generator nodes and negative for

consumer nodes. Two parameters specify the topology of a flow network:

first, the edges connecting the nodes; second, the distribution of inputs

among the nodes (we define flow networks in detail in Section 2.2).

To design more efficient flow networks and to identify weak points in

existing ones, we need to understand how these two topological factors

influence the flow dynamics. Research on this topic has only gathered

steam in the last few decades. One reason behind that is the computa-

tional complexity of simulating dynamical processes in large networks.

The second reason is the difficulty in obtaining real world network topol-

ogy data. Rapid increase in computing power in recent decades has

helped alleviate the first concern. Discovery of random graph models

such as the Watts-Strogatz model [11] and the Barabási–Albert model

[12] emulating real world networks in various topological properties, as

well as availability of detailed datasets on real-world flow networks [13,

14] have helped with the second.

In this thesis, we have focused on two flow networks. The first one is

a network of phase oscillators called Kuramoto oscillators that is used

to model electrical AC power transmission grids, as well as systems as

diverse as firing of fireflies [4], coupled Josephson junctions [15], neu-

ronal networks [16] and chemical oscillators [17], to name a few. The

second type of networks we studied is the linear flow network that can

be used to model venation networks in plant leaves [14], as well as DC

power grids [18].

1.2 motivation of the thesis

1.2.1 When do steady flows exist in AC power transmission networks?

It is expensive to increase the capacity of transmission lines in power

grids. Therefore, it is important to know which network topologies can

reliably transmit power with the least edge capacities. This question has

been studied widely in recent years using a model of AC transmission

grid [19] based on the popular Kuramoto model (defined in detail in

Section 2.2.1).

Steady flows in power grid systems translate to phase locking or fre-

quency synchrony in Kuramoto model. Stability (or lack thereof) of

Kuramoto networks is well understood in all-to-all coupled systems in

the infinite system limit: no steady flows exist below a certain criti-

cal coupling and above this critical coupling precisely one steady flow

exists. This critical coupling can be easily derived from the statistical

distribution of the power inputs. Unfortunately, power grids are far
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from all-to-all coupled: they are almost planar and have very few long

distance edges due to high cost [20, 21]. Necessary and sufficient condi-

tions for steady flows to exist in realistic topologies are still not known,

although various connections between topological features and stability

have been discovered for power grid models.

For example, Barabási-Albert networks have been shown numerically

to synchronize at higher critical coupling than those with uniform ran-

domly chosen edges (i.e. Erdős-Rényi networks) [22], although partial

synchrony emerges at lower coupling strengths for Barabási-Albert net-

works. Similar numerical studies in Watts-Strogatz networks showed

that a small amount of rewiring drastically reduces critical coupling

[23]. High clustering has been shown to promote partial synchrony but

at the same time inhibit full synchrony [24].

The topological property of input distribution has also proved to be

an important factor for the existence of steady flows. Correlations be-

tween degree and inputs have been shown to cause explosive synchro-

nization [5], i.e. discontinuous transition from disordered to ordered

phase. Spatially distributed [25, 26] positioning of generator (i.e. pos-

itive input) and consumer (i.e. negative input) nodes, as well as the

existence of rerouting pathways [27] have been shown to make the grid

more robust against topological perturbations. However, the following

remains an open question: For power transmission networks with arbi-

trary topology and arbitrary power input distribution, if a steady flow

exists, and which topological features help in steady flows emerging.

Our work on this question constitutes Chapter 4 of this thesis.

1.2.2 Multistability in oscillator networks

In flow networks like power grids, the existence of a unique and globally

attracting steady flow is a desirable property. Otherwise, flows across

the edges may switch to different values following a temporary pertur-

bation; such as shutting down a transmission line for repairs and recon-

necting it afterwards. For Kuramoto like phase oscillator networks used

to model power grids, steady states are indeed guaranteed to be unique,

in the densest (i.e. all-to-all coupled) and the sparsest (i.e. tree) topolo-

gies. Such guarantees do not hold for intermediately dense topologies,

which real world power grids happen to have. A widely cited article [28]

presented an analytical argument that one can always find a sufficiently

high coupling strength guaranteeing unique steady flows in any topol-

ogy. Puzzlingly, it has been also reported that more than one steady

flows can occur [29, 30, 31] in Kuramoto networks with ring topology.

In Chapter 5, we provide a solution to this puzzle by demonstrating the

uniqueness claim in [28] to be flawed. We also establish how three topo-

logical features lead to more steady flows: length of fundamental cycles,

coupling strength of the edges, and spatial homogeneity of generators.
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1.2.3 Braess’ paradox in flow networks

When a flow network needs to support more flow than it is currently

capable of, adding more edges or increasing existing edge capacities

is a common solution. In 1968, traffic engineer D. Braess introduced

a curious phenomenon, later termed Braess’ paradox [32]: In a road

network, where each driver drives his/her car so that his/her own travel

time is minimized, opening a new road can lead to the travel time

increasing for everyone. This phenomenon has been widely studied in

transport research [33, 34, 35] and also recently in general flow networks

[36, 37, 38]. It is not known to this date, which edges in a given flow

network exhibit Braess’ paradox, and which topological features cause

them to exhibit it. In Chapter 6, we derive an exact mapping from

this question to a familiar problem in electrostatics; that of calculating

electric potential due to a single dipole source. We define a topological

feature called “flow alignment” and demonstrate that edges that are

flow aligned to the maximally loaded edge are more likely to cause

Braess’ paradox. Moreover, we demonstrate that Braess’ paradox has

a beneficial effect : Braessian edges can be intentionally damaged to

mitigate overload caused by damage at another edge.

To summarize, this thesis is motivated by this broad question: “How

does the topology influence the flows in a network”? We have studied

three aspects of this question: namely, topological conditions determin-

ing the stability of steady flows, topological conditions causing multi-

stability of steady flows, and topological features causing certain edges

to exhibit Braess paradox.

1.3 organization of this thesis

In this Chapter, we have outlined the importance of topology in study-

ing dynamics of complex flow networks and described the open prob-

lems in the field motivating this thesis. In Chapter 2 we will describe

the tools and concepts from graph theory and network science we utilize

in this thesis. The results of this thesis will be presented in Chapters

4, 5 and 6: in the form of two published articles and one unpublished

manuscript. In this introduction, we intentionally did not delve into the

technical details of our approaches, in order to avoid invoking technical

concepts before defining them. Therefore, before the result chapters be-

gin, in Chapter 3, we will provide an in-depth outline of our approaches

for arriving at our results. Finally, we will summarize those results and

point out scope of further research in Chapter 7.





2
T H E O R E T I C A L B AC KG RO U N D

2.1 graph theoretic concepts

In this section we will introduce some concepts of graph theory that

will be used in the rest of the thesis. More detailed treatments on these

topics can be found in many graph theory textbooks; in particular [8,

39].

Definition 2.1.1 (Graph). A graph is a collection of nodes, and

edges that each connect exactly two nodes. In a mathematically precise

way, a graph G is a tuple (V, E) satisfying E ⊆ [V]2. Its nodes are vi ∈
V and edges are 2-element subsets of V. We will assume throughout

this thesis that V and E are both finite.

Example 2.1.1. The 3-element cycle graph

G(V = {1, 2, 3}, E = {{1, 2}, {2, 3}, {3, 1}}).

Definition 2.1.2 (Directed graphs). A directed graph (or digraph)

has edges with directionality, i.e. they have a start node or “head” and

an end node or “tail”. Mathematically speaking, a digraph is a tuple

(V, E) satisfying E ⊆ V×V.

Example 2.1.2. The 3-element directed cycle graph

G(V = {1, 2, 3}, E = {(1, 2), (2, 3), (3, 1)}).

Remark 2.1.1. Often the edges of undirected graphs are denoted as

tuples e.g. (2, 3), although {2, 3} would be the correct choice. It is im-

plicitly assumed that (2, 3) and (3, 2) denote the same edge. Following

conventions in existing literature, we often use this notation in this the-

sis. Since we do not study directed graphs in this thesis at all, we hope

this sloppiness of notation will not lead to any confusion.

Normally graphs are illustrated by drawing a dot denoting each node

and a line connecting every pair of nodes between which an edge exists.

The same graph can generally be drawn in many different ways. We

illustrate the distinction between a graph and a drawing of a graph in

Figure 2.1.

Definition 2.1.3 (Drawing of a graph). Given a graph G(V, E), a

drawing of it is another graph Gd(Vd, Ed) with the following properties:

1. Nodes of Gd are points in R2: Vd ⊂ R2.
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Figure 2.1: (left) A graph with 7 nodes and 10 edges. (right) One possible

drawing of the same graph.

2. Edges of Gd are straight line segments, whose endpoints are dis-

tinct elements of Vd.

Definition 2.1.4 (Degree of a node). Given a graph G(V, E), the

degree Deg(j) of a node j is defined as the number of edges containing

j.

Deg(j) = ∑
e∈E,j∈e

1.

Definition 2.1.5 (Cut, cutset). Given a graph G(V, E), a cut (or a

2-partition) is a tuple (V1, V2) satisfying

V1 ∪V2 = V

V1 ∩V2 = {}.

The cutset associated with this cut is the set of edges having two end-

points in two different partitions,

{{u, v} ∈ E |u ∈ V1, v ∈ V2}.

Figure 2.2: A cut (V1, V2) of a graph. Nodes in V1 coloured blue, nodes in

V2 coloured grey. The edges in the cutset are coloured red.

Definition 2.1.6 (Planar graph). A graph that can be drawn on

R2 without any of its edges meeting any other edge apart from at an

endpoint is called a planar graph.
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Figure 2.3: A 4-node planar graph with two different drawings. In the drawing

on the left, two edges intersect, but not in the drawing on the right.

Remark 2.1.2. A graph can have intersecting edges in a specific draw-

ing and still be planar. One example is the complete 4-node graph illus-

trated in Figure 2.3.

Figure 2.4: A length 3 path P1 = (1, 2, 3, 4) and a length 4 path P2 =
(1, 6, 5, 7, 4) between nodes 1 and 4 in a graph. P1 is a shortest

path.

Definition 2.1.7 (Path, path length, shortest path). In a graph

G(V, E), a sequence of distinct nodes P = (u1, u2, · · · , un) is called a

path between the nodes u1 and un if there exists an edge between each

successive pair of nodes in the sequence,

for all 1 ≤ j ≤ n− 1, {uj, uj+1} ∈ E, (2.1)

for all 1 ≤ i < j ≤ n, ui 6= uj. (2.2)

The Length of a path P is defined as the length of the sequence P .

A path P = (u1, u2, · · · , un) is called a shortest path between u1 and

un if the length of P is smaller than or equal to the lengths of all other

paths between u1 and un. This is illustrated in Figure 2.4.

Remark 2.1.3. Often in graph theory literature, a sequence of nodes

not satisfying the distinctness condition Eq. (2.2) (i.e. where a node

appears more than once) is also called a path, and a “simple path” refers

to what we call path.
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Definition 2.1.8 (Connected graph). A graph G is called connected

if there exists at least one path between any two pair of distinct nodes

in the graph. This is illustrated in Figure 2.5.

Figure 2.5: (left) A connected graph, (right) a non connected graph.

Definition 2.1.9 (Cycle). Given a graph G(V, E), a sequence of dis-

tinct nodes (u1, u2, · · · , un) is called a cycle C if there exists an edge

between every successive pair of nodes in the sequence and also between

the first and last node,

for all 1 ≤ j ≤ n− 1, uj, uj+1 ∈ E, {un, u1} ∈ E,

for all 1 ≤ i < j ≤ n, ui 6= uj.

This is illustrated in Figure 2.6.

Figure 2.6: A graph and two cycles: C1 = (1, 2, 3, 7, 6) (green) and C2 =
(2, 3, 7, 6) (red).

Remark 2.1.4 (Simple cycle). As with paths, often cycles are defined

in a way so that one (or more) nodes appearing more than once is

permitted. Then a “simple cycle” is defined as what we call cycle.

Remark 2.1.5. A cycle C = (u1, u2, · · · , un) and all its cyclic permu-

tations such as (uk, uk+1, · · · , un, u1, u2, · · · , uk−1) are considered to be

the same cycle.

A cycle C = (u1, u2, · · · , un) and its reversal (un, un−1, · · · , u2, u1)
are also considered to be the same cycle.
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Remark 2.1.6 (Edges in a cycle). A cycle C = (u1, u2, · · · , cn)
contains n edges ({u1, u2}, {u2, u3}, · · · , {un−1, un}, {un, u1}). We also

refer to its edge set by the term “cycle”.

Remark 2.1.7 (Symmetric difference between cycles). Given

two cycles C1 and C2 of a graph, the symmetric difference of their edge

sets C1 \ C2 is also a cycle. This is demonstrated in Figure 2.7.

Figure 2.7: Symmetric difference between two cycles (green and red) is also a

cycle (blue).

Definition 2.1.10 (Cycle space, cycle basis). Given a graph G(V, E),

the set of all cycles of the graph C defines a vector space over the two

element finite field Z2. The vector addition between two cycles is the

symmetric difference. The scalar multiplication is defined as

for all C ∈ C, C · 0 = {}
C · 1 = C.

A basis of this cycle space is called a cycle basis BC of the graph. We

illustrate a graph and two cycle bases in Figure 2.8.

Figure 2.8: Two different cycle basis of a graph.

Definition 2.1.11 (Graph incidence matrix). Given a graph G(V, E),

an incidence matrix I for that graph is a |V| × |E| matrix containing

information about which edge connects which pair of nodes. In order to

construct such a matrix, we first impose an arbitrary order on V and

E. Furthermore, for each edge (i, j) we arbitrarily assign an “orienta-
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tion” by choosing either i or j to be its “head” and the other one to be

its “tail”. Then I is constructed as follows:

Ij,e =


+1 if node j is the head of e =̂ {j, `},
−1 if node j is the tail of e =̂ {j, `},

0 otherwise.

(2.3)

Figure 2.9: (left) a graph and (right) one of the many possible incidence ma-

trices describing the graph. The arrowheads on each edge do not

mean the edge is directed: it just shows the arbitrarily chosen ori-

entation for constructing the incidence matrix.

Remark 2.1.8 (Weighted incidence matrix). For an weighted

graph with edge weights {Kij |{i, j} ∈ E}, the weighted incidence ma-

trix Iw is constructed identically to the unweighted incidence matrix,

but the nonzero entries are ±Kij instead of ±1,

Iw
j,e =


Kij if node j is the head of e =̂ {j, `},
−Kij if node j is the tail of e =̂ {j, `},

0 otherwise.

(2.4)

Definition 2.1.12 (Laplacian matrix). Given a graph G(V, E), its

Laplacian matrix L is a V×V matrix. To construct it, we first need

to impose an arbitrarily chosen order on V, just as in definition 2.1.11.

Then L is defined as

Li,j =


Deg(i) if i = j,

−1 if i 6= j and (i, j) ∈ E,

0 otherwise.

(2.5)

Remark 2.1.9 (Weighed Laplacian matrix). For an weighted graph

with edge weights {Kij |{i, j} ∈ E}, the weighted incidence matrix Lw

is defined as

Li,j =


∑

k∈V,{i,k}∈E

Kik if i = j,

−Kij if i 6= j and (i, j) ∈ E,

0 otherwise.

(2.6)
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2.2 flow networks

Definition 2.2.1 (Flow). Given a graph G(V, E), a flow F on it is

defined as a mapping, that associates to each vertex pair (i, j) connected

by an edge e a real number Fij denoting a “flow” from j to i.

F : {(i, j) | {i, j} ∈ E} →R

: (i, j) 7→Fij.
(2.7)

Definition 2.2.2 (Flow network). Given a graph G and a flow F
across its edges, the tuple (G,F ) is called a flow network.

Remark 2.2.1 (Directionality of flows). We implicitly assume Fij =

−Fji. This is consistent with the intuitive notion of flows being directed

quantities: flow from a to b must be opposite in sign and equal in mag-

nitude to the flow from b to a.

Remark 2.2.2 (Flow vector). Often it is useful to treat a flow as a

|E| element vector F. Such a vector contains the same information as

the mapping F itself and is constructed as follows.

Consider a specific ordering of the edge set E =
{

e1, e2, · · · , e|E|
}

and

a specific orientation of the edges (see definition 2.1.11) of G. Then the

flow vector is

F =
(

F1, F2, · · · , F|E|
)

(2.8)

Fk =

Fij if i is the head of ek

−Fij if j is the head of ek.
(2.9)

Definition 2.2.3 (Conservative flow). If a flow from i to j is a

monotonically increasing, continuous and differentiable function of the

difference between certain vertex property across the edge {i, j},

Fij = Kij f (ϕj − ϕi) (2.10)

Φ : V→ RV (2.11)

: vj 7→ ϕj (2.12)

f : R → R (2.13)

f (y) > f (x)⇔ y > x, (2.14)

then it is called a conservative flow.

Remark 2.2.3. To satisfy the flow directionality condition (see remark

2.2.1), f must be an odd function

f (−x) = − f (x).

Remark 2.2.4 (Flow continuity/Kirchoff’s law). Often, flows are

quantities that enter or exit a graph at certain nodes and their total
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quantity follows a certain conservation law called Kirchoff’s law. Defin-

ing a vertex property called input Ij ∈ R for all nodes j, this law states

Ij + ∑
(j,l)∈E

Fjl = 0. (2.15)

Definition 2.2.4 (Conservative flow network). Let G be a graph

with inputs Ij at each node j. Let F be a conservative flow satisfying the

flow continuity condition Eq. (2.15). Then the tuple (G, I,F ) is called

a conservative flow network.

Now we will give two examples of conservative flow networks: first,

Kuramoto oscillator networks, and second, linear flow networks.

2.2.1 Kuramoto networks

Kuramoto model [1] describes phase oscillators coupled to each other

by sinusoidal couplings. This model has been used to study the collec-

tive dynamics of coupled Josephson junctions [15], neuronal networks

[16], chemical oscillators [17], and a variety of other synchronization

phenomena [4, 2, 40, 41].

This system is described by an undirected graph G with N nodes and

M edges. Each node is a phase oscillator with natural frequencies θj, j ∈
{1, 2, · · · , N}. Each edge {i, j} has an associated coupling strength Kij >

0. The phase variables in this system are the phase angles of each node

θj, j ∈ {1, 2, · · · , N}, and the equations of motion are given by

dθj

dt
= ωj + ∑

(i,j)∈E

Kij sin
(
θi − θj

)
, (2.16)

for all 1 ≤ j ≤ N. By construction, Kji = Kij.

Kuramoto model as a flow network

The steady state of a Kuramoto network is defined by phase angles

{θ∗1 , θ∗2 , · · · , θ∗N} satisfying

ωj + ∑
{i,j}∈E

Kij sin
(
θi − θj

)
= 0, for all 1 ≤ j ≤ N. (2.17)

Such a steady state describes a flow (see definition 2.2.1),

Fkuram : {(i, j) | {i, j} ∈ E} →R (2.18)

: (i, j) 7→Kij sin
(
θi − θj

)
. (2.19)

We see from Eq. (2.17) that Fkuram satisfies the flow conservation

condition Eq. (2.15). Thus a steady state of Kuramoto oscillator net-

works defines a conservative flow network
(
G, ω,Fkuram

)
.
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2.2.2 Linear flow networks

If in a flow network, the flows across each edge is proportional to certain

potential difference across each edge, then it is called a linear flow

network. Such networks are encountered in various systems such as

incompressible fluid flow in pipes [42, 43], DC flow in resistor networks

[44] as well as flow of sap in plant leaves [14].

Such networks consist of inputs Ij at each node i ∈ V. Each edge is

defined to have a certain conductivity Kij and the flows in such networks

are given by

F linear : {(i, j) | {i, j} ∈ E} →R (2.20)

: (i, j) 7→Kij
(

ϕi − ϕj
)

, (2.21)

satisfying the flow continuity condition Eq. (2.15)

Ij + ∑
{i,j}∈E

Kij
(

ϕi − ϕj
)

= 0.

Thus
(
G, I,F linear

)
defines a conservative flow network.
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C O N N E C T I N G T H E D O T S

In Chapter 1, we motivated the topic of this thesis: “dynamics of com-

plex flow networks”. In Chapter 2, we introduced the tools and concepts

we will be using. Here we will connect the dots between the different

open problems motivating this thesis, put them in the context of ex-

isting research and explain in detail our approaches in solving these

problems.

3.1 topology dependence of steady flows and their

stability

For proper functioning of a flow network, often it is desirable that the

flows across the edges are stationary (i.e. they do not change with time,

barring external perturbations). For instance, in AC power grids, the

loss of such stationary (or steady) states results in a power outage.

Therefore, it is of paramount importance to understand under which

conditions such steady states exist, under which conditions they are sta-

ble, and which topological features help to achieve these steady states.

In the context of Kuramoto networks, it was reported by Kuramoto

himself [1] that for all-to-all coupled networks in the limit of infini-

tel system size, the answer to this question is simple: if the coupling

strength is below some critical coupling Kc, there exists no steady state,

and otherwise there exists a unique globally attracting steady state

(Here we emphasize again that by the term “steady state” we refer to

a globally phase locked state where all oscillators rotate with the same

frequency. We do not distinguish between the “partially phase locked”

and the “unsynchronized” state as they are often called in classic Ku-

ramoto literature because none of them have steady flows and hence

are equally“unsynchronized” from the flow dynamics perspective). This

critical coupling is easily obtained from the distribution of natural fre-

quencies of the oscillators (or power injections in the analogous AC

power grid model): if the frequencies are all very close the average

value, critical coupling is low; but if they have a “wider” distribution,

critical coupling is high. Unfortunately, such necessary and sufficient

conditions for steady states in general topology Kuramoto networks

have not been found to date.

We know that the critical coupling strength can no longer be com-

puted from the statistical distribution of oscillator frequencies alone,

since the topological distribution of the oscillators (i.e. of their natu-

ral frequencies) matter, as do the connectivity pattern of individual

nodes. Therefore, graph theoretic notions such as node degree distri-
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bution [22], clustering coefficient [24] and global graph partitions [45]

have been invoked to determine the critical coupling.

Lozano et. al. showed [45] that the critical coupling in any topology

must be greater than the sum of all power injections Pj in any 2-way

partition or cut into subgraphs with disjoint vertex sets V1 and V2

(defined in 2.1.5), divided by the total strength of all inter-partition

edges,

Kc ≥ max
V1∪V2=V
V1∩V2={}

∑j∈V1
Pj

∑ (i,j)∈E
i∈V1,j∈V2

1
. (3.1)

While this result suggests that dense networks should need less coupling

strength to have a steady state; this is not generally true, since adding

a link can also increase [37] critical coupling, a phenomenon known as

Braess’ paradox that is studied in detail in the Chapter 6 of this Thesis.

The spectrum of graph Laplacians (defined in 2.1.12) has been shown

again and again [46, 47, 48, 49] to have deep connections with the ex-

istence and stability of the steady states. It has been shown [50] that

critical coupling is lowered when the natural frequencies of the net-

work are arranged as close as possible to the most dominant Laplacian

eigenvector.

Determining necessary and sufficient conditions for a Kuramoto os-

cillator network with general topologies to have a fully phase locked

state nevertheless remains an open question. This is the problem we

study in Chapter 4, for a modified version of Kuramoto model called

the “swing equation model” for electric AC power grids. We first prove

that the steady states and their bifurcation properties of Kuramoto net-

works (described by first order differential equations) are identical with

those for swing equation model (described by second order differential

equations). We connect the fact that the Jacobian for linear stability

for Kuramoto systems can be interpreted as a graph Laplacian [51],

to the fact from graph theory that multiplicity of the zero eigenvalue

of a graph Laplacian is equal to its number of connected components

[52, p. 156]. Thus we conclude that stability is lost in such systems,

precisely when there exists a cut in the graph, such that all the edges

in the cutset are maximally loaded. This has striking parallels with the

results obtained using purely topological arguments in [45], but is a

stronger statement.

Intriguingly, we find when phase differences along some edges exceed
π
2 , instability can occur without a single line being overloaded. This

phenomenon shows that relying on load to predict whether an edge

is vulnerable or not has its limitations, a topic that was subsequently

studied by Witthaut et. al. in [27].
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3.2 multistability and topology

We noted in Section 3.1 that all-to-all coupled Kuramoto networks have

either one or no steady states in the infinite system size limit. For

power grid operation, this is a very desirable property: given a fixed

distribution of power injections at the nodes, each edge is guaranteed

to carry a fixed amount of flow, independent of initial conditions or

temporary perturbations in the grid. The problem is, power grids are

almost never all-to-all coupled. In fact, they tend to be planar or almost

planer [20, 21]. Taylor [29] showed that uniqueness of steady states holds

also in non all-to-all coupled systems as long as the network is denser

than a certain limit. It has been claimed in a highly cited article [28]

that for any Kuramoto network there always exists a certain coupling

strength, above which uniqueness of steady states is guaranteed.

However, this claim contradicts results demonstrating multistability

[30, 53] in Kuramoto systems. As one core contribution of this thesis,

we identified a flaw the proof in [28], at an application of Banach’s con-

traction principle. As a consequence, high coupling strength happens

to increase the number of steady state, rather that decreasing it to one.

It had already been shown [30] that in ring topologies the number

of steady state scales linearly with ring size. Such states, containing

twisted phase angles, were postulated [53] to have basin volumes de-

creasing with the amount of “twist” quantified in a so-called winding

number. Interestingly, it is known that a unique steady state exists

for both the sparsest (i.e. tree) and densest (i.e. all-to-all connected)

topologies [54], but not for intermediately dense ones. Research con-

ducted parallely and independently from our thesis work showed [55]

in 2016 that the number of steady states increase with loop lengths of

the network in plane embedded Kuramoto networks with identical fre-

quencies. However, counting the number of steady states in Kuramoto

networks with general topologies and general natural frequency distri-

bution is still an unsolved problem.

In Chapter 5, we demonstrate that the number of coexisting steady

flow in planar Kuramoto networks increase with coupling strengths of

the edges, length of fundamental cycles as well as the spatial homogene-

ity of the natural frequencies. For large network size and large coupling

strength, we derive a scaling law for the number of steady states. We

numerically show that the said scaling matches very well with reality

(for cycle lengths as low as 50), as opposed to previously known upper

bounds, which were much higher than the actual numbers.

3.3 topological perturbations and steady flows

Flow networks are often subjected to topological perturbations, both

planned and unplanned. Examples include shutdown of power lines

due to a storm or scheduled maintenance; or leaf veins being eaten
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through by bugs. Resilience against such perturbations is therefore a

very desirable property for flow networks. Indeed, electrical power grids

are supposed to fulfill the “n− 1 criteria” mandating that there should

be no blackout due to the shutdown of any one power line at a time.

Nevertheless, topological perturbations sometimes cause other lines

to fail, resulting in collective failures of big parts of the grid [56, 57].

Indeed, in 2006 shutdown of a single power line in the Ems river in

northern Germany, done intentionally in order to let a ship pass, re-

sulted in a continent wide blackout reaching up to Spain [57].

As a result, understanding, predicting and preventing such failures

is an important issue that has been approached from various different

directions in the past. Attempts to establish correlation between vulner-

ability of edges and their topological properties indicate that decentral

power grids [26] are more robust against topological damages. Nodes

with higher degrees seem to be crucial for stable operation, as a result

scale free networks have been numerically shown [58] to be vulnerable

to deliberate sabotage targeting their hubs. Intentionally cutting trans-

mission lines have been demonstrated [59] to be sometimes effective in

preventing cascading failures. In a different context, leaf venation net-

works with more cycles were shown [14] to be robust against topological

perturbation compared to leaves with less cycles.

How steady flows are affected by damage or removal of an edge in a

flow network is still not well understood. We will now describe a specific

aspect of this issue that we studied in this thesis: the so called “Braess’

paradox”.

3.3.0.1 Braess’ paradox

Figure 3.1: Braess’ paradox as reported by D. Braess. (Left) A four edge net-

work has two edges with travel time proportional to the number

of cars in it. In the other two edges, travel time is constant. Each

car chooses the shortest path selfishly. With total 4000 cars in the

network, each takes 65 minutes to reach its destination. (Right)

Opening a new zero travel time edge causes all cars to take 80
minutes to reach their destinations.

In the context of traffic networks, a curious phenomenon was reported

in 1968 (illustrated in Figure 3.1), where opening a new street led to
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increased travel time for every car [32]. Later, the same phenomenon,

termed Braess’ paradox, has been observed in the context of other flow

networks like AC and DC power grids [36, 37, 38]. Braess’ paradox

can cause undesirable flow patterns and potentially instabilities in flow

networks if not properly accounted for, because adding new edges or

strengthening existing ones is a very common strategy to compensate

for increased load in flow networks. Despite extensive research [60, 35,

61] on the topic, the question of which edges in a flow network will

exhibit Braess’ paradox, remains unanswered to date.

In Chapter 6, we systematically study the phenomenon of Braess’

paradox in a class of continuous flow networks we call conservative

flow networks (defined in 2.2.4), which includes both Kuramoto net-

works and leaf venation networks in plants, among other systems. We

take a differential view to Braess’ paradox: We define an edge to be

Braessian if infinitesimal increase in its strength results in the maxi-

mum flow in the network increasing. We first derive an exact mapping

from the problem of detecting Braessian edges to computing steady

state flows in a modified “meta graph” of residual capacities with only

one dipole source. This boils down to solving Laplace equation with a

single dipole source in a weighted graph (continuum variant of which

is very familiar from electrostatics). Guided by this insight, we define

an intuitive notion of flow alignment, and demonstrate that edges with

flows aligned to the maximally loaded edge are more likely to be Braes-

sian. We build and test three classifiers to detect Braessian edges. The

first one, based on edge distances, is applicable to any graph and com-

putationally fast; but error prone. The second one is based on distances

in dual graphs, and consequently applicable only to plane graphs; but

with significantly more accurate than the first one. We propose a third

classifier based on rerouting pathways in the graph, that performs as

well as the second one, and at the same time applicable to non-planar

graphs as well. The only disadvantage of this classifier is high compu-

tational complexity. Last, we demonstrate that Braess’ paradox has a

very beneficial effect: Braessian edges can be intentionally damaged to

mitigate overload caused by damage at another edge.

3.4 summary

In this thesis, we studied three aspects of the general question: how

does network topology influence the dynamics of flow networks? In

Chapter 4, we derive equivalence of steady states (and their bifurca-

tions) between Kuramoto oscillators and the swing equation model of

AC power grid. We map loss of stability in these two systems to graph

theoretic notion of connectedness. In Chapter 5, we demonstrate how

the number of steady states in the same system increases with three

topological properties – namely number of fundamental cycles, coupling

strength at the edges and spatial homogeneity of natural frequencies.
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In Chapter 6, we demonstrate that we can predict Braessian edges in

a conservative flow network from topological features of the edges, and

show that Braess’ paradox can be put to good use to mitigate overload

in a flow network. In Chapter 7, we summarize our results and identify

future research directions.
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Abstract. Supply and transport networks support much of our

technical infrastructure as well as many biological processes. Their

reliable function is thus essential for all aspects of life. Transport

processes involving quantities beyond the pure loads exhibit alterna-

tive collective dynamical options compared to processes exclusively

characterized by loads. Here we analyze the stability and bifurcations

in oscillator models describing electric power grids and demonstrate

that these networks exhibit instabilities without overloads. This phe-

nomenon may well emerge also in other sufficiently complex supply or

transport networks, including biological transport processes.

4.1 introduction

Today’s society depends on the reliable supply of electric power. The

Energy transition to renewable energy (Energiewende) impairs the con-

ventional power distribution system and poses great challenges for the

security of the energy supply [62, 63]. It has been shown by Pesch et

al. [64] that the grid might become more heavily loaded in the future

as electric power generation varies over time and has to be transported

over large distances. For instance, current planning assigns new large-

distance distribution lines from off-shore wind parks to the inner land

– making the grid more susceptible to perturbations. Moreover, wind

turbines and photovoltaic arrays are strongly intermittent; their power

output fluctuates on all timescales from years to below seconds [65, 66,

67]. To ensure continued stable operation of power grids, it is advisable

to understand how the network structure of the power grid determines

its dynamic stability and how instabilities generally emerge.

4.2 an oscillator model for power grid operation

In this article we analyze network models of power grids consisting of

rotating machines representing electric generators and motors. These

models describe the phase dynamics of the machines and thus cap-

ture important problems of synchronization and dynamical stability

of complex power grids [68, 69, 19, 70] and have recently attracted

considerable interest in physics and mathematics [26, 36, 71, 49, 72,

73]. Notably, these models are mathematically very similar to the cele-

brated Kuramoto model describing the dynamics of coupled limit cycle

oscillators [1, 4, 2].

Variations of these models are widely used in power engineering [68,

69, 74, 70, 75, 76]. In many of the applications, however, passive loads

are considered instead of motors which can be eliminated via a Kron

reduction [77]. The resulting model is mathematical equivalent to the

one analyzed here, but its dimension is typically significantly smaller

after this reduction (see Section 4.2.2 for details).
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4.2.1 The oscillator model

We model the power grid as a network of N rotating machines rep-

resenting, for instance, wind turbines or electric motors [19, 26]. Let

the machines be denoted by a natural number j ∈ ZN where ZN =

{1, 2, · · · , N}. Each machine j is characterized by the mechanical power

Pmech
j it generates (Pmech

j > 0) or consumes (Pmech
j < 0). The state

of each rotating machine is determined by its mechanical phase angle

φj(t) and its velocity dφj/dt. During the regular operation, genera-

tors as well as consumers within the grid run with the same frequency

Ω = 2π× 50Hz (Europe) or Ω = 2π× 60Hz (USA). The phase of each

element j is then written as

φj(t) = Ωt + θj(t), (4.1)

where θj denotes the phase difference to the reference value Ωt.
The equations of motion for all θj can now be obtained from the

energy conservation law, i.e. the generated energy Pmech
j of each single

element must equal the accumulated and dissipated mechanical energy

of this machine plus the electric energy Pel
j transmitted to the rest of

the grid. We also have

Pdiss
j = Dj(φ̇j)

2 (4.2)

Pacc
j =

1
2

Ij
d
dt

(φ̇j)
2, (4.3)

where Ij is the moment of inertia and Dj is the damping torque. The

energy conservation law reads

Pmech
j = Pdiss

j + Pacc
j + Pel

j . (4.4)

We will now insert equation (4.1) in the formula for the accumulated

and dissipated mechanical energy to derive the equations of motion. In

the vicinity of the regular operation of the grid, phase changes are small

compared to the reference frequency [19] |θ̇j| � Ω and we can write

the equations of motion for θj as

∀j ∈ ZN , IjΩθ̈j = Pmech
j − DjΩ2 − 2DjΩθ̇j − Pel

j . (4.5)

The electric power is determined as follows. In a synchronous machine

with p f number of poles, the phase φj of the AC electric voltage and

the mechanical phase φmech
j have a fixed ratio [74, p. 47]

φj =
p f

2
φmech

j .

We here consider common two-pole machines where this ratio is unity,

i.e. φj(t) = φmech
j (t).

In an AC circuit, where the current between two nodes Iij and voltage

at jth node Vj vary sinusoidally with a relative phase difference δ, the

power transmitted from node j to node i is

Pij(t) = Vj(t)Iij(t) (4.6)
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=
(

Vj,rms

√
2
)

sin (Ωt)
(

Iij,rms

√
2
)

sin (Ωt + δ) (4.7)

= Vj,rms Iij,rms cos δ︸ ︷︷ ︸
Pij,real

−Vj,rms Iij,rms cos (2Ωt + δ). (4.8)

The second term oscillates between positive and negative values such

that the direction of power flow changes direction. The net flow due to

this term, when integrated over a full period of the AC cycle, is zero.

Since here we consider dynamics on time scales much larger than a

time period of the AC cycle (1/Ω), we ignore this second term. The

first term constitutes the real power flow from generator to consumers.

It is convenient to adopt complex notation at this point:

Ṽj = Vj,rmseiΩt , Ĩij =Iij,rmsei(Ωt+δ), (4.9)

such that the apparent and the real power reads

Sij = Ṽj Ĩ∗ij , Pij,real =<(Sij). (4.10)

The net electric power at node j: Pel
j in (4.5) is basically the total

Preal transmitted to all neighbouring nodes:

Pel
j =

N

∑
k=1

Pkj,real (4.11)

= <
[

Ṽj

N

∑
k=1

Ĩ∗kj

]
(4.12)

Ĩkj = Ykj(Ṽk − Ṽj). (4.13)

For simplicity we here neglect ohmic losses in the grid such that

the admittance is purely imaginary, Yjk = iBjk. Furthermore, we as-

sume that the magnitude of the voltage is constant throughout the

grid, |Ṽj| = V0 for all nodes j ∈ ZN. Then Pel
j simplifies to

Pel
j = <

[
N

∑
k=1

V2
0 Bjk

{
sin(θj − θk) + i

(
cos(θj − θk)− 1

)}]
(4.14)

=
N

∑
k=1

V2
0 Bjk sin(θj − θk). (4.15)

Substituting this result into equation (4.5) thus yields the equations of

motion

IjΩ
d2θj

dt2 + Dj
dθj

dt
= Pmech

j − DjΩ2 +
N

∑
k=1

V2
0 Bjk sin(θk − θj). (4.16)

The same equations of motions constitute the so-called structure-preserving

model in power engineering [68], which is derived under slightly differ-

ent assumptions.
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For the sake of simplicity we introduce the abbreviations

Pj =
Pmech

j − DjΩ2

IjΩ
(4.17)

αj =
Dj

IjΩ
(4.18)

Kjk =
V2

0 Bjk

IjΩ
(4.19)

such that the equations of motion read

∀j ∈ ZN ,
d2θj

dt2 = Pj − αj
dθj

dt
+ ∑

k
Kjk sin(θk − θj). (4.20)

In this formulation the regular operation of the grid corresponds to a

stable fixed point with dθj/dt = 0 for all nodes j.
Throughout this paper we assume that the network defined by the

coupling matrix is globally connected. Otherwise we can simply con-

sider each connected component separately. We take symmetric trans-

mission capacities

Kjk = Kkj (4.21)

for all j, k as appropriate for (electric) supply networks and Kjj = 0. Fur-

thermore, we assume that the power in the grid is balanced, i.e. ∑j Pj =

0. This is appropriate since we focus on the short-time dynamics of the

grid and the stability of steady states. On longer time-scales, the power

balance is maintained by the grid operators by adapting the generation.

4.2.2 Ohmic loads and the classical model

The oscillator model introduced above assumes that all nodes of the

network represent synchronous machines. In contrast, the so-called clas-

sical model widely studied in power engineering [70] includes a set of

synchronous generators as above, but considers only ohmic loads. The

load nodes of the network can then be eliminated which yields a much

lower dimensional dynamical system. The resulting equations of mo-

tion are mathematically equivalent such that all our results equally

well apply to the classical model. However, the network topology is no

longer obvious in this model as the effective coupling matrix of the

generator nodes is generally non-zero everywhere. Bergen and Hill [68]

rectified this issue by introducing the structure preserving model, which

also gives rise to equations of motion formally identical to the oscillator

model. We thus focus on the oscillator model in the rest of the paper.

In the following we briefly summarize the derivation of the classical

model [77] to show how to deal with ohmic loads in this framework.

We divide the nodes of the networks into active and passive nodes,

where the passive ones represent ohmic loads. For the sake of simplicity
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we label the nodes such that j = 1, . . . , L are the active nodes and

k = L + 1, . . . , N are the passive nodes. The passive nodes have a fixed

power consumption

Sj = Ṽj

N

∑
k=1

Ĩ∗kj︸ ︷︷ ︸
=: Ĩ∗j

. (4.22)

Even more, one assumes that both factors Ṽj and Ĩj are fixed indepen-

dently. One can then eliminate these nodes via a Kron reduction as

follows.

One starts with Kirchhoff’s equations in the form (cf. equation 4.13)

Ĩj =
N

∑
k=1

Ĩjk = ∑
k

Yjk(Ṽk − Ṽj) = ∑
k

QjkṼk, (4.23)

where

Qjk = Yjk − δjk ∑`
Yj` (4.24)

is called the nodal admittance matrix. These equations are recast into

matrix form(
Ia

Ip

)
=

(
Qaa Qap

Qpa Qpp

)(
V a

V p

)
, (4.25)

where the vectors Ia and Ip collect the currents at the active and the

passive nodes, respectively. These equations are solved for the currents

Ia = (QapQ−1
pp )︸ ︷︷ ︸

=:Qac

Ip + (Qaa −QapQ−1
pp Qpa)︸ ︷︷ ︸

=:Qred

V a (4.26)

at the active nodes. The net electric power at one of the active nodes

then reads

Sj = Ṽj

L

∑
`=1

Qred∗
j` Ṽ∗` + Ṽj

N

∑
`=L+1

Qac∗
j` Ĩ∗` . (4.27)

The second term is fixed by assumption, such that it can be transfered

to the effective mechanical power of the respective node,

Peff
j = Pmech

j −<
[

Ṽj

N

∑
`=L+1

Qac∗
j` Ĩ∗`

]
. (4.28)

Assuming again that the lines are lossless such that

Yjk = iBjk and Qred∗
j` = iBred

j` , (4.29)



4.3 the nature and bifurcations of steady states 37

the equations of motion for the active nodes are then derived from the

energy conservation equation (4.4)

IjΩ
d2θj

dt2 + Dj
dθj

dt
= Peff

j − DjΩ2 +
L

∑
`=1

V2
0 Bred

j` sin(θ` − θj). (4.30)

This is fully equivalent to the equations of motion for the oscillator

model (4.16) such that all mathematical results obtained in the present

article can thus be directly applied to the classical model as well.

4.2.3 Further generalisations

Both the oscillator and the classical model describe only the phase

dynamics of the synchronous machines, assuming a constant voltage

throughout the grid. Several important aspects of the voltage dynamics

in a complex power grid are described by the so-called third-order model

[70]. A recent theoretical study of voltage instabilities can be found in

[78]. Still, all these models neglect Ohmic losses of the transmission

lines. If Ohmic losses are included, the equations of motion become

significantly more complex [70].

4.3 the nature and bifurcations of steady states

During steady operation of a power grid all nodes run with the grid’s

reference frequency Ω and fixed phase differences. A stable fixed point

(i.e. equilibrium/steady state) of the equations of motion (4.20) de-

scribes the steady operation of the power grid. The loss of such a fixed

point or a dynamical instability induce a desynchronization of the grid.

Therefore, it is essential to understand the properties of the fixed points

of the oscillator model, in particular their bifurcations and dynamical

stability.

The fixed points of the equations of motion (4.20) are determined by

the nonlinear algebraic equations

∀j ∈ ZN , Pj + ∑
k

Kjk sin(θ∗k − θ∗j ) = 0. (4.31)

In the following, we present several results on the existence, stability

and bifurcations of these fixed points, some aspects of which have been

published for related systems in [79]. Fixed points are marked by an

asterisk and the vector θ = (θ1, . . . , θN)T ∈ SN collects the phases of

all machines, where S = {x |0 ≤ x ≤ 2π }. The local frequencies are

referred to by vj = dθj/dt or v = dθ/dt, respectively.

Lemma 4.3.1. The network dynamics of the system defined by (4.20)

and (4.21) for αj = 0 (zero damping) is a Hamiltonian system of the

form

θ̇j =
∂H
∂vj

, v̇j = −∂H
∂θj

, (4.32)
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where the phase θj and the phase velocity

vj = dθj/dt (4.33)

are canonically conjugate variables for all j ∈ ZN. The Hamiltonian

function has the natural form

H(v, θ) = T(v) + V(θ) (4.34)

with the kinetic and potential energies

T(v) =
1
2 ∑

j
v2

j (4.35)

V(θ) = −∑
j

Pjθj −
1
2 ∑

i,j
Kij cos(θi − θj). (4.36)

Proof. Let H(v, θ) = T(v) + V(θ) be a Hamiltonian function defined

by (4.34), (4.35) and (4.36). Then H is continuously differentiable on

any open star-shaped subset of the phase space with

∂H/∂vj = vj = θ̇j (4.37)

and

∂H
∂θj

= −Pj −
1
2 ∑

k
∑

l
Kkl

∂

∂θj
cos(θk − θl) (4.38)

= −Pj −∑
k

Kjk sin(θk − θj). (4.39)

Where the last equality follows from symmetry (4.21). Substituting

(4.33), (4.37) and (4.39) into the Hamilton equations (4.32), the claim

follows.

Corollary 4.3.1. The set of all fixed points of the oscillator equation

(4.20) and (4.21) for arbitrary αj ∈ R, j ∈ ZN, is identical to the set

of fixed points of the Hamiltonian system (4.32) with (4.34) and (4.33).

The fixed points are local extrema/saddle points of the potential function

V(θ) (cf. also [80]).

Proof. The set of fixed points of (4.32) is given by

PHamilton =

{
(θ∗, v∗)

∣∣∣∣∀j ∈ ZN ,
∂H
∂vj

= 0∧−∂H
∂θj

= 0
}

(4.40)

The set of fixed points of the oscillator equations (4.20) is given by

Posc =

{
(θ∗, v∗) = (θ∗, 0)

∣∣∣∣∣∀j ∈ ZN , Pj +
N

∑
k=1

Kjk sin(θ∗k − θ∗j ) = 0

}
,

(4.41)
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independent of all αj. If the transmission capacities are symmetric

(4.21), the Hamiltonian and the original oscillator dynamics in the αj =

0 case are equivalent (have identical trajectories) as ensured by Lemma

4.3.1. Thus in particular their fixed points are identical. And since the

fixed points of the oscillator model don’t depend on αj as per (4.41),

the fixed points of the oscillator model for arbitrary αj are also, by

extension, identical to those of the Hamiltonian system.

As T(v) is independent of all θj we have at each fixed point (θ∗, v∗)
that

∂H(v, θ)

∂θj

∣∣∣∣
θ∗

=
∂V(θ)

∂θj

∣∣∣∣
θ∗

= 0 (4.42)

for all j such that the fixed points are located at local extreme/saddle

points of V, demonstrating the second claim.

Because of this correspondence, the theory of (damped) Hamiltonian

dynamical systems (see [81] and references therein) helps us in charac-

terizing the fixed points of the oscillator model and their bifurcations.

We note that one has to be careful about the domain of H. In principle,

the phases are only defined modulo 2π but H is not 2π-periodic. This

fact is not a major problem for our purpose, but it prohibits a definition

of Gibbsian ensembles in statistical mechanics [80, 2].

As shown in Corollary 4.3.1, the location of the fixed points θ∗ =

(θ∗1 , . . . , θ∗N) is independent of the damping coefficients αj. Furthermore,

the location of the fixed point is the same for the celebrated Kuramoto

[1, 4, 2] model such that our results may be adapted for this important

model system. The question naturally arises: how do the stability prop-

erties of the fixed points change when αj are varied or when we go from

the oscillator model to Kuramoto model? We will answer this question

subsequently, in Lemma 4.3.2 and Theorem 4.3.1.

The linear or spectral stability of a fixed point is obtained by lin-

earizing the equations of motion. Writing

ξ = θ− θ∗ (4.43)

the linearized equations of motion are given by

d
dt

(
ξ̇

ξ

)
= J

(
ξ̇

ξ

)
. (4.44)

For the given damped oscillator system with equations of motion (4.20),

the Jacobian is given by

J =

(
−AN×N −MN×N

IN×N 0N×N

)
, (4.45)

where

A =


α1 0 · · ·
0 α2 · · ·
...

...
. . .

 (4.46)
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is a diagonal matrix specifying the damping coeeficient at each node

and M is the Hesse matrix of the potential function V(θ) with elements

Mij =
∂2V

∂θi∂θj
(4.47)

M =



N

∑
l=1

K1l cos (θ∗1 − θ∗l ) −K12 cos (θ∗1 − θ∗2 ) · · ·

−K21 cos (θ∗2 − θ∗1 )
N

∑
l=1

K2l cos (θ∗2 − θ∗l ) · · ·
...

...
. . .

 . (4.48)

This can be verified by a straightforward calculation.

Let λj be the eigenvalues of the Jacobian matrix J:

∀j ∈ {1, 2, . . . , 2N} , Jvj = λjvj (4.49)

and let µk be the eigenvalues of the Hesse matrix M:

∀k ∈ {1, 2, . . . , N} , Muk = µkuk, (4.50)

then we find the results stated below.

Lemma 4.3.2. If µk ≥ 0 for all k ∈ ZN, then <(λj) ≤ 0 for all

j ∈ {1, 2, . . . , 2N}. Moreover, for each vj such that Jvj = 02N, there

exists one and only one uk such that

Muk = 0N (4.51)

vj = (0, 0, · · · , 0︸ ︷︷ ︸
0N

, u1, u2, · · · , uN︸ ︷︷ ︸
uk

) (4.52)

:= 0N ⊗ uk. (4.53)

Proof. Suppose v = v1 ⊗ v2 ∈ RN ⊗RN is an eigenvector of J with

eigenvalue λ. Then we have:

λv1 = −Av1 −Mv2 (4.54)

λv2 = v1 (4.55)

Substituting (4.55) in (4.54):

0 = Mv2 + λAv2 + λ2v2 (4.56)

0 = v2
† Mv2 + v2

† Av2λ + v2
†v2λ2 (4.57)

= κ2
1 + κ2

2λ + κ2
3λ2, (4.58)

where

κ2
1 = v2

† Mv2 ≥ 0, (M is positive semi-definite) (4.59)
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κ2
2 = v2

† Av2 ≥ 0,
(
αj ≥ 0

)
(4.60)

κ2
3 = v2

†v2 ≥ 0, (4.61)

such that

λ =
−κ2

2 ±
√

κ4
2 − 4κ2

1κ2
3

2κ2
3

. (4.62)

This implies <(λ) ≤ 0, which proves the first part of the Lemma.

Moreover, <(λ) = 0 ⇐⇒ κ2
1 = 0, which happens only if Mv2 = 0.

This can be checked by expanding v2 in the eigenbasis of M. This proves

the second part.

Using the technical results presented above, we now analyze the sta-

bility and bifurcations in more detail. We show that stability is entirely

determined by the Hesse matrix M and independent of the damping co-

efficients αj. In many cases, M can be interpreted as a Laplacian matrix

[52], such that the stability can be analyzed in terms of the topology

of the grid.

Before we proceed, we note that by construction the Hesse matrix M
has one zero eigenvalue (proof in Corollary 4.A.1) with the eigenvector:

u1 = (1, 1, · · · , 1) (4.63)

Mu1 = 0 (4.64)

For notational convenience we denote the eigenvalues of M sorted in

ascending order of absolute values: 0 = |µ1| ≤ |µ2| ≤ |µ3| ≤ · · · ≤
|µN |.

Theorem 4.3.1. Let θ∗ be a fixed point of the oscillator model (4.20).

Then θ∗ + ∆(1, 1, · · · , 1)T is also a fixed point for all ∆ ∈ R. If µj > 0
for all j ∈ {2, 3, . . . , N}, then the fixed point is transversely asymptoti-

cally stable.

Proof. If µj > 0 for all j ∈ {2, 3, . . . , N}, Lemma 4.3.2 shows that the

Jacobian J will have only one zero eigenvalue. We can see from (4.63)

that the eigenvector corresponding to zero eigenvalue is

v∗ = 0N ⊗ (1, 1, · · · , 1). (4.65)

This eigenvector implies that a perturbation around a fixed point in

the direction

∆θ̇∗j = 0, ∆θ∗j = constant (4.66)

is neutrally stable. However, this is simply due to the fact that the

equations of motion (4.20) remains unchanged on adding a uniform

global shift to the phase angles θj.



42 article – supply networks: instabilities without overload

Since all other eigenvalues of the Jacobian J are less than 0, as guar-

anteed by Lemma 4.3.2, we see that all small perturbations transverse

to the global shift (4.66) decay to zero with time. Transverse asymp-

totic stability therefore follows from the center manifold theorem (cf.

[82]).

Lemma 4.3.3. A stable fixed point of the oscillator model (4.20) can

be lost only via an inverse saddle-node bifurcation where one of the µj
as defined in (4.50) becomes zero.

Proof. To analyze the nature of bifurcations consider first the hamilto-

nian limit αj = 0. In a hamiltonian system only two types of bifurcation

are possible when a parameter is varied smoothly [81]: a saddle-node bi-

furcation or a Krein bifurcation. At a Krein bifurcation complex quadru-

plets of eigenvalues emerge. However, this is impossible for the given

dynamical system as eigenvalues of the Jacobian J are always purely

real or purely imaginary for α = 0, as demonstrated in (4.62). Thus the

only possible bifurcation scenario is that of a saddle-node bifurcation.

As the position (Theorem 4.3.1) and stability properties (Lemma 4.3.2)

of fixed points are both independent of αj the bifurcation remains the

same also for the non-Hamiltonian case αj > 0.

We note that in the Hamiltonian limit α = 0 stability always means

neutral stability. A minimum of the potential function V(θ) is an “el-

liptic fixed point” or “center” of the dynamical system as all eigenvalues

of the Jacobian are purely imaginary. For αj > 0 all eigenvalues of the

Jacobian acquire a negative real part, such that the fixed point becomes

asymptotically stable.

We note that Theorem 4.3.1 also implies that the fixed points of the

oscillator model share identical position and linear stability properties

with the famous Kuramoto model [2] because −M happens to be the

Jacobian of the Kuramoto system.

4.4 elementary example

To illustrate the mathematical results of the previous section, we first

consider the simplest non-trivial grid, a two-element system consist-

ing of one generator and one consumer. We assume that the power

is balanced, i.e. −P1 = P2 and damping is uniform, i.e. α1 = α2 = α.

Therefore, θ̈1 + θ̈2 = −α(θ̇1 + θ̇2) and the mean phase θ1 + θ2 of the grid

reaches a constant value exponentially in time. We thus consider only

the dynamics of the phase difference x = θ2 − θ1. With ∆P = P2 − P1

the equation of motion for this system reads

d2x
dt2 = ∆P− α

dx
dt
− 2K sin(x). (4.67)

As the phase difference is defined modulo 2π, the phase space is

cylindrical, (ẋ, x) ∈ R× 2πS1 (however, for illustration purposes and
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4. Kriterien der Stabilität

Hiermit ist der Leistungsfluss auf der Verbindungsleitung im stationären Fall direkt
proportional sowohl zur eingebrachten als auch zur entzogenen Leistung. Deshalb
wird die Größe ∆p im Folgenden übertragene Leistung genannt, sofern das System
den stabilen Bereich nicht verlassen hat.

4.2. Das gekippte periodische Potential

Die Bewegungsgleichung der Phasendifferenz (4.2) kann als die Newton’sche ge-
dämpfte Bewegung eines Teilchens in einem gekippten periodischen Potential V (x)
veranschaulicht werden:

ẍ = −ẋ − dV
dx .

Somit ergibt sich für das Potential (siehe Abb. 4.1):

0 π 2π 3π 4π
x

0

−50

−100

V
(x

)

(a)

0 π 2π 3π 4π
x

(b)

0 π 2π 3π 4π
x

0

−50

−100

V
(x

)

(c)

0 π 2π 3π 4π
x

(d)

Abb. 4.1.: Das Potential V (x) = −∆p x − k cos(x) für k = 10 und unterschiedliche
Werte von ∆p. (a) ∆p = 3, (b) ∆p = 6, (c) ∆p = 9 und (d) ∆p = 12.
Die lokalen Minima xmin (grün) und Maxima xmax (rot) sind markiert.
Für ∆p ≥ k existieren keine stationären Zustände.

28

Figure 4.1: The tilted washboard potential (4.73) for K = 5 and (a) ∆P = 3,

(b) ∆P = 6, (c) ∆P = 9 and (d) ∆P = 12, respectively. The green

(red) points illustrate the local minima (maxima) of the potential

determining the location of a stable (unstable) fixed point.

for comparing to the Hamiltonian case, it might be helpful to “unravel”

the cylinder, i.e. assume that phases can take arbitrary values in R).

Two fixed points exist for 2K > ∆P. The physical reason is that

a steady operation of the grid is possible only when the transmission

capacity of the line is larger than the power that must be transmitted.

The location of the two fixed points Fk = (x∗, ẋ∗) are specified by the

conditions ẋ∗ = 0, ẍ∗ = 0. The eigenvalues of the Jacobian at these

points are given by

F1 : x∗ = arcsin
∆P
2K

(4.68)

λ
(1)
± = −α

2
±
√(α

2

)2
− 2K cos

(
arcsin

∆P
2K

)
(4.69)

F2 : x∗ = π − arcsin
∆P
2K

(4.70)

λ
(2)
± = −α

2
±
√(α

2

)2
+ 2K cos

(
arcsin

∆P
2K

)
. (4.71)

The fixed point F1 is stable: Depending on α, the eigenvalues are either

both real and negative or complex with negative real values. The fixed

point F2 is a saddle, as λ
(1)
+ is always real and positive while λ

(1)
− is

always real and negative.

At 2K = ∆P these two fixed points vanish in an inverse saddle-node

bifurcation. No steady operation is possible for 2K < ∆P as the load

exceeds the capacity of the link. The nature of this bifurcation becomes

most obvious when we consider the potential function introduced in the

Hamiltonian formulation (4.36). The dynamical system (4.67) can be

viewed as the equation of motion of a mechanical particle moving in a

tilted washboard potential with friction

d2x
dt2 = −α

dx
dt
− dV(x)

dx
(4.72)
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(b)

(c)

(d)

(a)

Figure 4.2: Global stability phase diagram in parameter space for an ele-

mentary power grid consisting of one generator and one consumer

(cf. [84]). The dashed red line shows the approximate phase bound-

ary (4.85) in the case of low friction α. The dotted horizontal lines

labelled by letters indicate the parameter values at which the po-

tential V has been drawn in Fig. 4.1.

with V(x) = −∆Px− K cos(x). (4.73)

The tilted washboard potential V(x) and the critical points are illus-

trated in Fig. 4.1. When the tilting ∆P is increased, maxima and min-

ima approach each other. At ∆P = 2K the critical points collide and

vanish in an inverse saddle-node bifurcation, as previously explained

by the form of the eigenvalues (4.68). This mechanical analog has been

analyzed in great detail in statistical physics (see [83, 84] and references

therein).

4.5 local vs. global stability

How about the global stability? Here we focus on the mathematical

aspects of global stability and confine ourselves to the elementary ex-

ample introduced in the previous section. Numerical studies for large

complex networks were recently presented in [85, 73].

The global stability properties of the two-element grid are summa-

rized in the parametric portrait in Fig. 4.2, cf. also [83]. For ∆P > 2K,

there is no fixed point as discussed above. All trajectories converge to

the global attractor – a limit cycle representing a run-away solution.

For ∆P < 2K and strong damping, the stable fixed point F1 is a global

attractor. For weak damping, there exists a stable limit cycle, which

coexists with the stable fixed point. The system will converge to either

of them, depending on which basin of attraction the initial conditions

belong to. This weak damping regime characterizes regular power grid

operation such that the coexistence might be typical of real world power

grids.

The critical damping αc(∆P, K) is defined by the boundary that sepa-

rates these two regions in the parametric portrait. At the boundary, the

limit cycle emerges from a homoclinic orbit of the saddle fixed point in a

homoclinic bifurcation, as illustrated in Fig. 4.3. Along the homoclinic
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Figure 4.3: Homoclinic bifurcation from globally stable fixed point to coexis-

tence of limit cycle and fixed point in the two-element system.

Black lines indicate the stable/unstable manifolds of the fixed

points, brown lines indicate the homoclinic orbit. (a) In the glob-

ally stable region all trajectories converge to the stable focus (?).

(b) At the bifurcation, a homoclinic orbit (brown) is attached to

the saddle (◦). (c) The coexistence region. One unstable manifold

of the saddle extends to the limit cycle, which has emerged from

the homoclinic orbit. Parameters are: K̃ = 2K
α2 , P̃ = ∆P

α2 , R̃ = ∆P
2K .

orbit, the phase x increases 2π. The boundary intersects the saddle-

node bifurcation line (∆P = 2K) at a numerically determined value of
α√
K
≈ 1.69. For α√

K
& 1.69, the saddle-node bifurcation and the homo-

clinic bifurcation combine to a saddle-node homoclinic bifurcation (cf.

[86], Fig. 7.2).

An analytical approximation for the border between the globally sta-

ble and the coexistence regime can be obtained in the low-friction limit

[84]. In order to determine stability criteria according to Lyapunov’s

second method [87], we define the energy E of the system as

E =
(ẋ)2

2
− 2K cos(x). (4.74)

It is to be noted that this energy E is not identical with the Hamiltonian

H since this does not include the tilting introduced by the damping α.

The change of energy is thus

dE
dt

= ẍẋ + 2K sin(x)ẋ. (4.75)

Inserting equation (4.67) into (4.75) yields

dE
dt

= (∆P− 2K sin(x)− αẋ) ẋ + 2K sin(x)ẋ (4.76)

= ∆Pẋ− α(ẋ)2. (4.77)

If the average energy over one full period T decreases for all initial

conditions for all time, the system is in the globally stable regime. The

condition for the border between the globally stable and the coexistence

regime is therefore described by:

dE
dt

T

= 0. (4.78)

Hence

∆PẋT − αẋ2T
= 0 (4.79)
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is the condition for the border between the globally stable and the

coexistence regime.

We can now calculate

ẋT
=

1
T

∫ T

0
ẋdt =

1
T

∫ π

−π
dx =

2π

T
(4.80)

and

ẋ2T
=

1
T

∫ T

0
ẋ2dt =

1
T

∫ π

−π
ẋdx (4.81)

=
1
T

∫ π

−π

√
2E(x, ẋ) + 4K cos(x)dx. (4.82)

Inserting equation (4.79), we get

∆P
2π

T
=

α

T

∫ π

−π

√
2E(x, ẋ) + 4K cos(x)dx. (4.83)

At the parameters where a globally stable fixed point loses global

stability, there will exist a trajectory of x which will satisfy ẋ = 0 at

each successive peak of the potential landscape (cf. Fig. 4.1). Therefore

we have Epeak = 2K. At the low friction approximation, we can neglect

energy dissipation and hence assume E to be constant throughout the

period. So we substitute E(x, ẋ) = 2K in (4.83):∫ π

−π

√
4K + 4K cos(x)dx = 8

√
2K. (4.84)

We thus find for the low-friction approximation the following border

between the globally stable and the coexistence regime (cf. (4.83))

∆P =
4
√

2
π
· α
√

K. (4.85)

The excellent agreement of the low-friction approximation (red line)

for α/
√

K < 0.6 with the numerically calculated border (blue curve)

separating the two regimes is illustrated in Fig. 4.2.

4.6 instabilities with and without overload

The regular operation of a power grid is described by a stable fixed point

of the oscillator model (4.20). When a parameter, such as the power Pj
or the transmission capacity Kjk, is varied smoothly, in some cases this

fixed point can be lost, which signals an eventual desynchonization of

the grid. If the local frequency deviates from the reference Ω by more

than a fixed security margin (typically 200 mHz, cf. [88]), an emergency

shutdown is carried out which can lead to a large-scale power outage

(see, e.g., [89, 56, 57]). In this section we discuss the physical aspects

of this instability.
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We first note that a stable fixed point can be lost only via a saddle-

node bifurcation as described by Lemma 4.3.3. The fixed point is stable

iff the real part of all eigenvalues of the Jacobian is smaller than or equal

to zero. The bifurcation thus occurs when

<(λ`±)→ 0 ⇔ µ` → 0. (4.86)

for any ` ∈ {2, . . . , N}. We recall that µ1 = 0, which corresponds to a

global shift of the phases θj, has no physical significance.

Interestingly, the loss of a stable fixed point is generally not equiva-

lent to an overload of one or more transmission lines. In particular, we

can distinguish two different scenarios.

4.6.1 In normal operation, instability implies overload

When a power grid is only weakly loaded, the phase differences along

each edge remain small. The power flow over the transmission line (j, k)

increases monotonically with the phase difference as long as |θj− θk| ≤
π/2 (cf. equation (4.15)). If this condition holds for all edges in the

network, the grid is dynamically stable, as proved in Corollary 4.6.1

below, and we can find a direct graph theoretic interpretation of any

bifurcation. We call this normal operation.

Corollary 4.6.1. A fixed point is stable if |θ∗i − θ∗j | ≤ π/2 holds for

all edges (i, j) of the network.

Proof. We define the residual capacity of each transmission line as

Kred
ij = Kij cos(θj − θi). (4.87)

If |θ∗i − θ∗j | ≤ π/2 holds for all edges, then ∀i, j ∈ ZN

0 ≥ Kij cos(θ∗i − θ∗j ) (4.88)

= Kij

√
1− sin2(θj − θi)

=
√

K2
ij − F2

ij (4.89)

where Fij = Kij sin (θj − θi) is the power flow from node j to node i. Let

us define a meta-graph G̃ with the same set of vertices and edges as

the original power grid, but with edge weights wij = Kred
ij . The Hesse

matrix M as defined in (4.48) then becomes the Laplacian matrix of

the meta-graph (details in Appendix 4.A). It is a well known result [52]

that the eigenvalues of the Laplacian of a graph with non-negative edge

weights satisfy:

0 = µ1 ≤ µ2 ≤ · · · ≤ µN . (4.90)

Stability of the fixed point directly follows from theorem 4.3.1.
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Figure 4.4: Bifurcation due to an isolated overload. At the bifurcation the

marked edge becomes overloaded and the meta-graph G̃ decom-

poses into two fragments. (a) Model network based on the topology

of the British high-voltage transmission grid [90, 26]. Ten out of

120 nodes are randomly chosen to be generators with Pj = +11s−1

(�), all others have Pj = −1s−1 (◦). All edges have the same trans-

mission capacity K. The color code shows Kred defined in (4.87)

at the bifurcation K = Kc. (b) The second eigenvalue µ2 of the

matrix M, the phase difference θj − θk and the load sin(θj − θk)
for all edges as a function of the transmission capacity K. At the

bifurcation exactly one edge (marked in panel (a)) is fully loaded,

θj − θk = π/2. (c) The Fiedler vector v2 at the bifurcation. (d)

Dynamical instability after reducing the transmission capacity to

K = 0.98× Kc. The color coding of the nodes is the same as in

panel (c).

Corollary 4.6.2. If |θ∗i − θ∗j | ≤ π/2 holds for all edges (i, j), then

whenever a fixed point undergoes a bifurcation, all connections between

two components of the grid will become fully loaded.

Proof. As shown in Corollary 4.6.1, if |θ∗i − θ∗j | ≤ π/2 holds for all

edges (i, j), then M is the Laplacian of the meta graph G̃. It is shown

in Corollary 4.A.1 that the multiplicity of the eigenvalue 0 in a graph’s

Laplacian equals the number of connected components of the graph [91,

92].

Theorem 4.3.1 tells us that any bifurcation of a fixed point will be

accompanied by one more eigenvalue of the Hesse matrix M becoming 0,

which implies G̃ splitting into one more component. This is equivalent

to all edges between the components becoming fully loaded:

|Fij| = Kij ⇐⇒ Kred
ij = 0. (4.91)

An example for such a bifurcation is shown in Fig. 4.4 for a model grid

based on the topology of the British high-voltage transmission grid [26].

The second eigenvalue µ2 indicating dynamical stability is decreasing

with decreasing transmission capacity K and vanishes at the bifurcation

point K = Kc. At the bifurcation a single edge connecting the north

of Scotland to the rest of the grid is fully loaded, θj − θk = π/2, such
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that the meta-graph G̃ gets disconnected. Physically speaking, the fixed

point is lost because of transmission line overload.

When the fixed point is lost for K < Kc, the disconnected compo-

nents lose synchrony with each other. The components may remain

synchronous internally, as depicted in Fig. 4.4 (c), where the two com-

ponents, colored green and red, diverge from each other with time, but

the frequencies within each component remain close.

The two components are readily identified by the eigenvector v2 as-

sociated with µ2, the so-called Fiedler vector [93, 52, 94]:

Mv2 = µ2v2. (4.92)

When G̃ becomes disconnected at the bifurcation, the Fiedler vector is

given by

v2 =
1√

N1 + N2
(
√

N2/N1, . . .︸ ︷︷ ︸
N1 times

,−
√

N1/N2, . . .︸ ︷︷ ︸
N2 times

)T, (4.93)

assuming that the nodes are labeled such that the first component is

given by 1, . . . , N1 and the second by N1 + 1, . . . , N1 + N2. The Fiedler

vector thus predicts the dynamics when stability is lost as shown in Fig.

4.4 (d).

 
(a) Kred

Kred=−2.8

−3

0

3

6

9

12

0

0.5

|!
j−
! k|/"

(b)

0

0.5

1

|s
in

(!
j−
! k)|

11  11.5 12  12.5 13  
0

0.1

0.2

0.3

K

µ
2

11 11.5 12
0.96

0.98

1

 

 (c)

−0.4

−0.2

0   

0.2 

0.4 

0 5 10 15
−5

0
5

10
15

time t [sec]

d!
j/d

t  
[2
" 

H
z]

(d)

Figure 4.5: Bifurcation without overload. At the bifurcation the marked edge

is operating“beyond”an overload. (a) Model network based on the

topology of the British high-voltage transmission grid [90, 26]. Ten

out of 120 nodes are randomly chosen to be generators with Pj =

+11s−1 (�), all others have Pj = −1s−1 (◦). All edges have the

same transmission capacity K. The color code shows Kred defined

in (4.87) at the bifurcation K = Kc. (b) The second eigenvalue

µ2 of the matrix M, the phase difference φj − φk and the load

sin(φj− φk) for all edges as a function of the transmission capacity

K. At the bifurcation one edge (marked by an arrow in panel (a)) is

operating beyond overload |φj− φk| > π/2. (c) The Fiedler vector

v2 at the bifurcation. (d) Dynamical instability after reducing the

transmission capacity to K = 0.98× Kc. The color coding of the

nodes is the same as in panel (c).
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4.6.2 Instability without overload

A different scenario can occur when the condition |θ∗i − θ∗j | ≤ π/2 is

not satisfied for one or more edges. This is possible for a stable fixed

point in complex networks at the edge of the stable parameter region.

Then we can have Kred
jk < 0 such that the meta-graph is no longer a

non-negative graph and the results discussed in the previous section do

not apply.

In this case the bifurcation of a fixed point is generally not asso-

ciated with any overload. In particular, the grid is already operating

‘beyond’ an overload at the bifurcation point. An example of such a

bifurcation is shown in Fig. 4.5. The marked edge has a phase differ-

ence of |θ∗j − θ∗k | > π/2 such that Kred
jk < 0. The loss of stability is a

collective effect of the entire grid and in particular there is no simple

graph theoretical interpretation of the bifurcation. Consequently, the

Fiedler vector defined in (4.92) only gives a limited insight into the

desynchronization dynamics when the fixed point is lost.

4.6.3 Relevance of bifurcation scenarios

The two bifurcation scenarios regularly occur in networks with complex

topologies. We have analyzed the bifurcation for 200 realizations of the

model network based on the topology of the British power grid with

random generator positions (see Fig. 4.6). We find that the loss of the

steady state is caused by an isolated overload in approximately 40% of

the sample networks while the grid is operating beyond overload in the

remaining 60% of all cases.

We note that the loss of a steady state and the following desynchro-

nization generally leads to a large-scale power outage (cf. [89, 56, 57]).

In current power grids this can happen only in periods of extreme loads

while the phase difference is generally much smaller than π/2 in periods

of average load. However, extreme loads are expected to become much

more likely in the future if the power grid is not sufficiently adapted to

the energy transition to renewable sources [64].

The two examples shown in Fig. 4.4 and Fig. 4.5 capture the essential

mathematical aspects of this bifurcation for two model networks. Hence

they are of interest both for fundamental research and as a guideline

for the the analysis of real-world power grids though being simplified.

In the figures we have illustrated the system stability for two model

networks as a function of the parameter K in the very tradition of

the physics literature on oscillator models (cf. [1, 4, 2] and references

therein). In real world grids, the connectivity Kij is generally fixed while

generation and load can change strongly. As an essential parameter

affecting stability is the transported power P relative to the connectivity

Kij, we vary Kij to study qualitative changes in the collective dynamics

of the network.
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Figure 4.6: Statistical analysis of the different bifurcation scenarios based on

an ensemble of 200 different model networks. Shown is a histogram

of the maximum phase difference maxedges(j,k) |θj− θk| at the bifur-

cation point. In approximately 40% of all realizations the steady

state is lost because of an isolated overload as shown in Fig. 4.4. In

approximately 60% of all realizations the grid is operating beyond

an overload at the bifurcation point, i.e. |θj − θk| > π/2 for at

least one edge, as shown in Fig. 4.5. Results have been obtained

for 200 realizations of the model network based on the topology

of the British power grid with random generator positions.

4.6.4 Braess’ paradox

We finally note that a variety of parameter changes can induce a bi-

furcation. Stability can be lost due to an increase of the power load or

the damage of a transmission line, but surprisingly also by increasing

the transmission capacity or even by putting a new line into operation.

Fig. 4.7 shows an example of this effect called Braess’ paradox [32]. A

detailed discussion of Braess’ paradox in supply networks is presented

in [36, 37].

In this example (Fig. 4.7 ) the stable fixed point ceases to exist after

a saddle node bifurcation when the capacity of the upper transmission

line is increased to a critical value κ > κc = 17.15. Again, we find that

the grid is no longer in normal operation in the vicinity of the bifurca-

tion as the phase difference θ∗5 − θ∗4 exceeds π/2 already for κ > 15.2.

This constitutes a clear example that adding lines or improving line

capacities may also induce instabilities without overloads via Braess’

paradox [36, 37].

4.7 conclusions and discussion

How can supply networks become unstable? In simple systems where

the loads are the only relevant variables, the answer is simple: insta-

bilities emerge if and only if one or more elements overload, cf. also

[95].
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As we intended, we have demonstrated in this article how instability

can also emerge in the absence of any overloads. We have explicated

stability conditions for fixed points (steady operation) of oscillatory

power grid models [19, 26, 71], where in addition to the pure flows,

phase variables play a crucial role. We linked a Hamiltonian descrip-

tion to existence and bifurcation types of fixed points. In particular, we

demonstrated that instabilities may emerge with and without transmis-

sion line overloads and that – through Braess’ paradox [36, 37] – adding

new lines may also create collective instabilities without line overloads.
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Figure 4.7: Loss of stability due to the increase of local transmission capacity

in a circular network. A stable (—) and an unstable (−−−) fixed

point vanish in a saddle-node bifurcation at the critical point κc =
17.15. The stable fixed point (blue) is lost. (a) Topology of the

network. The capacity of the upper edge (3, 4) is increased by

an amount κ. (b) Phase differences along the edges of the cycle.

Close to the bifurcation, the phase difference |θ5− θ4| exceeds π/2
for the stable fixed point (see inset). (c) Eigenvalues of the Hesse

matrix M, which yield the eigenvalues of the Jacobian via (4.62).

Parameters are K = 50 and P0 = 49.

Like the coupled phase oscillator model described here in the context

of power grids, the function of many physical and biological supply net-

works depends on and involves quantities other than the network load.

A notable example from biology is leaf vasculature and stomatal patch-

iness. Stomatal patchiness is the oscillatory dynamics of the opening

and closing of patches of leaf stomata, which is believed to be the result

of hydraulic and elastic coupling between neighbouring stomata. This

dynamics can arise in a self organised manner in situations where a uni-

form stomatal aperture should be expected. Although recent progress

has been made, stomatal patchiness is still not completely understood

[96], especially in the context of the underlying hydraulic coupling of

the stomata to the vascular system.
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Similarly, the plant phloem is a dynamical transport system involving

a number of interdependent quantities. The phloem vascular elements

transfer sap (a sugar rich water solution) from and between the photo-

synthesising tissues to the rest of the plant. Sugars are being loaded in

the phloem actively or passively at the sites of photosynthesis and the

rate of sugar production and loading (determining the vascular network

operation) can vary from site to site. The sugar concentration is a field

of independent variables coupled to the network load (phloem fluid

flow), and depending on the loading regime, the system has a potential

of a rich dynamical behaviour [97, 98]. The plant phloem might thus

constitute a biological candidate system where instabilities of normal

supply function may emerge without overloads.
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A P P E N D I X

4.a properties of graph laplacian

Definition 4.A.1. Let G be a weighted graph with n nodes with all the

edge weights wij ≥ 0. The Laplacian M is an N × N matrix given by:

Mij = −wij + δij

N

∑
k=1

wik (4.94)

Theorem 4.A.1. In a fully connected graph G, the Laplacian L has

exactly one zero eigenvalue.

Proof. The Laplacian M obviously has one zero eigenvalue: the corre-

sponding eigenvector being v0 = (1, 1, · · · , 1):

(Mv0)i = ∑
j

Mijv0j

= ∑
j

Mij

= ∑
j

[
∑

k
δijwik − wij

]
= 0

(4.95)

Suppose there is another eigenvector v′ with eigenvalue 0. Then:

0 = v′T Mv′

= ∑
ij

v′i Mijv′j

= ∑
ij

v′i

(
∑

k
δijwik − wij

)
v′j

= ∑
j

(
∑

k
wjk

)
v′2j −∑

ij
wijv′iv

′
j

= ∑
i<j

[√
wij

(
v′i − v′j

)]2

(4.96)

Therefore it follows that
√wij(v′i − v′j) = 0 for all i, j ∈ ZN. This

implies whenever two nodes are connected by an edge (wij 6= 0), vi = vj.

Now, by virtue of G being connected, v′i = v′j must hold for all (i, j).
But that implies v′ = v0, up to a multiplicative constant.

Corollary 4.A.1. The multiplicity of 0 eigenvalue in the Laplacian of

a graph equals its number of connected components.
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Proof. For a graph with c connected components, if the node indices

are chosen properly, the Laplacian L will be in a block diagonal form

with c blocks. Then following the same reasoning as in Theorem 4.A.1,

the result follows.
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We study multistability in phase locked states in networks of phase oscillators under both

Kuramoto dynamics and swing equation dynamics—a popular model for studying coarse-scale

dynamics of an electrical AC power grid. We first establish the existence of geometrically frus-

trated states in such systems—where although a steady state flow pattern exists, no fixed point

exists in the dynamical variables of phases due to geometrical constraints. We then describe the sta-

ble fixed points of the system with phase differences along each edge not exceeding p=2 in terms

of cycle flows—constant flows along each simple cycle—as opposed to phase angles or flows. The

cycle flow formalism allows us to compute tight upper and lower bounds to the number of fixed

points in ring networks. We show that long elementary cycles, strong edge weights, and spatially

homogeneous distribution of natural frequencies (for the Kuramoto model) or power injections (for

the oscillator model for power grids) cause such networks to have more fixed points. We generalize

some of these bounds to arbitrary planar topologies and derive scaling relations in the limit of large

capacity and large cycle lengths, which we show to be quite accurate by numerical computation.

Finally, we present an algorithm to compute all phase locked states—both stable and unstable—for pla-

nar networks. VC 2017 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4994177]

The functions of many networked systems in physics, biol-

ogy, or engineering rely on a coordinated or synchronized

dynamics of their constituents. In power grids for example,

all generators must run at the same frequency and their

phases need to lock to guarantee a steady power flow.

Here, we analyze the existence and multitude of states

exhibiting this phase locking behaviour. Focusing on edge

and cycle flows instead of the nodal phases, we derive rigor-

ous results on the existence and number of such states.

Generally, multiple phase-locked states coexist in networks

with edges capable of carrying high flows, long elementary

cycles, and a homogeneous spatial distribution of natural

frequencies or power injections. Utilizing concepts from

the graph theory, we derive scaling relations for the num-

ber of such states in plane embedded networks. We also

offer an algorithm to systematically compute all phase-

locked states, both stable and unstable.

I. FROM KURAMOTO OSCILLATORS TO POWER
GRIDS

Coupled oscillator models are ubiquitous in science and

technology, describing the collective dynamics of various

systems on micro- to macro-scale. Research on coupled

oscillators dates back to Christian Huygens, who noticed that

two clocks synchronize when they are coupled.1 One of the

most important mathematical models was introduced by

Kuramoto2,3 and successfully applied to describe the collec-

tive dynamics of coupled Josephson junctions,4 neuronal net-

works,5 chemical oscillators,6 and a variety of other

synchronization phenomena.7–10

That model3 describes the dynamics of N coupled limit

cycle oscillators. The equations of motions for the phases

hj; j 2 f1;…;Ng are given by

d

dt
hj ¼ xj þ

XN

‘¼1

Kj;‘ sin h‘ � hj

� �
: (1)

The coupling matrix is assumed to be symmetric, Kj;‘ ¼ K‘;j,

and xj are the natural frequencies of the oscillators.

Throughout this article, we consider systems where all

Kj;‘ � 0, i.e., the units attract each other and do not repel.

A similar model of second-order oscillators describes

the collective phenomena of animal flocks11,12 or human

crowds13 as well as the coarse-scale dynamics of power

grids.14–20

For power grids, for instance, the units j describe syn-

chronous machines, generators, or motors, whose state is

completely described by their phase hj and the phase velocity
_hj relative to the reference frequency of the grid, typically

rotating at 50 Hz or 60 Hz. The acceleration (deceleration) of

the machines is proportional to the sum of the mechanical

power Pj generated (consumed) by the machine including
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damping and electric power exchanged with the grid. The

detailed equations of motion are given by

Mj
d2

dt2
hj þ Dj

d

dt
hj ¼ Pj þ

X
‘¼1

Kj;‘ sin h‘ � hj

� �
; (2)

where Mj is an inertia term and Dj a damping constant. The

coupling constants Kj;‘ ¼ U2Bj;‘ are determined by the volt-

age U of the grid, which is assumed to be constant, and the

admittance Bj;‘ of the electrical transmission line joining

node j and node ‘. The flow of electric real power from node

‘ to node j is

Fj;‘ ¼ Kj;‘ sinðh‘ � hjÞ ¼ Kj;‘Sj;‘: (3)

It is useful to describe the interaction topology of the system

as a weighted graph G(V, E), whose vertex set V is identical

to the set of oscillators and edge set E is given by the set of

all inter-oscillator coupling pairs, i.e., all pairs with K‘;j > 0.

We use the term network21 (rather than the term graph) for

the entire system with given natural frequencies xj or the

powers Pj.

Here, we distinguish two types of synchronization in

oscillator networks. Traditionally, the emergence of partial

synchrony has received the most interest of the physics com-

munity.2,3,7,8 In his seminal work, Kuramoto investigated a

set of oscillators with global coupling, Kj;‘ ¼ K=N, and natu-

ral frequencies drawn at random from a unimodal symmetric

distribution gðxÞ. If the coupling constant K exceeds a criti-

cal value Kc, a fraction of the oscillators start to synchronize

in the sense that they rotate at the same angular velocity

although their natural frequencies differ. In this state of par-
tial frequency locking, commonly referred to in the

Kuramoto oscillator literature as “partial synchrony,”8 the

phases of parts of the oscillators are ordered, but they are not

strictly phase-locked, such that the phase difference of two

synchronized oscillators ðhj � h‘Þ is generally small but not

constant.

In this article, we analyze the properties of globally
phase-locked states, where all oscillators synchronize and

the phase differences ðhj � h‘Þ are constant for all pairs

ðj; ‘Þ. These states are especially important for power grids,

as they describe the regular synchronous operation of the

grid.14–18 If this state is lost due to local outages or accidents,

the grid will fragment into asynchronous islands which can

no longer exchange electric energy.22 For instance, the

European power grid fragmented into three asynchronous

areas on November 4th 2006 after the shutdown of one trans-

mission line in Northern Germany. As a result, south-

western Europe suffered an under-supply on the order of

10 GW and approximately 10 million households were

disconnected.23

Without loss of generality, we take
P

jxj ¼ 0 orP
jPj ¼ 0, respectively, by invoking a transformation to a

co-rotating frame of reference. The globally phase-

locked states are then the fixed points of the system. For

both the Kuramoto model and the power grid model,

these states are given by the solutions of the transcenden-

tal equations

Pj þ
XN

‘¼1

Kj;‘ sin ðh‘ � hjÞ ¼ 0 for all j 2 f1;…;Ng; (4)

replacing Pj by xj for the Kuramoto model. In the following, we

analyze the influence of the network topology given by the cou-

pling matrix Kj;‘ on the existence of a fixed point. All results

below hold for both models; nevertheless, our intuition heavily

relies on the interpretation of Fj;‘ ¼ Kj;‘ sin ðh‘ � hjÞ as a flow

which is inspired from the power grid model. The results can be

generalized to arbitrary coupling functions f instead of the sine

(see, e.g., Refs. 24 and 25). In the following, we mostly restrict

ourselves to the common sine coupling for the sake of clarity.

We note that the second order power grid model (2) evi-

dently describes a different system from the first order

Kuramoto model (1). Nevertheless, there are deep underlying

connections between these two. In the context of power

grids, in the overdamped limit, one recovers the first order

Kuramoto model. The relation of first and second order mod-

els in the context of coupled Josephson Junctions was dis-

cussed in detail in Refs. 26 and 27. Partial synchronization in

first and second order models was reviewed in Ref. 28.

II. THE NATURE AND BIFURCATIONS OF FIXED
POINTS

Both the Kuramoto system and the oscillator model of

power grids share the same set of fixed points (4). It has been

shown that the similarity between these two systems runs

deeper, namely, the linear stability properties of those fixed

points are identical.29,30 In this section, we briefly review

some basic results on the stability of the fixed points.

We analyze the dynamical stability of a certain fixed

point h� ¼ ðh�1;…; h�NÞ by defining the potential function

V h1; h2;…; hNð Þ ¼ �
X

j

Pjhj �
1

2

X
i;j

Kij cos hi � hj

� �
: (5)

The fixed points correspond to the local extrema of this

potential, where @V
@hj
¼ 0 for all j. A fixed point h� is asymptot-

ically stable if the Hesse matrix H of the potential function

Hðh�Þ ¼

X
‘

Kred
1;‘ �Kred

1;2 � � �

�Kred
2;1

X
l

Kred
2;‘ � � �

..

. ..
. . .

.

0
BBBBBB@

1
CCCCCCA (6)

with the residual capacity

Kred
j;‘ ¼ Kj;‘ cosðh�j � h�‘ Þ (7)

has positive eigenvalues only. It is worth noting that H has

one eigenvector v1 ¼ ð1; 1;…; 1Þ with eigenvalue l1 ¼ 0

because any fixed point h� is arbitrary up to an additive con-

stant c. As such a global phase shift does not affect the lock-

ing of the phases, we can discard it in the following and

concentrate on the stability transversely to the solution space

fh� þ cð1; 1;…; 1Þjc 2 Rg.
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Lemma 1. Let the eigenvalues of H be ordered such that
l1 ¼ 0 and l2 � � � � � lN. If for a given network topology
and a given fixed point,

lk > 0; for all k 2 f2; 3;…;Ng; (8)

then this fixed point is transversally asymptotically stable for
both the Kuramoto system and the power grid model system.
If one of the lk < 0, then the dynamical system is linearly
unstable (this lemma and its proof have been presented in
Ref. 29).

Using some results from the bifurcation theory, it has

been shown in Ref. 29 that a stable fixed point can only be

lost by an inverse saddle-node bifurcation when one of the

eigenvalues becomes zero, l2 ¼ 0. At this point, linear

stability analysis is not sufficient to predict the stability of

the fixed point, but it is expected that the fixed point is

unstable.31

More insights into the loss of a fixed point when the

phase differences across all edges in the network are suffi-

ciently small can be gained:

Corollary 1. Consider a connected network. It is suffi-
cient (but not necessary) for a fixed point h� to be transver-
sally asymptotically stable; if the condition

cosðh�i � h�j Þ > 0 (9)

holds for all edges (i, j) in the network, then the network is
said to be in “normal operation.”

Proof. To this end, we first define a metagraph as

follows.

Definition 1 (Metagraph). Given a graph G(V, E) and a
set of flows Fuv across each edge e(u, v), its metagraph ~G is
an undirected graph with vertex set V and edge set E0 defined
as follows. For all edges eðu; vÞ 2 E, with weight Kuv; 9, an
edge eðu; vÞ 2 E0 with weight Kred

uv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

uv � F2
uv

p
, as per (7).

Then, the matrix H as defined in (6) is seen to be the

Laplacian matrix of the metagraph ~G. The eigenvalues of a

Laplacian of a connected undirected graph with positive

edge weights are always non-negative21 such that we obtain

the result. �

We note that this sufficient condition for stability has

been shown in Ref. 32 using the Gershgorin circle theorem.

During normal operation, an eigenvalue of the Hesse

matrix H, as defined in (6), can become 0 only when ~G
disconnects into two (or more) components. Such a split-

up occurs only when Kred
j;‘ ¼ 0 for all the transmission

lines connecting two certain parts (denoted by G1 and G2)

of the network, meaning that these lines are completely

saturated

sinðh�j � h�‘ Þ ¼ 61 ) jFj;‘j ¼ Kj;‘

for all ðj; ‘Þ 2 E; j 2 G1; ‘ 2 G2: (10)

Another scenario for the loss of stability is that one or more

transmission lines leave normal operation. Then, the edge

weights become effectively negative, such that a simple

graph-theoretic interpretation of the bifurcation is no longer

possible.29,58

III. CYCLE FLOWS AND GEOMETRIC FRUSTRATION

A. Flow conservation and the dynamics condition

It is instructive to divide the defining equation (4) of a

fixed point into two parts. First, every fixed point has to sat-

isfy a dynamic condition which is nothing but the conserva-

tion of the flow at every node of the network

Pj þ
XN

‘¼1

Kj;‘Sj;‘ ¼ 0 for all j 2 f1;…;Ng; (11a)

jSj;‘j � 1 for all edges ðj; ‘Þ: (11b)

Here,
P

‘Kj;‘Sj;‘ is the sum of all flows from the neighboring

nodes to the node j, while Pj is a source or sink term. The

second part of this condition reflects the fact that the trans-

mission capacity of each link is bound, such that the magni-

tude of the flow jFj;‘j cannot exceed the capacity Kj;‘. The

dynamic condition (11) holds for all flow networks also

including DC networks (i.e., Kirchhoff’s rules) and biologi-

cal network models.33,34

To obtain a better understanding of the possible solu-

tions, we slightly rephrase the dynamic condition (11). In

particular, we label all the L edges in the network with

e 2 f1;…; Lg. As the flows are directed, we have to keep

track of the ordering of the vertices connected by the edge e.

That is, each e corresponds to a directed link ðj; ‘Þ in the fol-

lowing. The ordering is arbitrary but must be kept fixed.

Then, we write Se ¼ Sj;‘ and Fe ¼ Fj;‘ for the flow over a

link e ¼̂ ðj; ‘Þ. Furthermore, we define the unweighted edge

incidence matrix I 2 RN�L (Ref. 21) via

Ij;e ¼
þ1 if node j is the head of edge e ¼̂ ðj; ‘Þ;
�1 if node j is the tail of edge e ¼̂ ðj; ‘Þ;
0 otherwise;

8><
>: (12)

and the weighted edge incidence matrix ~K 2 RN�L with the

components ~Kje ¼ KeIje.

The dynamic condition (11) then reads

Pj þ
XL

e¼1

Ij;eFe ¼ 0 for all j ¼ 1;…;N; (13a)

jFej � Ke for all e ¼ 1;…; L (13b)

in terms of the flows or

Pj þ
XL

e¼1

~Kj;eSe ¼ 0 for all j ¼ 1;…;N; (14a)

jSej � 1 for all e ¼ 1;…; L (14b)

in terms of the sine factors. Here, F ¼ ðF1;…;FLÞT and S

¼ ðS1;…; SLÞT are vectors in RL. The matrix ~K has N rows,

but its rank is only ðN � 1Þ. This is due to the fact that the

sum of all rows is zero as
P

j
~Kj;e ¼ 0 since each edge has

exactly one head and one tail. Hence, the solutions of the lin-

ear set of Eq. (14a) span an affine subspace of RL whose

dimension is ðL� N þ 1Þ. This statement will later be
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rigorously proved in Lemma 2. In many important applica-

tions, L is much larger than the number of nodes N, such that

we have a high dimensional submanifold B of RL with every

S 2 B being a solution of (14) and hence a candidate for a

fixed point of (1) and (2). However, the set of solutions of

the dynamical equations can also be empty if the capacities

Kj;‘ are too small. In fact, the condition (14b) defines a bound

convex polytope in RL. The solution of the full dynamical

conditions (14) is given by the intersection of this polytope

and the ðL� N þ1Þ dimensional affine subspace.

We can further characterize the solution of the dynamic

conditions by establishing that the homogeneous solutions of

the system (14a) are just the cycle flows which do not affect

flow conservation. As the number of fundamental cycles in a

network is ðL� N þ 1Þ, the dimension of the solution space

is also given by ðL� N þ 1Þ. The derivation of these results

is as follows.

Definition 2 (Simple cycle). Given an undirected graph
G(V, E), a closed path c ¼ ðv1; v2;…; vl; v1Þ where no vertex
apart from v1 occurs twice is called a simple cycle (Ref. 36,
p. 21).

Definition 3 (Cycle basis). Given a connected graph
G(V, E) with L edges and N vertices, the set of all simple
cycles C forms a vector space over the two element field
GFð2Þ ¼ f0; 1g, with the set symmetric difference being the
addition operator. This vector space has dimension
L� N þ 1. A basis BC of this vector space is called a cycle
basis of the graph G.

Definition 4 (Signed characteristic vector of a cycle).
An arbitrary assignment of a direction to each edge of an
undirected graph G, which results in a directed graph, is
called an orientation Gr.36 Given a graph G with L edges
and N vertices and one such orientation, there exists an
injective mapping from the set C of all simple cycles of G to
RL as follows:

C! RL;

c 7! zc;

zc
e ¼

0; if e is not in c;

1; if e ¼ ðvi; viþ1Þ and viþ1 is the head of e;

�1; if e ¼ ðvi; viþ1Þ and viþ1 is the tail of e:

8><
>:

zc is called the signed characteristic vector of each cycle.
Now, we show that any fixed point of the system can be

uniquely specified by a cycle flow along each cycle belong-

ing to a cycle basis of the underlying graph, along with an

arbitrary solution of (13).

Definition 5 (Cycle flow). Given a simple cycle c ¼
ðv1; v2;…; vl; v1Þ belonging to an undirected graph G(V, E),
a flow F is called a cycle flow if

Fj;k¼
fc if ðj;kÞ2fðv1;v2Þ;ðv2;v3Þ;…;ðvl�1;vlÞ;ðvl;v1Þg;
0 otherwise;

�
(15)

i.e., it is a constant nonzero flow along the cycle.
Lemma 2. Let SG be the set of all fixed points of a net-

work G satisfying the normal operation criteria (9). Then,

there exists a one-to-one function f c : SG 7!RL�Nþ1 that
maps each fixed point to a cycle flow vector.

Proof. Let hð0Þ be one (arbitrarily chosen) fixed point.

Let h be another. Then, we construct the mapping fc by prov-

ing that the flows for these two fixed point differ only by

cycle flows along each cycle.

Let Fð0Þ ¼ ðFð0Þe1
;Fð0Þe2

;…;Fð0ÞeL
Þ and F ¼ ðFe1;Fe2;…;

FeLÞ be the flows for the fixed points hð0Þ and h, respectively.

Then,

F� Fð0Þ ¼
X
c2BC

fczc; (16)

due to the result from the graph theory that the flow space of

an oriented graph Gr is spanned by the signed characteristic

vectors (Definition 4) of its cycles (Ref. 37, p. 311). Since by

definition the cycles in BC form a basis of the cycle space,

the coefficients fc are guaranteed to be unique. This con-

cludes the proof. �

We note that this mapping between fixed points and

cycle flows has previously been presented in slightly differ-

ent ways in Refs. 18 (supplementary material) and 38.

B. The winding number and the geometric condition

In addition to the dynamic condition, there is a geomet-

ric condition for the existence of a fixed point: a fixed point

exists if the flows Fj;‘ ¼ Kj;‘Sj;‘ satisfy the dynamic condition

(14) and if

for all edgesð‘;jÞ : 9ðh1;…;hNÞ such that Sj;‘¼ sinðh‘�hjÞ:
(17)

We now rephrase this condition in a more instructive

way. To this end, we assume that we have already obtained a

solution of the dynamic condition (14). Then, we can try to

successively assign a phase hj to every node j in the network.

Starting at a node j0 with an arbitrary phase hj0 , we assign

the phases of all neighboring nodes j1 such that sin ðhj1 � hj0Þ
¼ Sj0;j1 . We then proceed in this way through the complete

network to assign the phase of an arbitrary node jn,

hjn ¼ hj0 þ
Xn�1

s¼0

Djs;jsþ1
; (18)

where ðj0; j1;…; jnÞ is an arbitrary path from j0 to jn and we

have used a solution of the equation

Sj;‘ ¼ sinðDj;‘Þ (19)

for every edge ðj; ‘Þ.
In general, a given node jn can be reached from j0 via a

multitude of different paths. To define a unique set of phases

that satisfy the geometric condition (17), we must ensure that

Eq. (18) yields a unique phase regardless of which path is

taken from j0 to jn. This is equivalent to the condition that

the phase differences over every simple cycle (as defined in

Definition 2) in the network must add up to an integer multi-

ple of 2p.
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X
ðj;‘Þ2 cycle c

Dj;‘ ¼ 2mp; for some m 2 Z; (20)

where Dj;‘ is a solution of Eq. (19). Furthermore, it is suffi-

cient if (20) is satisfied by the cycles in the cycle basis of the

network defined in Definition 3: it will then automatically be

satisfied for all simple cycles of the network since the simple

cycles form a vector space.

However, there are two distinct solutions

Dþj;‘ ¼ arcsinðSj;‘Þ; (21a)

D�j;‘ ¼ p� arcsinðSj;‘Þ (21b)

of Eq. (19) which satisfy D6
j;l 2 ½�p; pÞ. To consider both,

we define a partition of the edge set

E ¼ Eþ [ E�; (22)

Eþ ¼ fðj; ‘Þ 2 EjDj;‘ ¼ Dþj;‘g; (23)

E� ¼ fðj; ‘Þ 2 EjDj;‘ ¼ D�j;‘g: (24)

Alternatively, we can define the two sets in terms of the

nodal phases as

Eþ ¼ fði; jÞ 2 Ej cosðhi � hjÞ > 0g; (25)

E� ¼ fði; jÞ 2 Ej cosðhi � hjÞ � 0g: (26)

We note that a fixed point where the plus sign is realized for

all edges (E� ¼ fg) is guaranteed to be linearly stable

according to corollary 1. We refer to it as normal operation.

To operationalize the geometric condition, we now

define the winding number (27) following the terminology

used by Ochab and Gora38 and Wiley et al.39

Definition 6 (Winding vector). Consider a connected
network with flows F. For every fundamental cycle c, the
winding number with respect to a partition E ¼ Eþ þ E� is
defined as

-c ¼
1

2p

X
e2E

zc
eDeðFeÞ (27)

with

DeðFeÞ ¼
arcsinðFe=KeÞ for e 2 Eþ
p� arcsinðFe=KeÞ e 2 E�:

�
(28)

The winding vector is defined as

- ¼ ð-1;…;-L�Nþ1ÞT : (29)

Using the winding number, we can reformulate the con-

ditions for the existence of a fixed point and establish a cor-

respondence between the description of fixed points in terms

of nodal phases of edge flows.

Theorem 7. Consider a connected network with power
injections P 2 RN and coupling matrix K 2 RN�N. Then,
the following two statements are equivalent:

1. h� is a fixed point, i.e., a real solution of Eq. (4).

2. F 2 RL satisfies the dynamic condition (13) and - 2
ZL�Nþ1 for some partition E ¼ Eþ þ E�.

Proof. We prove the theorem in two parts.

(1)) (2): If h� is a fixed point, then the flows F satisfy-

ing the dynamical condition (13) as given by (3) are

Fj;k ¼ Kj;k sin ðhk � hjÞ: (30)

Let us partition the edge set into Eþ and E– by

e ¼ ðj; kÞ 2 Eþ if cos ðhk � hjÞ > 0

E� if cos ðhk � hjÞ � 0:

�
(31)

We note the identity that

arcsinðsin ðxÞÞ

¼
�xþ ð2mx þ 1Þp if cos ðxÞ � 0

xþ 2mxp if cos ðxÞ > 0; for some mx 2 Z:

(

(32)

Combining this identity with the definition of De in (28) and

our chosen set partition (31) results in

for all ðj; kÞ 2 Eþ; Dj;k ¼ arcsinðFjk=KjkÞ;
¼ arcsinðsin ðhk � hjÞÞ;
¼ 2mjkpþ ðhk � hjÞ; (33)

for all ðj; kÞ 2 E�; Dj;k ¼ p� arcsinðFjk=KjkÞ;
¼ p� arcsinðsin ðhk � hjÞÞ;
¼ �2mjkpþ ðhk � hjÞ: (34)

Combining (33) and (34), we obtain Djk ¼ 2mjkpþ ðhk � hjÞ;
mjk 2 Z (choosing theþ sign for 2mjkp without loss of

generality).

Then, for any simple cycle c ¼ ðv1; v2;…; vl; v1Þ in the

cycle basis BC, the winding number is

-c ¼
1

2p

X
e2E

zc
eDeðFeÞ; (35)

¼ ðm12 þ m23;…;ml1Þ 2 Z; (36)

thus completing the first part of the proof.

(2) ) (1): Given a set of flows satisfying the dynamic

condition (13) and having integral winding numbers,

the fixed point h� can be constructed following Eqs. (17)

and (18).

This concludes the proof. �

C. Geometric frustration

The previous reasoning shows that we can face the fol-

lowing situation: given an oscillator network characterized

by the frequencies Pj and the capacity matrix Kj;‘, we can

find a solution of the dynamical conditions, such that the

flow is conserved at all nodes of the network. Nevertheless,

no fixed point exists as these solutions are incompatible with

the geometric conditions. In this case, we say that phase

locking is inhibited due to geometric frustration. We
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summarize this in a formal definition before giving some

examples for the importance of this phenomenon.

Definition 8. An oscillator network is said to be geomet-
rically frustrated if a solution of the dynamic conditions (11)
exists, but all solutions are incompatible with the geometric
conditions (20) such that no fixed point exists.

This definition builds on a generalized notion of geomet-

ric frustration introduced in mathematical physics.40 In that

context, a system with multiple state variables ðx1; x2;…; xnÞ
is called geometrically frustrated if for certain pair-wise cor-

relations between those variables, no steady state exist satis-

fying all these correlations simultaneously.

IV. EXAMPLES AND APPLICATIONS

In this section, we discuss the importance of geometric

aspects for the fixed points of an oscillator network with

different topologies. In particular, we analyze the number

of fixed points and show that geometric frustration can inhibit

phase locking, which may lead to counter-intuitive phenomena.

A. Trees do not suffer from frustration

By definition, a tree does not contain any cycle such that

the geometric condition (20) does not apply. Therefore, the

calculation of a fixed point of the power grid oscillator

model and the Kuramoto model as defined by Eq. (4) on a

tree reduces to the solution of the dynamic condition (11),

which is a linear set of equations. Moreover, we can find a

strong result on the number of stable and unstable fixed

points—see Corollary 2.

B. Multiple solutions in the cycle

We now consider the simplest nontrivial topology of a

cyclic network with only three nodes and three links with

equal strength K. The dynamical condition for the existence

of a fixed point then reads

K

0 1 �1

�1 0 1

1 �1 0

0
B@

1
CA S1;2

S2;3

S3;1

0
B@

1
CA ¼ P3

P1

P2

0
B@

1
CA (37)

and jSj;‘j � 1. In particular, for Pj¼ 0, any solution is a cycle

flow ðS1;2; S2;3; S3;1Þ ¼ S� ð1; 1; 1Þ.

Taking into account that there are two possible solutions

for the phase difference along each edge as per (21) and

since in order to satisfy the geometric condition (20), the

sum of phase differences along the cycle must equal 2mp for

some integer m 2 Z, we see that all fixed points must satisfy

D6
12 þ D6

23 þ D6
31 ¼ 2mp: (38)

Taking all combinations of either Dþ or D� and correspond-

ing possible values of m, we see that there are three intersec-

tions corresponding to three fixed points. These fixed points

are illustrated in Fig. 1. This shows that stationary states are

generally not unique, not even for the simplest cycle net-

work. In the present case, only one of the solutions is dynam-

ically stable, but this is generally not true in larger cycles as

we will show in the following.

C. Frustration induces discreteness

We now extend the above example to a single cycle

with an arbitrary number of nodes with the same power

Pj � 0. All links have an equal strength K as above. For the

sake of notational convenience, we label the nodes as

1; 2;…;N along the cycle and identify node 1 with Nþ 1

and 0 with N. In order to have a non-trivial closed cycle, we

need N � 3. The dynamic conditions for fixed points are

then given by

Fjþ1;j ¼ Fj;j�1 � F for all j ¼ 1;…;N; (39)

jFj � K: (40)

We stress that the dynamic conditions have a continuum of

solutions, i.e., all F values in the interval ½�K;K	 are

allowed.

The phase difference along the edges ðjþ 1; jÞ is given

by Eq. (21), leaving two possible solutions Dþj;‘ and D�j;‘.

Choosing the minus sign for at least one edge ð‘þ 1; ‘Þ
yields ~K

red

‘þ1;‘ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � F2
p

< 0. In this case, one can show

that the Hesse matrix H is not positive semi-definite such

that the fixed point must be unstable. Restricting ourselves to

the dynamically stable states, we find that the phase differ-

ences are all equal and given by

hjþ1 � hj ¼ arcsinðF=KÞ: (41)

FIG. 1. Illustration of geometric frustration and multistability in the simplest cyclic network with 3 nodes with Pj¼ 0 and three links with equal strength K.

Subplots show different branches of (38) obtained by choosingþ or � sign for D12;D23, and D31. The black lines denote the solution space of the dynamical

condition (37), S1;2 ¼ S2;3 ¼ S3;1 ¼ S. (a) Branch ðþ þþÞ with m¼ 0. (b) Branch ð� � þÞ with m¼ 1. The branches ðþ ��Þ and ð� þ�Þ yield solutions at

S ¼ ð0; 0; 0Þ in an analogous way. (c) Branch ð� � �Þ with m¼ 1 (upper part) and m¼ 2 (lower part). The branches ðþ þ �Þ; ðþ � þÞ, and ð� þ þÞ do not

yield a solution.
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The geometric condition now yields

N arcsinðF=KÞ ¼ 0 ðmod 2pÞ; (42)

which can be satisfied only for certain discrete values of F.

The geometric condition thus induces a “quantization” of the

phase differences as previously reported in Refs. 37 and 39

hjþ1 � hj ¼
n

N
2p;

with n 2 � N � 1

4

� �
;� N � 1

4

� �
þ 1;…;þ N � 1

4

� �� �
;

(43)

where b�c denotes the floor function. We note that solutions

with ðhjþ1 � hjÞ ¼ 6p=2 have Jacobian eigenvalues lk ¼ 0

for all k 2 f1;…;Ng. In this case, linear stability analysis

fails to determine dynamical stability properties (see the

study by Khazin und Shnol31 for details). For two coupled

oscillators, it is rather easy to see that the fixed point is nonli-

nearly unstable. In total, we thus find 2� bðN � 1Þ=4c þ 1

different stable stationary states.

This example is very simple but illustrates three impor-

tant general results. First, there can be multiple stable fixed

points in cyclic networks as previously noticed in Refs. 38

and 41–43. This fact has been discussed in power engineer-

ing in Ref. 44, but rigorous results on conditions on the exis-

tence of multistability and the number of fixed points are

rare probably because most authors in this community con-

centrate on fully connected networks which arise after a

Kron reduction.17,41 Second, the oscillator model (2) allows

for stable fixed points with a persistent current around a

cycle. Interestingly, these states are phase locked but not
phase ordered in the sense that the phase order parameter7

reiw :¼ 1

N

X
j

eihj (44)

vanishes exactly for K> 0. Third, the geometric condition

induces the discreteness of the phase differences although

the dynamic condition allows for continuous values of cycle

flows.

D. Braess’ paradox

Here, we introduce a special example which illustrates

the paradoxical effects of geometric frustration most clearly.

We consider the oscillator network depicted in Fig. 2(a) con-

sisting of N¼ 4 nodes placed on a cyclic network, where

nodes 1 and 3 have power injection �P and nodes 2 and 4

have power injections P. In particular, we analyze what hap-

pens if the capacity of the upper edge (1, 2) is increased

from K to K0 ¼ K þ j.

The dynamic condition for this network reads

0 ¼ Pj þ ðKjþ1;jSjþ1;j � Kj;j�1Sj;j�1Þ; (45)

and jSjþ1;jj � 1, identifying node j¼ 5 with j¼ 1. For nota-

tional convenience, we define the vector

S ¼ ðS4;1; S1;2; S2;3; S3;4Þ: (46)

The solutions of the linear system of Eq. (45) span a one-

dimensional affine space parametrized by a real number �,

S ¼ P

K
Sa � � Sbð Þ: (47)

The vector Sa ¼ ð�1; 0;�K=K0; 0Þ is an inhomogeneous

solution of the linear system (45), and the vector Sb ¼ ð1; 1;
K=K0; 1Þ is a homogeneous solution corresponding to a cycle

flow. Evaluating the condition jSjþ1;jj � 1 yields a necessary

condition for the existence of a fixed point

2K � P: (48)

For j¼ 0, this condition is also sufficient for the exis-

tence of a stable fixed point. If the capacity of the upper link

increases, j > 0, geometric frustration inhibits phase lock-

ing. A solution of the dynamical conditions always exists for

2K � P, but this can become incompatible with the geomet-

ric condition. We illustrate this in the stability diagram in

Fig. 2(b). A stable fixed point exists only in the parameter

region above the white line. As we see in Fig. 2(b), the mini-

mum K required to maintain steady operation, the critical
coupling Kc, increases when j is increased.

To further characterize the long-time behavior of the

oscillator network, we define _h1 as the average phase veloc-

ities of all the nodes in the limit of large time

_h1 ¼ lim
T!1

1

s

ðTþs

T

1

N

XN

j¼1

j _hj tð Þjdt: (49)

Therefore, _h1 must be zero for steady operation to take

place. As expected, we find _h1 ¼ 0 in the stable parameter

region above the white line K > Kc and _h1 > 0 in the

unstable parameter region below the white line K < Kc.

Remarkably, _h1 is the largest for small values of j and, of

course, K < KcðjÞ.
This leads to the paradoxical effect that an increase in

local transmission capacity reduces the ability of the network

to support a phase locked fixed point. This behavior can also

be seen as an example of Braess’ paradox45,46 which has

been first predicted for traffic networks.47

FIG. 2. Geometric frustration induces Braess’ paradox. (a) Topology of the

network under consideration. (b) Average phase velocities _h1 defined in

(49) for different values of K and j. For fixed points, _h1 ¼ 0. The white

line shows the critical coupling Kc. The fixed point can be lost when the

local transmission capacity j increases.
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It is noted that the existence of cycles is a necessary con-

dition for this paradoxical behavior in oscillator networks. A

fundamental example of Braess’ paradox was investigated in

Ref. 30, starting from a chain network which has no cycles

and thus shows no frustration and Braess behavior. Then, a

single line is added creating a single cycle and necessary

conditions being established under which conditions the

closing of the cycles induced Braess’ paradox.

V. MULTISTABILITY AND THE NUMBER OF FIXED
POINTS

The previous examples show that there can be a large

number of stable fixed points in a cyclic network. In the fol-

lowing, we derive conditions for the existence and bounds

for the number of stable fixed points depending on the

network structure. We start with a deeper analysis of the

dynamic condition for arbitrary networks, which is a neces-

sary prerequisite for the existence of a stable fixed point.

Then, we turn to the geometric condition and derive bounds

for the number of fixed points. The arguments depend

heavily on the network structure such that we will start with

trees and simple cycles before we turn to more complex

topologies.

A. The dynamic condition

We first analyze whether the dynamic condition (13)

admits a solution. The problem reduces to the Multi-source

multi-sink maximum flow problem, which can be solved by

a variety of different algorithms.48,49

So, let G ¼ ðV;EÞ be a connected graph with N nodes

and L edges. Each edge is assigned a capacity given by

K1;…;KL, and each node has an in- or outflux given by

P1;…;PN . We define an extended graph G0 ¼ ðV0;E0Þ, illus-

trated in Fig. 3, by adding two vertices s and t to the vertex

set,

V0 ¼ V [ fs; tg; (50)

and adding directed links connecting s(t) to all nodes with

positive (negative) power injection

E ¼ E [ fðs! jÞjj 2 V;Pj � 0g [ fðj! tÞjj 2 V;Pj < 0g:
(51)

The capacity of the newly added links is infinite. Then, one

finds the theorem:

Theorem 9. A solution of the dynamic condition (13)
exists if and only if the value of the maximum s-t-flow F st in
the network G0 is larger than or equal to the cumulated input
power

F st �
X

j2V;Pj �0

Pj: (52)

Alternatively, a sufficient condition for the existence of a

solution can be found by dividing the graph into parts: let

(V1, V2) be an arbitrary partition of V and EðV1;V2Þ the cut-

set induced by this partition (see Fig. 4). Then, we define

�P1 ¼
X
vj 2V1

Pvj
; �P2 ¼

X
vj 2V2

Pvj
; �K12 ¼

X
e2EðV1;V2Þ

Ke: (53)

We note that have assumed that
P

jPj ¼ 0, without loss of

generality, such that we always have �P1 þ �P2 ¼ 0.

Theorem 10. If for all partitions (V1, V2) we have

j �P1j ¼ j �P2j � �K12; (54)

then there exists a solution of the dynamic condition (13).
Proof. The idea is to prove the following:

(@ a solution of the dynamic condition (13a) and (13b).

() All solutions of (13a) violate (13b)).

) 9 a partition (V1, V2) with j �P1j � �K12.

Reversing arguments then yields the theorem. It remains

to show that the statement “)” is true.

Let F be a solution of (13a). According to our assump-

tion, the set of overloaded edges

Eov ¼ fe 2 EjjFej > Keg (55)

is not empty. Now, consider one overloaded edge e0 ¼ ðu; vÞ
2 Eov. We assume without loss of generality that the flow is

from u to v, i.e., Fv;u > Kv;u > 0. We define the weighted

directed network ~GðV; ~EÞ with ~E ¼ Ene0 and coupling

constants

Wj;i ¼ maxf0;Kj;i � Fj;ig: (56)

We determine the maximum flow pattern DFe; e 2 ~E with the

value DFmax from u to v in the network ~G. According to the

max-flow min-cut theorem, there is a partition (V1, V2) with u 2
V1 and v 2 V2 and the associated cutset ~EðV1;V2Þ such that

DFe ¼ We for all e 2 ~EðV1;V2Þ: (57)

Now, consider the flow pattern F0 defined by

FIG. 3. Illustration of Theorem 9. The original network G (smaller nodes

and solid edges) admits solution to the dynamic condition if and only if the

extended graph G0 with a super source s (big blue node) and a super sink t
(big red node) admits an s-t flow larger than the sum of all positive input

powers in G.

FIG. 4. Illustration of Theorem 10. For each partition of the node set of a graph

into V1 (shaded grey) and V2, the induced cutset (edges coloured red) must

have capacity not less than the absolute value of input power in V1 or V2.
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F0e ¼ Fe þ DFe e 2 ~E; (58)

F0e0
¼ Fe0

� DFmax: (59)

This is a new solution of the condition (13a). Basically, we

have rerouted the maximum possible flow from the edge

e0 ¼ ðu; vÞ to alternative paths from u to v. Furthermore, we

define the edge set EðV1;V2Þ ¼ e0 [ ~EðV1;V2Þ, which is a

cut of the original graph G.

We now have to distinguish two cases:

Case 1: The maximum flow value DFmax < Fe0
� Ke0

.

Then, the edge e0 is still overloaded, i.e., we have

F0e0 > Ke0
. Summing up Eq. (13a) over the nodes in V1 and

V2 yields

�P1 ¼ � �P2 ¼
X

e2EðV1;V2Þ
F0e: (60)

However, we know that F0e0 > Ke0
and F0e ¼ Ke for all other

e 2 EðV1;V2Þ such thatX
e2EðV1;V2Þ

F0e > �K12 (61)

and the statement “)” follows.

Case 2: The maximum flow value DFmax � Fe0
� Ke0

. e0 is

no longer overloaded with respect to the flow pattern F0.
The set of edges which is still overloaded

E0ov ¼ fe 2 EjjF0ej > Keg (62)

does no longer contain e0, i.e., E0ov 2 Eovne0. However, this

set cannot be empty as we have assumed that there is no

solution of (13a) satisfying (13b). Then, we can just restart

the procedure, by selecting an edge e1 2 E0ov and finding a

max. flow between its adjacent vectors. Finally, we must

arrive at case 1 for which the statement “)” follows. �

These two theorems have a straightforward energetic inter-

pretation. In Theorem 10, we assume that the grid is decom-

posed into two parts and calculate the cumulated power in

the two parts V1 and V2. A steady state can only exist if it is

possible to transmit the cumulated power from one part to

the other one. This condition must hold for all partitionings

of the networks. Theorem 9 is basically a reformulation of

this task in the sense of the max-flow min-cut theorem from

the graph theory. We accumulate all sources in a super

source and all sinks in a super-sink. A steady state can only

exist if there is a valid flow from the super-source to the

super-sink.

B. Tree network

In Sec. IV we have argued that multistability arises due

to the possibility of cycle flows. In a tree, there are no cycles

and thus no multistability, and we obtain the following

result.

Corollary 2 In a tree network, either there is no fixed
point or there are 2N�1 fixed points of which one is stable
and 2N�1 � 1 are unstable.

Whether the fixed points exist or not can then be decided

solely on the basis of the dynamical condition (11), respec-

tively, using Theorem 9.

Proof. By definition, a tree has L ¼ N � 1 edges such

that the space of solutions of the linear system (14a) has

dimension L� N þ 1 ¼ 0. That is, there is either zero or

exactly one unique solution for the flows Fj;‘. In the first

case, no fixed point exists. In the latter case, there are 2 pos-

sible values for the phase difference for each of the edges

given by Eq. (21). Hence, there are 2L ¼ 2N�1 fixed points.

Choosing theþ-sign in Eq. (21) yields one stable fixed point

as shown in corollary 1.

It remains to show that all other fixed points are unsta-

ble. So, consider a fixed point with one edge where the

cosine of the phase difference is smaller than zero. The net-

work is a tree such that it is decomposed into two parts

which are only connected by this edge. We label the nodes

by 1;…; ‘ in one part and by ‘þ 1;…;N in the other part.

Then, the Hesse matrix H (see Sec. II) has the form

H¼ H1 0

0 H2

	 

þ

. .
.

0 0 0 0

0 Kred
‘;‘þ1 �Kred

‘;‘þ1 0

0 �Kred
‘;‘þ1 Kred

‘;‘þ1 0

0 0 0 0

. .
.

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
;

(63)

where Kred
‘;‘þ1 < 0 and H1 and H2 are defined as in Eq. (6) for

the two parts of the network. Now define the vector

v ¼ ð1;…; 1|fflfflffl{zfflfflffl}
‘ times

; 0;…; 0|fflfflffl{zfflfflffl}
ðN�‘Þ times

ÞT: (64)

Due to the structure of the matrix H1, we have H1ð1;…; 1ÞT
¼ 0 such that

vTHv ¼ Kred
‘;‘þ1 < 0: (65)

Thus, the Hesse matrix H is not positive semi-definite, i.e., it

has at least one negative eigenvalue and the fixed point is

unstable (cf. Lemma 1). �

We note that this can also be seen as a consequence of

Taylor’s lemma in Ref. 41, showing that for stable fixed

points, there cannot be a partition of a graph so that the sum

of cosines of the phase differences across all edges in the

induced cutset is less than zero.

C. Cycle flows and winding vector

In the following, we want to operationalize theorem (7),

which characterizes fixed points in terms of the flows and

winding numbers, to derive strict bounds for the number of

fixed points in a network. Restricting ourselves to normal

operation (E� ¼ fg) and using the decomposition (16), the

definition of the winding numbers (27) reads
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-c ¼
1

2p

XL

e¼1

zc
earcsin

Fe

Ke

	 


¼ 1

2p

XL

e¼1

zc
earcsin

F 0ð Þ
e þ

P
c02BC

fc0z
c0
e

Ke

 !
; (66)

using Eq. (16). The concept of winding numbers is particu-

larly useful when they are unique. If we can find upper and

lower bounds for -c, then we can simply count the number

of solutions - 2 ZL�Nþ1 to obtain the number of fixed

points. Uniqueness is rigorously shown for planar graphs in

the following lemma.

A graph is called planar if it can be drawn in the plane

without any edge crossings. Such a drawing is called a

plane graph or a planar embedding of the graph, and any

cycle that surrounds a region without any edges is called a

face of the graph.35 For the sake of simplicity, we adopt

the convention that for plane graphs, the cycle basis BC is

built up from the faces in the following. Notably, many

power grids and other supply networks are actually planar.

Crossing of power lines is not forbidden a priori but is

rare.

Lemma 3. For a planar network, let h and h0 be two
fixed points satisfying the “normal operation” criterion (9).
If -ðhÞ ¼ -ðh0Þ, then both fixed points are the same, i.e., the
phases differ only by an additive constant

h ¼ h0 þ cð1; 1;…; 1ÞT : (67)

In other words, no two different fixed points in planar net-
works can have an identical winding vector.

Proof. Choose as the cycle basis BC the faces of the

plane embedding. The two fixed points can differ only via

cycle flows such that the flows can be written as

fixed point h : Fe ¼ Fð0Þe þ
X
c2BC

fczc
e; (68)

fixed point h0 : F0e ¼ Fð0Þe þ
X
c2BC

fc
0zc

e; (69)

defining two cycle flow vectors f and f 0. We write -ðf 0Þ and

-ðf Þ in short-hand notation for the corresponding winding

vectors. We show that -ðf 0Þ ¼ -ðf Þ implies f 0 ¼ f and thus

F0 ¼ F. As we are assuming normal operation, we can

reconstruct the phases via (18) and thus find h ¼ h0

þcð1; 1;…; 1ÞT as we need to show.

So, assume that -ðf 0Þ ¼ -ðf Þ and f 0c 6¼ fc for at least

one cycle c. We show that this leads to a contradiction such

that the lemma follows. First, consider the case that f
0
c � fc is

the same for all cycles: f 0c � fc ¼ Df 6¼ 0 for all c 2 BC.

Then, choose a cycle k at the boundary. If Df > 0, we find

-kðf 0Þ > -kðf Þ, and if Df < 0, we find -kðf 0Þ < -kðf Þ. This

contradicts the assumption and the lemma follows.

Otherwise, choose a cycle for which the quantity f
0
c � fc

is the largest. We can find a cycle k such that

f 0k � fk � f 0‘ � f‘ for all ‘ 6¼ k; (70)

f 0k � fk > f 0n � fn for at least one cycle n adjacent to k: (71)

or, equivalently,

f 0k � f 0‘ � fk � f‘ for all ‘ 6¼ k; (72)

f 0k � f 0n > fk � fn for at least one cycle n adjacent to k: (73)

We now exploit that any edge belongs to at most two

cycles, according to Mac Lane’s planarity criterion.50

Choosing an edge e which is part of both the cycles k and n,

we have zk
ezk

e ¼ 1 and zk
ezn

e ¼ �1. For all other cycles

‘ 6¼ k; n, we have z‘e ¼ 0. Thus, we find [using (73)]

zk
eFð0Þe þ zk

ezk
e|{z}

¼þ1

f 0k þ zk
ezn

e|{z}
¼�1

f 0n þ
X
‘6¼k;n

zk
ez‘e|{z}
¼0

f 0‘ > zk
eFð0Þe

þ zk
ezk

e|{z}
¼þ1

fk þ zk
ezn

e|{z}
¼�1

fn þ
X
‘ 6¼k;n

zk
ez‘e|{z}
¼0

f‘; (74)

! zk
eFð0Þe þ

X
c

zk
ezc

e f 0c > zk
eFð0Þe þ

X
c

zk
ezc

efc: (75)

For every other edge e0 in cycle k, we find by the same proce-

dure [using (72)] that

zk
e0F

0
eð0Þ þ

X
c

zk
e0z

c
e0 f
0
c � zk

e0F
ð0Þ
e0 þ

X
c

zk
e0z

c
e0 fc: (76)

Substituting these two inequalities in the definition (66) and

using that arcsin is monotonically increasing and point-

symmetric about the origin such that arcsinðzk
exÞ ¼ zk

earcsinðxÞ,
we find

-kðf 0Þ > -kðf Þ: (77)

This contradicts our contrary assumption, which concludes

the proof. �

We note that Delabays et al. have proved this lemma

using completely different techniques in Ref. 51.

D. Simple cycles

For networks containing a single cycle (a ring network),

tight upper and lower bounds can be obtained for the number

of fixed points satisfying cos ðh�i � h�j Þ > 0 for all edges (i,
j). These states correspond to the normal operation of a

power grid and are guaranteed to be stable by corollary 1.

Other stable steady states can exist in particular at the border

of the stable parameter region.29 We label the nodes as

1; 2;…;N along the cycle, fixing the direction of counting in

the counter-clockwise direction and identify node 1 with

Nþ 1 and 0 with N. Likewise, we fix the orientation of the

edges e 2 f1;…; Lg such that Fe > 0 describes a counter-

clockwise flow and Fe < 0 a clockwise flow.

We will first calculate the exact number of fixed points

counting the number of different allowed winding numbers.

However, this result depends on one particular solution of

the dynamic conditions (11), thereby limiting its applicabil-

ity. We therefore also derive lower and upper bounds for the

number of fixed points in terms of a few simple characteris-

tics of the grid, in particular, the maximum partial net power.

These bounds do not depend on any particular solution of the

dynamical condition.
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Remark 11. For any ring network RN with N nodes, the
cycle flow vector defined in (2) and the winding vector
defined in (29) naturally reduce into single numbers. We
refer to them as cycle flow fc and winding number -c, follow-
ing Ref. 39. These two quantities will be crucial in establish-
ing the results in the rest of this section.

Theorem 12. For a ring network RN, the number of
normal operation fixed points (denoted by N ) is given by

N ¼ 1

2p

X
j

arcsin
F 0ð Þ

jþ1;j þ f max
c

Kjþ1;j

 !& ’

� 1

2p

X
j

arcsin
F 0ð Þ

jþ1;j þ f min
c

Kjþ1;j

 !$ %
� 1; (78)

where b�c denotes the floor function and d�e denotes the ceil-
ing function. F

ð0Þ
ij is one particular solution to the dynamic

condition (11) and

f max
c ¼ min

j
ðKjþ1;j � F

ð0Þ
jþ1;jÞ;

f min
c ¼ max

j
ð�Kjþ1;j � F

ð0Þ
jþ1;jÞ: (79)

Proof. Suppose that we have one fixed point h0 with the

flows F
ð0Þ
ij and analyze (as per Theorem 3) which cycle flow

values fc lead to different valid fixed points. First, the cycle

flow bounds both above and below since the flow Fj;jþ1 along

each edge cannot exceed in absolute value the capacity Kj;jþ1

f min
c < fc < f max

c ; (80)

f max
c ¼ min

j
ðKj;jþ1 � F

ð0Þ
j;jþ1Þ; (81)

f min
c ¼ max

j
ð�Kj;jþ1 � F

ð0Þ
j;jþ1Þ: (82)

We emphasize that fc cannot be equal to f max
c or f min

c because

otherwise one edge would be fully loaded with cos ðhi � hjÞ
¼ 0, contradicting our assumption.

Second, all fixed points have to satisfy the geometric

condition (cf. Theorem 7)

-ðfcÞ 2 Z: (83)

Since we restrict ourselves to normal operation, the

winding number for a single cycle reads

- fcð Þ ¼
1

2p

X
j

arcsin
F 0ð Þ

jþ1;j þ fc

Kjþ1;j

 !
: (84)

Using the bound for the cycle flow strength (80) and the fact

that arcsin is a monotonically increasing function, we find

that the winding number is also bound by

-ðf min
c Þ � - � -ðf max

c Þ: (85)

As the winding numbers are unique (see Lemma 3), the dis-

tinct fixed points correspond to the following values of the

winding number:

-fixedpoint ¼ b-ðf min
c Þc þ 1; b-ðf min

c Þc þ 2;…; d-ðf max
c Þe � 1:

(86)

Counting these values and inserting the values of f min
c and

f max
c then yield the number of fixed points N . �

For practical applications, it is desirable to determine

the number of fixed points from the properties of the network

alone, without referring to a particular solution Fð0Þ. To

obtain suitable bounds for the number of fixed points N , we

first define some properties which characterize the network.

Definition 13. For a ring network RN with N 2N

nodes indexed by 1; 2;…;N along the cycle, a fragment F i;j

is defined as the path starting at node i and ending at node j.
For any fragment F i;j, the partial net power �Pij is defined as

�Pij ¼
Xj

k¼i

Pk: (87)

and the maximal partial net power is defined as

�Pmax ¼ max
i;j

�Pi;j: (88)

This concept is illustrated in Fig. 5. Furthermore, we define
the maximum and minimum transmission capacities

Kmax ¼ max
j

Kjþ1;j and Kmin ¼ min
j

Kjþ1;j: (89)

Lemma 4. For any ring fragment F i;j, the partial net
power is equal to the net outward flow

�Pij ¼ Fjþ1;j � Fi�1;i (90)

and �Pmax ¼ max
j

Fjþ1;j �min
i

Fi�1;i : (91)

Lemma 4 is a formalization of energy conservation. The

net outward flow from a segment must equal the cumulated

power injections in the fragment. We then seek the fragment

maximizing the total flow exchanged with the rest of the

ring. We note that the definitions of �Pij and �Pmax appeared

previously in Ref. 51.

Corollary 3. For a ring network RN, the number of nor-
mal operation fixed points (denoted by N ) is bound from
above and below by

0 � N � 2
N

4

� �
þ 1 (92)

FIG. 5. The maximum partial net power �Pmax in different ring networks.
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and by

N

4

2Kmax � �Pmax

Kmin

� 
� N � N

2p
2Kmin � �Pmax

Kmax

� 
� 1: (93)

Proof. According to Lemma 12, the number of fixed

points N is given by

N ¼ d-ðf max
c Þe � b-ðf min

c Þc � 1: (94)

We make use of the fact that the arcsin function is

bound, arcsinðxÞ 2 ½�p=2;þp=2	, such that

- f max
c

� �
¼ 1

2p

XN

j¼1

arcsin
F 0ð Þ

jþ1;j þ f max
c

Kjþ1;j

 !
<

N

4
;

- f min
c

� �
¼ 1

2p

XN

j¼1

arcsin
F 0ð Þ

jþ1;j þ f min
c

Kjþ1;j

 !
> �N

4
: (95)

This proves the first part (92) of the corollary. To prove the

second part, we start from

d-ðf max
c Þ�-ðf min

c Þe�1�N �d-ðf max
c Þ�-ðf min

c Þe: (96)

Now, one can obtain upper and lower bounds for all terms in

the sum using the trigonometric relation

x� y � arcsin xð Þ � arcsin yð Þ �
p
2

x� yð Þ; (97)

which holds for all �1 � y � x � 1. This yields

1

2p

X
j

Dfc

Kjþ1;j
� - f max

c

� �
� - f min

c

� �
� 1

4

X
j

Dfc

Kjþ1;j
; (98)

where we define Dfc ¼ f max
c � f min

c . Furthermore, this quan-

tity can be bound as

Dfc ¼ min
j
ðKjþ1;j � F

ð0Þ
jþ1;jÞ �max

j
ð�Kjþ1;j � F

ð0Þ
jþ1;jÞ

� 2Kmin þmin
j
ð�F

ð0Þ
jþ1;jÞ �max

j
ð�F

ð0Þ
jþ1;jÞ;

¼ 2Kmin þmax
j
ðFð0Þj;jþ1Þ �max

j
ð�F

ð0Þ
jþ1;jÞ;

¼ 2Kmin � �Pmax using ð92Þð Þ; (99)

such that the fraction in Eq. (98) becomes

Dfc

Kjþ1;j
� 2Kmin � �Pmax

Kmax

: (100)

In a similar way, we find

Dfc � 2Kmax � �Pmax: (101)

Substituting these bounds into Eq. (98) yields

- f max
c

� �
� - f min

c

� �
� N

2p
2Kmin � �Pmax

Kmax

;

- f max
c

� �
� - f min

c

� �
� N

4

2Kmax � �Pmax

Kmin

;

(102)

which combined with (96) completes the proof. �

We note that the first part of this bound (92) had previ-

ously been shown by Ochab and Gora38 as well as by

Delabays et al.37

Corollary 4. For homogeneous rings RN, i.e., Ki;iþ1

¼ K, Eq. (93) simplifies to

N

p
� N �Pmax

2Kp

� 
� 1 � N � N

2
� N �Pmax

4K

� 
: (103)

In particular, ring networks RN with N � 4 do not have
multiple stable fixed points. Ring network RN with N � 7

nodes will have multiple stable fixed points ðN � 2Þ if

�Pmax < 2Kmin �
4p
N

Kmax : (104)

These relations can be proven by simply evaluating the

bounds in Corollary 3.

Corollary 5. As K is decreased in a homogeneous ring
network, the fixed points with the largest infinity norm of the
flows

jjFjj1 :¼ max
j
jFj;jþ1j

will be the first ones to vanish.
Proof. We can see from (95) that both -ðf max

c Þ and

-ðf min
c Þ are monotonically increasing functions of f max

c and

f min
c , respectively. According to (80), when K is decreased,

f max
c decreases and f min

c increases. The corollary follows. �

We illustrate how the bounds scale with the connectivity

K and �Pmax for a sample ring of size N¼ 16 in Fig. 6. We see

in Fig. 6(a) that increasing K results in more stable fixed

points. Whereas Fig. 6(b) demonstrates that if the power gen-

erators ðPj � 0Þ are clustered together, then the system has

less fixed points, as opposed to the case where they are more

distributed.

FIG. 6. Upper and lower bounds for

the number of fixed points N for a

sample 16 element ring as a function

of (a) K ¼ Kj;jþ1 for all 1 � j � 16 at
�Pmax ¼ 3 and (b) �Pmax at K¼ 10.
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E. Complex networks

Obtaining bounds for the number of fixed points is hard

in general, as we cannot simply decompose a network into

single cycles, unless no two cycles of a network share an

edge. The difficulty arises because cycle flows in two faces

sharing one or more edges can cancel or enhance each other.

This is why one cannot simply multiply the bounds for a

number of fixed points for each cycle to obtain a bound for

the total number of fixed points for a network. We demon-

strate this using two examples.

1. Two cycle flows destroying each other

First, we show that even if all single cycles support (multi-

ple) fixed points in case they are isolated, the full network may

not have a single fixed point at all. This is illustrated in Fig. 7

for a network consisting of just two cycles. The network motifs

shown in panels (a) and (b) have 3 and 1 stable fixed points,

respectively, whereas the full network shown in panel (c) does

not have a stable fixed point. Isolated cycle 2, i.e., the network

shown in Fig. 7(b), has a stable fixed point, but two edges are

heavily loaded such that there is nearly no security margin and

no available capacity for cycle flows. Fusing the two cycles as

in Fig. 7(c) disturbs the geometric condition for both cycles.

To restore the geometric condition - 2 Z2, we would have to

add some cycle flows. But this is impossible in cycle 2 such

that there is no stable fixed point in the full network.

2. Two cycle flows getting created

So, we have seen that getting a lower bound for a num-

ber of fixed points of a general network is hard, as multiply-

ing lower bounds for each cycle in a cycle basis does not

yield a valid lower bound. Next, we will show why obtaining

a good upper bound is also hard.

Consider any of the two identical single loop networks in

Fig. 8. It consists of one generator and one consumer, generat-

ing and consuming 2:1K power, respectively. Each edge has

capacity K. None of the two single loop networks have any

fixed point: simply because the network does not have enough

capacity to transport the 2:1K amount of power from the

generator to the consumer. However, when those two are fused

together, two cycle flows emerge and a stable fixed point with

winding vector x ¼ ð1;�1Þ comes into existence. This should

not come as a surprise: fusing two cycles in this case ended up

with an alternate pathway for the powerflow being created.

F. Planar networks

Although obtaining estimates for a number of fixed

points for general topologies is quite difficult, we now show

that for planar topologies, it is possible to obtain some ana-

lytical insights.

1. Upper bound

Theorem 14. Consider a finite planar network. Choose
the faces of the graph as the cycle basis BC. Then, the number
of normal operation fixed points, i.e., fixed points satisfying
cos ðh�i � h�j Þ > 0 for all edges (i, j), is bound from above by

N <
YL�Nþ1

c¼1

2
Nc

4

� �
þ 1; (105)

where Nc is the number of nodes in cycle c.

Proof. In a planar network, no two different fixed points

can have the same winding vector - (see Lemma 3) such

that we can just count the different allowed winding vectors.

For each fundamental cycle c 2 BC, we have

�bNc=4c < -c ¼
1

2p

X
e2 cycle c

De < þbNc=4c (106)

because �p=2 < De < þp=2 in normal operation. Counting

the number of different possible values of the winding num-

bers -1;…;-L�Nþ1 respecting these upper and lower bounds

yields the result. �

Delabays et al. have presented37 this bound in the case

of uniform power injections Pj at all nodes. They have also

determined topological conditions that are sufficient to

ensure that all fixed points are under normal operation, thus

making the upper bound in (105) valid for all fixed points in

a certain class of networks.

FIG. 7. Difficulties in finding bound

for the number of stable fixed points in

the complex network. The network

motifs shown in (a) and (b) have 3 and

1 stable fixed points, respectively,

whereas the fused network shown in

(c) has no stable fixed point at all. The

power injections Pj are given in the

nodes. All edges have transmission

capacity K.

FIG. 8. Two ring networks, each with

no fixed point, when merged by an

edge, gain a fixed point.
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Intriguingly, this upper bound has been demonstrated to

be invalid51 outside normal operation.

2. Asymptotic behaviour

We have shown in Subsection V E that it is not straight-

forward to obtain bounds for the number of fixed points N
in complex networks, unlike simple cycles. However, in the

limit of N 
 1;K 
 1, we can nevertheless derive the scal-

ing behaviour for N .

3. Two-cycle network

For simplicity, we first consider a network with homoge-

neous transmission capacities consisting of two cycles C1 and

C2, as illustrated in Fig. 9. Suppose that there are n1 edges

belonging only to cycle 1, n2 edges belonging only to cycle 2

and n12 edges belonging to both. Let one fixed point be h�

with flows in each cycle and the intersection be bound by

Fmin
1 � Fe � Fmax

1 ; for all e 2 C1 � C2 (107)

Fmin
2 � Fe � Fmax

2 ; for all e 2 C2 � C1 (108)

Fmin
12 � Fe � Fmax

12 ; for all e 2 C2 � C1: (109)

Then, the possible cycle flows in each cycle are bound

inside a convex polygon D described by

�K � Fmin
1 � f1 � K � Fmax

1 ; (110)

�K � Fmin
2 � f2 � K � Fmax

2 ; (111)

�K � Fmin
12 � f1 � f2 � K � Fmax

12 : (112)

Then, for K 
 1; n1 
 1; n2 
 1, the number of fixed

points converges to the area of the image set of D under the

mapping -.

N �
ð

-ðDÞ
d-1d-2; (113)

¼
ð
D

df1df2detJð-Þ; (114)

where the Jacobian Jð-Þ for the change in the variable

can be computed from the expression for - in (66), which

yields

detJ -ð Þ¼
1

4K2p2

�det

X
e2C1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1

K

	 
2
s þ

X
e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s �

X
e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s

�
X

e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s X

e2C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f2

K

	 
2
s þ

X
e2C1\C2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Feþ f1� f2

K

	 
2
s

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

(115)

Taking the limits
lim

K!1

Fe þ f1

K
¼ f1

K
;

lim
K!1

Fe þ f2

K
¼ f2

K
; (116)

leads to

N � 1

4K2p2

ð
~D

df1df2det

n1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1

K

	 
2
s þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2
K

	 
2
s � n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2

K

	 
2
s

� n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2

K

	 
2
s n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
K

	 
2
s þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2

K

	 
2
s

0
BBBBBBBBB@

1
CCCCCCCCCA
:

~D : ¼ f f1; f2ð Þ : f1; f2ð Þ 2 R2; jf1j � K; jf2j � K; jf1 � f2j � Kg: (117)

FIG. 9. A 2-cycle network. We use the convention that cycles are counter-

clockwise. Therefore, we assign positive magnitudes to counter-clockwise

cycle flows and negative magnitudes to clockwise cycle flows.

083123-14 Manik, Timme, and Witthaut Chaos 27, 083123 (2017)

5.5 multistability and the number of fixed points 75



Redefining f1 ! f1=K; f2 ! f2=K, we obtain

N � 1

4p2

ð
~D

df1df2det

n1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q � n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q
� n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f1 � f2ð Þ2
q n2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
2

p þ n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q
0
BBBB@

1
CCCCA; (118)

¼ 1

4p2
n1n2

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p df1df2 þ n1n12

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q df1df2

0
@

þ n2n12

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q df1df2

1
CA; (119)

¼ 1

4p2
n1n2

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p df1df2 þ n1 þ n2ð Þn12

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f1 � f2ð Þ2

q df1df2

0
@

1
A: (120)

In the last line, we use the symmetry in f1 and f2, both in the integrand and the domain of integration. We can simplify

even further, by using the following change in variables in the second integral:

ðf1; f2Þ7!ðf2 � f1; f2Þ:
We note that the domain remains the same after this change in the variable and the determinant of the Jacobian

detðJÞ ¼ �1. This allows the simplification

N � n1n2 þ n1 þ n2ð Þn12ð Þ 1

4p2

ð
~D

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p df1df2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
c

;

with

c ¼ 1

4p2

ð0

�1

df1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p ðf1þ1

�1

df2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p þ
ð1

0

df1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p ð1

f1�1

df2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

2

p
( )

;

¼ 1

4p2

ð0

�1

arcsin f1 þ 1ð Þ þ p
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
1

p df1 þ
ð1

0

p
2
� arcsin f1 � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f 2
1

p df1

8<
:

9=
;;

¼ 1

4p2

p2

4
þ
ð0

�1

arcsin f1 þ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p df1 þ
p2

4
þ
ð1

0

arcsin f1 � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p df1

( )
;

¼ 1

8
þ 1

2p2

ð0

�1

arcsin f1 þ 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f 2

1

p df1;

� 0:1576;

to finally yield this scaling result

lim
n1;n2!1

N ¼ cðn1n2 þ ðn1 þ n2Þn12Þ; (121)

c � 0:1576:

To evaluate the accuracy of (121), we apply it to two

special cases. First, we consider networks with n ¼ n1 ¼ n2;
n12 ¼ 1, i.e., two identical cycles sharing only one single

edge. In this case, (121) becomes

Nðn; n; 1Þ � ðn2 þ 2nÞc: (122)

Second, we consider networks with n ¼ n1 ¼ n2; n12 ¼ n,

i.e., two identical cycles sharing half of their edges. In this

case, (121) becomes

Nðn; n; nÞ � 3cn2: (123)

We see in Fig. 10 that in both these cases, the scaling

relations are quite accurate even for not very large network

sizes, such as n¼ 50.

4. General planar graphs

The scaling results for two-cycle networks can be

extended to general planar graphs; to this end, we define a

few quantities.

Definition 15 (Loopy dual graph). Given a planar graph
G(V, E) and an embedding, we choose a cycle basis BC con-
sisting of the faces of the embedding. The loopy dual graph
GdualðGÞ is an undirected multigraph whose vertex set is
equal to BC. Its edge set E0 is as follows. For each edge
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e 2 E, if it is shared between two cycles c1 and c2, then an
edge between c and c0 is added to E0. If e is at the boundary
and belongs to only one cycle c, then a self-loop is added at
node c. We illustrate this definition in Fig. 11.

Now, consider a planar graph and an arbitrarily chosen

fixed point with flows Fe. Let us denote by ~L
loopy

the loopy

Laplacian of its metagraph, as defined in Definition 1.

Then, Eq. (117) generalizes to

N � 1

2Kpð ÞL�Nþ1

ð
~D

df1df2 � � � dfL�Nþ1det ~L
loopy

; (124)

~D :¼ fðf1; f2;…fL�Nþ1Þ : jfij � K; jfi � fjj � K

if cycles i; j share an edgeg:

VI. UNSTABLE FIXED POINTS

In principle, we can generalize the cycle flow approach

to find fixed points which do not satisfy the normal operation

condition, too. These fixed points are typically linearly

unstable (cf. the discussion in Ref. 30) However, most of the

results on the number of fixed points cannot be generalized

to this case. As an instructive example, consider again a

homogeneous ring as in Sec. IV C. We label the nodes as

1; 2;…;N along the cycle and assume that N is an integer

multiple of 4. All nodes have a vanishing power injection

Pj � 0, and all links have an equal strength K as before.

Then, it is easy to see that

h� ¼ ð0; d; p; pþ d; 2p; 2pþ d; 3p;…ÞT (125)

is a fixed point of the dynamics for each value of d 2 ½0; pÞ.
This class of fixed points represents a pure cycle flow

Fj;jþ1 ¼ K sin ðhjþ1 � hjÞ ¼ K sin ðdÞ (126)

for all edges ðj; jþ 1Þ. The winding number is - ¼ N=4

independent of the value of d and the edges belong alter-

nately to Eþ and E�

Eþ ¼ fð1; 2Þ; ð3; 4Þ; ð5; 6Þ; …g;
E� ¼ fð2; 3Þ; ð4; 5Þ; ð6; 7Þ; …g: (127)

This simple example shows that two main assumptions

made for the normal operation fixed points (where E� ¼ fg)
do not longer hold: first, the set of fixed points is no longer dis-

crete. Instead, we find a continuum of solutions parametrized

by the real number d. Second, different fixed points yield the

same winding number. Thus, we cannot obtain the number of

fixed points by counting winding numbers in general.

VII. CALCULATING ALL FIXED POINTS

The cycle flow approach yields a convenient method to

calculate multiple fixed points for oscillator networks.

FIG. 10. (a) Scaling of the number of fixed points for two-cycle networks at zero power injection and infinite edge capacity limit. (a) Each cycle has nþ 1

edges, and they share one edge between them. (Left y-axis) The dots show the exact number of fixed points computed numerically. The solid line shows the

predicted number as per scaling relation (121). The dashed line shows the upper bound (105). (Right y-axis) The dotted line shows the number of fixed points

divided by n2 þ 2n converging to a constant value, that is close to the analytically predicted value c ¼ 0:1576, as per equation (121). (b) The same as (a), but

for networks where each cycle has 2n edges, they share n edges between them.

FIG. 11. A planar graph (solid edges, unfilled circular nodes) and its loopy

dual (dashed edges, filled circular nodes) corresponding to this specific

embedding.
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Generally, it is hard to make sure that a numerical algorithm

yields all solutions for a nonlinear algebraic equation.

However, we have shown that the winding numbers are

unique at least for normal operation fixed points in planar

networks. Thus, we can scan the allowed values of the wind-

ing numbers and try to find a corresponding solution. This

can be done by starting from an arbitrary solution of the

dynamical condition and adding cycle flows until we obtain

the desired winding numbers.

In particular, we can calculate all fixed points in normal

operation for a planar network using the following algorithm:

1. Find a solution Fð0Þ of the dynamic condition.

2. Fix a plane embedding and a cycle basis.

3. Vary the number zc in the interval ½� Nc

4
; Nc

4
	, for all cycles

c ¼ 1;…; L� N þ 1.

4. Try to solve the set of equations

-cðf Þ ¼ zc for all c ¼ 1;…; L� N þ 1; (128)

where the winding numbers are given by Eq. (27).

Dropping the assumption of a normal operation, we lose the

guarantee of uniqueness as discussed in Sec. VI.

Nevertheless, the method can be readily adapted to find most

of the unstable fixed points, at least if the number jE�j is

small. This can be very useful, as a systematic calculation of

such fixed points is generally not straightforward. The results

can be applied, among other things, to assess the global sta-

bility of a stable fixed point by analyzing the stability bound-

ary52,53 or the stability in the presence of stochastic

fluctuations.54 In particular, we must add another step to the

algorithm to loop over all possible sets E�:

3a. Vary k ¼ 0;…; L. Then, sample all k-tuples from the

edge set E to define the set E�.

3b. Vary the number zc in the interval ½� Nc

4
; Nc

4
	, for all

cycles c ¼ 1;…; L� N þ 1.

The output of this algorithm is shown in Fig. 12 for a

small test network and jE�j � 2. For this small network, we

have only L� N þ 1 ¼ 3 fundamental cycles of which one

is decoupled. Hence, we can graphically check that we have

obtained all fixed points.

VIII. DISCUSSION

Oscillator networks are ubiquitous in nature and tech-

nology. A lot of research in statistical physics starting from

FIG. 12. All fixed points with jE�j � 2

in a network with three cycles calcu-

lated using the algorithm described in

the main text. The winding number of

each cycle is displayed. Squares repre-

sent the generators with P ¼ þ2P0 and

circles the consumers with P ¼ �P0.

All links have a coupling strength of

K ¼ 24=19� P0.
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Kuramoto’s seminal work2 has been devoted to the onset of

partial synchronization in large networks. However, in some

applications, global synchronization is required. In particu-

lar, in electrical power grids, all generators have to run with

exactly the same frequency and have to be strictly phase-

locked to enable stable power flows to the customers. A

desynchronization generally has catastrophic consequences.

An example is provided by the European power blackout in

November 2006. Following a shutdown of one transmission

line and unsuccessful attempts to restore stable operation,

the European grid fragmented in three mutually asynchro-

nous clusters.23 In the end, more than 10 million customers

were cut from the power supply.

In this article, we have analyzed the existence of stable

fixed points in finite oscillator networks. The main methodo-

logical advancement is to split the calculation into two parts:

first, we calculate the flows which satisfy the continuity

equation at all nodes. Then, we single out the specific solu-

tion which leads to consistent phases of the oscillators. We

thus move the focus of the calculation from the nodes

(phases) to the edges (flows) and cycles. An immediate con-

sequence is that several fixed points can co-exist, which dif-

fer by cycle flows. Thus, oscillator networks are in general

multistable.

For networks containing a single cycle, we have

obtained upper and lower bounds for the number of fixed

points in terms of three structural quantities: the maximal

partial net power �Pmax, which measures the homogeneity of

the power injections or natural frequencies and the maximum

and minimum edge strength along the cycle. We find that

generally the number of stable fixed points is particularly

large if (a) the cycle is long, (b) the edge strength is large,

and (c) the power sources are distributed homogeneously.

However, the example discussed in Sec. IV D shows that

extreme care has to be taken for special network topologies.

Increasing the strength of the wrong edge can also decrease

the number of fixed points. Finding bounds for the number

of stable fixed points in general network topologies is much

more involved. The results have been obtained for planar

networks, but the bounds are much weaker as for networks

with single cycles. Interestingly, both tree networks and fully

connected networks have at most one stable fixed point.

However, networks with intermediate sparsity, which is

most realistic for electrical power grids, may exhibit

multistability.

Several aspects of multistability have been previously

discussed in the literature. Multistability in isolated rings

was discussed in Ref. 38. The limits (92) were derived, and

the basins of attraction of the different fixed points were

studied numerically. The case of a densely connected graph

was analyzed by Taylor in Ref. 41. He was able to show that

there is at most one stable fixed point if the node degree is at

least 0:9395� ðN � 1Þ. Mehta et al. investigate multistabil-

ity in complex networks numerically using a similar

approach to the present paper.43 They argue that the number

of fixed points scales with the number of cycles as each cycle

can accommodate cycle flows. While this is valid for many

graphs, there are counterexamples (Fig. 7). Delabays et al.37

have recently reported their treatment of multistability using

cycle flows. They have extended the upper bounds for fixed

points in single rings in Ref. 38 to also include those stable

fixed points with phase differences along edges >p=2. They

have also derived upper bounds51 for a number of fixed

points for planar graphs in the case of uniform power injec-

tions at all nodes. Xi et al.55 have numerically shown that the

spatial heterogeneity of power injections Pj reduces the num-

ber of fixed points, which fits with our analytical result in

Corollary 3. Intriguingly, they have also found that in hetero-

geneous ring topologies, the nonlinear stability of fixed

points decreases with the ring size N.

In this work, we have obtained a lower bound for the

number of fixed points and thereby provided a sufficient condi-
tion for the existence of multistability. Furthermore, we have

shown that the length of the cycles Nc and the homogeneity
�Pmax are equally important for multistability and thereby

arrived at tighter bounds for the number of fixed points than

Ochab and Gora38 and Delabays et al.37 Moreover, we have

derived scaling laws at the limit of infinite transmission

strengths that are much tighter than the upper bound results

previously reported. We have shown the derived scaling

behaviour to match numerically computed exact results for

moderately sized networks.

Interestingly, our results show that a previous highly rec-

ognized result presented by Jadbabaie et al. in Ref. 57 is incor-

rect. The authors claim that for any network of Kuramoto

oscillators with different natural frequencies, there exists a Ku

such that for K > Ku there is only one stable fixed point. This

claim is disproven by the examples presented in Sec. IV C as

well as by the rigorous results on the existence of multiple

fixed points in Corollary 3. The error in the proof of Ref. 57 is

rather technical. The authors define a function L such that the

defining equation of a fixed point (4) can be rewritten in the

form

h� ¼ Lðh�Þ: (129)

Jadbabaie et al. then claim that L is a contraction on the sub-

set of h such that jhi � hjj < p=2 for all edges (i, j), which

we called normal operation. Banach’s contraction theorem

then yields that the algebraic equation (129) has a unique

fixed point. The problem is that the range of LðhÞ is gener-

ally not a subset of subspace of normal operation, even if the

domain is. After applying L, some phase differences can get

out of the interval ½�p=2; p=2	. Thus, Banach’s contraction

theorem cannot be applied, which spoils the proof.

IX. CONCLUSION

In summary, taking cycle flows as a basis of flow pat-

terns, we analyzed the existence and stability of phase locked

states in networks of Kuramoto oscillators and second order

phase oscillators modeling the phase dynamics of electric

power grids. We demonstrated that such systems exhibit

multistability. Intriguingly, multistability prevails even under

conditions where unique stable operating points were

believed to exist in both a power engineering textbook and a

major complex network reference on Kuramoto oscilla-

tors.56,57 For classes of network topologies, we have estab-

lished necessary and sufficient conditions for multistability
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and derived lower and upper bounds for the number of fixed

points. We explained why generalizing those bounds for

arbitrary topologies is hard. Nevertheless, we have derived

asymptotic scaling laws at a large loop limit that has been

found to match closely numerically obtained exact results.
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82 braess’ paradox in continuous flow networks

Abstract. Flow networks perform critical functions in various nat-

ural and man made systems, e.g. the venation networks in plant leaves

and the electrical power transmission grid. Such networks often under-

goes topological changes, both planned and unplanned: e.g. shutdowns

of power lines due to a storm or scheduled maintenance; or leaf veins

getting eaten through by bugs. It is therefore very important to under-

stand how such topological changes influence the flows in the network.

In the context of traffic networks, it was discovered by traffic engi-

neer D. Braess in 1968 that opening a new street in a street network

may increase travel time for everyone, if each car selfishly chooses

the fastest route for oneself. This phenomenon, subsequently named

“Braess’ paradox” (BP), has been later reported in various other flow

networks, including phase oscillator networks, linear flow networks

and discrete message passing networks. When a flow network needs

to carry more flow, it is a common strategy to strengthen an edge or

add new one. If BP is possible in a flow network, such an attempt

at improving the network may actually overload or destabilize it. Al-

though the prevalence of this phenomenon is well known, establishing

criteria for an edge in a given network to exhibit Braess’ paradox is

still an unsolved problem. In this article, we consider BP in a class

of flow networks that includes Kuramoto networks (that can be used

to model the AC power transmission grid) as well as linear flow net-

works (that can be used to model the fluid flow in leaf veins). Using

the notion of network susceptibilities, we take a differential view to

Braess’ paradox, defining BP as an increase in the maximum load on

infinitesimal increase of the strength of an edge. We reduce the prob-

lem of determining Braessian edges in a flow network to a simpler one

of determining the flows in the same network topology with a single-

source single-sink input. This results in a computational speedup by

a factor proportional to the number of edges in the network. More

importantly, this approach enables us to obtain a topological under-

standing of which edges are more likely to be Braessian. We use this

insight to establish topological classifiers for Braessian edges. Finally,

we demonstrate that Braessian edges have a beneficial effect : they

can be intentionally damaged to mitigate overload due to damage at

another edge.

6.1 introduction

Braess [32] demonstrated an intriguing phenomena in traffic networks,

where opening a new street in a traffic network leads to an increase

of the travel time for everyone. This happened because using the new

street was faster for each car compared to all other routes available to it,

leading to all cars to use this new street, which had the collective effect

of increasing travel time for every car. In other words, Braess’ para-

dox (BP) was a combined consequence of the network topology (which
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allowed high utilization of the newly opened edge to bottleneck the net-

work) and the dynamics (each cars tried to maximize their individual

benefits in the selfish routing strategy).

Braess’ paradox in traffic networks

Subsequently, the topic of BP in selfish routing networks has been ex-

tensively explored. Frank [60] presented necessary and sufficient con-

ditions for BP in a 4-node single-source-single-link system, Steinberg

and Zangwill [33] as well as Dafermos and Nagurney [34] extended it to

general networks. Pas and Principio [35] showed that under non-selfish

routing strategies, BP does not occur, however adding a link may lead

to no better (nor worse) average performance. Valiant and Roughgar-

den [61] showed that in large random graphs, BP is not a rare event

and it occurs with high probability.

The topic of preventing Braess’ paradox has been studied in com-

puter networking literature [99, 100] and traffic engineering literature

[101]. However, given a flow network, determining which edges would

cause BP remains largely unsolved, apart from proofs [99, 100] that

certain extremely restricted class of line additions do not cause BP, e.g.

strengthening (i.e. increasing the edge capacity) the line directly join-

ing the source and sink in a single source/sink network and upgrading

all links in a network simultaneously.

Braess’ paradox in continuous flow networks

In a continuous flow network, e.g. a resistor network conducting elec-

tric current or venation networks in plant leaves transporting sap; the

dynamics is quite different from routing of discrete entities in street or

computer networks. Nevertheless, it has been reported that BP is preva-

lent in such networks, for example, in electrical circuits with resistors

and diodes [102, 103], oscillator networks and models of DC and AC

power grid [37, 36] as well as two-dimensional electron systems [104].

Scope and structure of this article

In this context, we ask this question: given a certain continuous flow

network, can we predict which edges will exhibit BP without explicitly

computing the flows after each edge perturbation? We emphasize that

we define Braess’ paradox as the maximum flow increasing on adding

or strengthening an edge, not the average flow or every flow increasing,

in contrast to traffic literature. We do so because increase of maximum

flow in a network is known to sometimes cause system wide failures

[105], when the initial overload starts a cascade. Coletta and Jacquod

[38] showed recently that it is possible to predict whether loads will

increase in an oscillator network with one-dimensional chain topology
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if a pair of nodes previously unconnected is connected by an edge, from

previous steady state phases alone. In the present article, we attack

this question in arbitrary topologies and in a wider class of network

dynamics that includes both linear flow networks (describing flow of sap

in plant leaves and DC flow in a resistor network [14]) and Kuramoto

oscillator networks (used to model AC power transmission grid [19]).

In section 6.2, we provide a mathematical definition of BP in a class

of flow networks we call “conservative flow networks” and derive an

exact mapping between the problem of detecting Braessian edges in a

network and the problem of finding steady flows in a linear flow network

due to single dipole source (continuous version of which is familiar from

electrostatics). In section 6.3, we define an intuitive topological notion

of flow alignment and demonstrate that edges with flows aligned to the

maximally loaded edge are more likely to exhibit BP. In section 6.4,

we demonstrate that Braess’ paradox has a useful side effect: they can

be intentionally damaged to reverse an overload caused by damage at

another edge.

6.2 network susceptibility and braess’ paradox

This study on Braess’ paradox will be limited to conservative flow net-

works as per definition 2.2.4. Such systems include linear systems such

as electrical DC flow across a resistor network, flow of water in hydraulic

tubes, as well as flow of fluid in venation network in plant leaves [14, 18],

as well as nonlinear systems such as networks of Kuramoto oscillators

[1] as well as the swing equation model [19] of electrical AC transmission

grid.

We will now define Braess’ paradox on such systems, and derive

an exact mapping from the problem of finding Braessian edges to the

problem of finding steady flows in a linear flow network with a single

dipole source.

6.2.1 Mathematical background

We introduced the concept on network susceptibilities in [106] to quan-

tify the effect on steady state flows in a flow network (defined in section

2.2) on infinitesimally increasing the weight of an edge. We will now

define Braess’ paradox in terms of network susceptibilities.

Definition 6.2.1 (Edge-to-edge susceptibility). Consider a flow

network (G(V, E), I,F ) with steady state flows Fij for all {i, j} ∈ E.

Suppose on increasing the weight of a single edge µ := {s, t} from Kst

to Kst + κ, the steady state flows of another edge ν := {i, j} becomes F′ij.
Then the edge-to-edge susceptibility is defined as

ηµ→ν := lim
κ→0

F′ν − Fν

κ
=

dFν

dKµ
=

dFij

dKst
. (6.1)
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Definition 6.2.2 (Braessian edge). Consider a flow network (G, I,F ).

Suppose the maximum absolute flow is across the edge α

max
e∈E
|Fe| = |Fα| .

Then an edge µ is called a Braessian edge (BE) if and only if

an infinitesimal increase in the weight of edge µ increases the absolute

value of the maximal flow Fα

Fαηµ→α > 0. (6.2)

Determining all BE’s in a network by Eq. (6.2) requires computing

the flow derivatives in Eq. (6.1) |E| times. We will now establish an

equivalent dual problem (that can be solved much faster) exploiting a

symmetry property of edge-to-edge susceptibilities for conservative flow

networks.

6.2.2 Edge-to-edge susceptibility in a conservative flow network

Consider a conservative flow network (G, I,F ). Due to the flow conser-

vation property Eq. (2.15), and the flow equation Eq. (2.10), the flows

at the edges must satisfy

∀1 ≤ j ≤ |V| , 0 = Ij + ∑
i

Kij f (ϕi − ϕj). (6.3)

Suppose on increasing the weight of a single edge µ = {s, t} by κ,

the steady state vertex properties ϕj changes to ϕj + ξ j. Then the new

flows must still satisfy

0 =Ij + ∑
i

(
Kij + κδsiδtj + κδsjδti

)
f (ϕi − ϕj + ξi − ξ j)

=Ij + κδtj f (ϕs − ϕj) + κδsj f (ϕt − ϕj) + ∑
i

{
Kij
(

f (ϕi − ϕj)

+ f ′(ϕi − ϕj)(ξi − ξ j)
)}

+O
(
(ξi − ξ j)

2) .

(6.4)

Subtracting Eq. (6.3):

0 =κδtj f (ϕs − ϕj) + κδsj f (ϕt − ϕj) + ∑
i

Kij f ′(ϕi − ϕj)(ξi − ξ j)

+O
(
(ξi − ξ j)

2) .
(6.5)

We will now recast Eq. (6.5) in a form that is both more intuitive

and mathematically enlightening.

Definition 6.2.3 (Meta graph). Given a flow network (G, I,F ) with

flows Fij for all edges {i, j} ∈ E, a meta graph G̃ is a graph with edge

set E and vertex set V, with edge weights given by

K̃ij = Kij f ′(ϕi − ϕj). (6.6)
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We note that K̃ij = K̃ji because f ′ is an even function due to f being

odd. Furthermore, due to f being monotonically increasing function,

K̃ij ≥ 0. Therefore G̃ is a valid weighted undirected graph with non-

negative weights.

Let L̃ be the Laplacian matrix (see definition 2.1.12) of the meta

graph G̃ of the original graph G, and M be incidence matrix (see def-

inition 2.1.11) of G and assume the edge {s, t} to be perturbed is the

µ’th one in the edge ordering considered while constructing M.

Then Eq. (6.5) can be rewritten as

L̃ijξ j = −κ
Fst

Kst
(δis − δit)

L̃ij
dϕj

dKst
= L̃ij lim

κ→0

ξ j

κ

= − Fst

Kst
(δis − δit) .

(6.7)

This allows us to reformulate the edge to edge susceptibilities Eq. (6.1)

as

η(s,t)→(j,l) =
dFjl

dKst
= Kjl

(
dϕl

dKst
− dϕj

dKst

)
,

L̃ij
dϕj

dKst
= − Fst

Kst
(δis − δit) .

(6.8)

We will now demonstrate that the edge-to-edge susceptibilities η(s,t)→(j,l)
given by Eq. (6.8) are equal to the flows in a linear flow network with

a dipole source placed across the same edge {s, t}.

connection to steady flows in linear flow networks

with dipole source

Lemma 6.2.1. Given a conservative flow network (G, I,F ) with flows

Fµ for all edges µ ∈ E, suppose the flows across a particular edge α :=
{a, b} is directed from a to b.

Consider a linear flow network
(

G̃, Idipolea,b ,F linear
)

consisting of the

meta graph G̃ (see definition 6.2.3) with a single dipole input Fab/Kab at

node b and −Fab/Kab at node a. Then the flows F̃ν at this flow network

are equal to the edge-to-edge susceptibilities ηα→ν in the original flow

network (G, I,F ) for all ν 6= α. An illustration is provided in Figure

6.1.

Proof. For the linear flow network
(

G̃, Idipolea,b ,F linear
)

, the flow con-

servation condition Eq. (6.3) becomes

∀1 ≤ j ≤ |V| , 0 =
(
δjb − δja

) Fab

Kab
+ ∑

i
K̃ij(ϕi − ϕj)

⇒ L̃ij ϕj = − Fab

Kab

(
δja − δjb

)
F̃jl = K̃jl

(
ϕl − ϕj

)
.

(6.9)



6.2 network susceptibility and braess’ paradox 87

Figure 6.1: Infinitesimally strengthening an edge in a conservative flow net-

work leads to flow changes at other edges. This incremental change

is identical to flows only due to a dipole placed across the per-

turbed edge in a linear flow network. Note that the flow change

at the strengthened edge is an exception.

Comparing Eq. (6.9) with Eq. (6.8), the lemma follows.

The consequence of this connection is twofold: firstly, it means un-

derstanding the incremental flow change in any conservative flow net-

work with arbitrary inputs due to infinitesimal strengthening an edge is

equivalent to understanding the flow patterns of a linear flow network

with a single dipole inputs: a problem that is well understood in the

continuum limit in electrostatics. Secondly, and more relevant to the

goal of predicting Braess’ paradox, this enables us to exploit a power-

ful symmetry: flow at an edge {i, j} due to dipole current source across

edges {s, t} is the same as the flow at edge {s, t} due to the source

across edge {i, j}. We will now state this symmetry in a precise form

and show how this symmetry eases the computational complexity of

determining Braessian edges.

Theorem 6.2.1. Given a flow network (G, I,F ) and two specific edges

µ := {s, t} and ν := {i, j},

Fν
dFν

dKµ
= cµνFµ

dFµ

dKν

cµν > 0.
(6.10)

Proof. Since if µ = ν, the theorem is vacuously true, we subsequently

make the assumption that µ 6= ν. First we rewrite the edge-to-edge

susceptibility from Eq. (6.1) by writing

ηµ→ν =
dFν

dKµ
(6.11)

=
d

dKst
Kij f (ϕj − ϕi) (6.12)

= Kij f ′(ϕj − ϕi)

(
dϕj

dKst
− dϕi

dKst

)
(6.13)
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= K̃ν

(
dϕj

dKµ
− dϕi

dKµ

)
(6.14)

=
Fµ

K2
µ

K̃ν

(
L̃+

ik Mkµ − L̃+
jk Mkµ

)
(6.15)

=
Fµ

K2
µ

K̃ν

Kν
Mlν L̃+

lk Mkµ [using Eq. (6.8), see Appendix 6.A]

(6.16)

=
Fµ

K2
µ

K̃ν

Kν

[
MT L̃+M

]
νµ

(6.17)

:=
Fµ

K2
µ

K̃ν

Kν
Ξνµ (6.18)

Now we will exploit the fact that Ξ is a symmetric matrix (proof in

lemma 6.A.1) to arrive at our result.

From Eq. (6.18), we obtain

Fν
dFν

dKµ
= Fν

Fµ

K2
µ

K̃ν

Kν
Ξνµ (6.19)

Fµ
dFµ

dKν
= Fµ

Fν

K2
ν

K̃µ

Kµ
Ξµν (6.20)

⇒ Fν
dFν

dKµ
= cµνFµ

dFµ

dKν
(6.21)

cµν =
Kν

Kµ

K̃ν

K̃µ

(6.22)

In arriving at Eq. (6.21), we have utilized Ξµν = Ξνµ. The monotonicity

of f as per Eq. (2.14) guarantees that cµν > 0. The theorem follows.

Corollary 6.2.1. Given a flow network (G, I,F ), if an infinitesimal

increase in weight of edge µ leads to increase in flow in edge ν, then an

infinitesimal increase in weight of edge ν would lead to an increase in

flow at edge µ.

Proof. From theorem 6.2.1, we get

Fν
dFν

dKµ
T 0⇔ Fµ

dFµ

dKν
T 0. (6.23)

The corollary follows.

Corollary 6.2.2. Suppose (G, I,F ) is a flow network with flows Fµ

across each edge µ ∈ E. Let the maximum flow be along the edge α :=
{a, b}, directed from node a to node b. Denote the set of all Braessian

edges in this flow network by EBE. Let F̃µ for all µ ∈ E be the flows in

a linear flow network
(

G̃, Idipolea,b ,F linear
)

consisting of the meta graph

of G and a single dipole inputs of Fab/Kab at node b and −Fab/Kab at

node a. Then µ ∈ EBE if and only if F̃µFµ > 0.
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Proof. Connecting the definition 6.2.2 of Braessian edges, and corollary

6.2.1, we see that µ is Braessian if and only if

Fα
dFα

dKµ
> 0⇔ Fµ

dFµ

dKα
> 0. (6.24)

Lemma 6.2.1 tells that
dFµ

dKα
is equal to the flow F̃µ in the linear flow

network
(

G̃, Idipolea,b ,F linear
)

. The Lemma follows.

6.2.3 Efficient algorithm for predicting Braessian edges

Determining which edges in a flow network is Braessian by brute force

requires solving the steady state flows |E| times: once after increasing

one edge weight (alternatively, one can determine them by computing

the PTDF matrix [107], which involves computing a Moore-Penrose

pseudoinverse). We will now construct an efficient algorithm, based on

corollary 6.2.2, to determine all BE’s in a flow network by solving the

steady state flows only once, in addition to the original steady flow

computations.

Algorithm

data: A flow network (G, I,F ) with flows Fα for all α ∈ E.

result: The set of EBE of all Braessian edges in the network.

step 1: Determine the edge ν = {s, t} with maximum absolute flow

|Fν| = max
α∈E
|Fα| .

step 2: Determine the sign of edge susceptibilities sgn
(

dFij
dKst

)
using

Eq. (6.8)

L̃ij
dϕj

dKst
= − Fst

Kst
(δis − δit)

dFij

dKst
= K̃ij

(
dϕj

dKst
− dϕi

dKst

)
sgn

(
dFij

dKst

)
= sgn

(
dϕj

dKst
− dϕi

dKst

)

step 3: EBE =
{
{i, j} ∈ E |sgn

(
dFij
dKst

)
= sgn

(
Fij
)}

.

We demonstrate in Figure 6.2 that this algorithm indeed accurately

predicts all Braessian edges (BE’s) in a linear network.

Corollary 6.2.3. In a linear flow network with a single dipole current

injection, no edge is Braessian.



90 braess’ paradox in continuous flow networks

−0.10 −0.05 0.00 0.05 0.10

Fν
dFν
dKµ

−0.10

−0.05

0.00

0.05

0.10

c µ
ν
F
µ
d
F
µ

d
K
ν

Braessian

non-Braessian

y=x

0 50 100 150 200 250 300 350

Number of edges

10−2

10−1

100

101

102

C
om

pu
ta

ti
on

ti
m

e
(s

ec
on

d)

indirect

direct

Figure 6.2: (left) Determining Braessian edges in a linear flow network by com-

puting Fν
dFν
dKµ

by the efficient way Eq. (6.10) yields results identical

to the brute force calculations. ν is the most heavily loaded edge.

The x-axis shows direct computation and the y-axis the indirect

one. Blue dots represent Braessian edges, green dots non-Braessian

ones. Computation done on a 10× 10 square lattice network, with

25 randomly chosen sources and 25 randomly chosen sinks. (right)

The indirect method for computing Braessian edges is much faster

than the direct brute force method. For each network size, 10 in-

dependent runs were made. Error bars depict standard deviations.

Proof. Suppose the current inputs are +I and −I at nodes s and t
respectively, and zero otherwise. Then the steady state flows are given

by Eq. (6.8),

Lij ϕj = I (δis − δit)

Fij = Kij
(

ϕj − ϕi
)

.
(6.25)

The maximum flow, obviously, will be along the edge {s, t}. Now,

L̃ij
dϕj

dKst
= − Fst

Kst
(δis − δit)

dFij

dKst
= K̃ij

(
dϕj

dKst
− dϕi

dKst

)
= − K̃ij

Kij

Fst

Kst
Fij

⇒ Fij
dFij

dKst
≥ 0

⇒ Fst
dFst

dKij
≥ 0 (using corollary 6.2.1) .

(6.26)

Comparing Eq. (6.26) with definition 6.2.2, the corollary follows.

6.3 topological features behind braess’ paradox

So far, we have established that determining Braessian edges (BE’s)

on infinitesimally strengthening an edge in a conservative flow network
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is equivalent to evaluating flows in a linear flow network with a single

dipole source. Establishing this equivalence has enabled us to formulate

an efficient algorithm that determines BE’s in a network much faster

than brute force computation, as illustrated in Figure 6.2. Now we will

aim at understanding which topological features causes certain edges to

be Braessian.

Anti-aligned flows Aligned flows

Figure 6.3: Notion of flow alignment in flow networks. (left) the vertical edges

are anti-aligned to the maximally loaded (red) edge. (right) the

vertical edges are aligned to the maximally loaded edge. We hy-

pothesize that edges flow aligned to the maximally loaded edge

are more likely to be Braessian.

We will presently introduce a notion of flow alignment between any

two pairs of edges in a flow network, illustrated in Figure 6.3. We hy-

pothesize that if the maximum flow is from node a to node b, then

the edges {i, j} which are flow aligned to the maximally loaded edge

{a, b} are more likely to be Braessian. We will presently motivate this

hypothesis. Suppose the flow across an edge {a, b} is directed from a
to b. If the capacity of this edge is increased, keeping all other edge

capacities constant, we expect that there will be more flow from a to b.

This “excess” flow must come from and go to the neighbouring edges, to

satisfy the flow conservation condition Eq. (2.15). If the edge {a, b} is

anti-aligned to the maximally loaded edge (e.g. the left panel in Figure

6.3), the excess flow across {a, b} will reduce the flow at the maximally

loaded edge. However, if the edge {a, b} is aligned to the maximally

loaded edge (e.g. the right panel in Figure 6.3), the excess flow across

{a, b} will flow into the maximally loaded edge, causing BP.

If our hypothesis is true, predicting Braessian edges in a network

boils down to finding a suitable definition of flow alignment. We first

provide a very intuitive definition of flow alignment in section 6.3.1,

which turns out to be accurate at predicting Braessian edges close to

the maximally loaded edge, but less accurate for edges further away.

Then we propose two more advanced definitions in section 6.3.2 and

6.3.3 that overcome this shortcoming, but have disadvantages of their

own.
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6.3.1 Classifier based on edge distance

Definition 6.3.1 (Flow alignment by edge distance). Consider

a connected and simple flow network F = (G, I,F ). For each edge

e := {i, j}, let’s define i to be the “head” and j to be the “tail” if and

only if Fij > 0. Let d(s, t) be the shortest path length between nodes s
and t. Label the edge set so that for all edges {i, j}, Fij > 0.

Then {h1, t1} is defined to be aligned to the edge {h2, t2}

{h1, t1}⇒ {h2, t2} (6.27)

if

min{d(h1, t2), d(t1, h2)} < min{d(h1, h2), d(t1, t2)}. (6.28)

Likewise, {h1, t1} is defined to be anti-aligned to the edge {h2, t2}

{h1, t1}� {h2, t2} (6.29)

if

min{d(h1, t2), d(t1, h2)} > min{d(h1, h2), d(t1, t2)}. (6.30)

We illustrate this definition in Figure 6.4.

We note that given two edges, one might neither be aligned nor be

anti-aligned, according to this definition.

Figure 6.4: Aligned and non-aligned flows, as defined in definition 6.3.1. e2 and

e3 are respectively aligned and anti-aligned to e1. Flow alignment

is undefined between e4 and e1.

Claim 6.3.1. If an edge {i, j} is aligned to the edge {s, t} with max-

imum flow in a network, then {i, j} is more likely to be a BE. If it is

anti-aligned, then it is less likely to be a BE.

We show the effectiveness of this classifier in Figure 6.5 in two net-

work topologies: a 30× 30 square lattice, and Voronoi tessellation of 20
uniformly randomly drawn points from a unit square. In both topolo-

gies, 1/4th of the nodes were chosen to have inputs 1 and an equal
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Figure 6.5: The flow alignment based classifier as per claim 6.3.1 works well

for edges close to the edge with maximum flow, but worsens with

distance. Classifier was tested in two network topologies: 15× 15
square lattice and Voronoi tessellation of 20 uniformly randomly

chosen points in the unit square. In each case 200 independent

runs were made. Error bars display the standard deviations. Edges

with susceptibilities ≤ 10−5 were assumed to have no effect on the

maximally loaded edge.
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number to have inputs −1. The rest of the nodes had inputs 0. In both

topologies, 200 independent realizations were made. The edges with

ηµ→α < ε = 10−5, (6.31)

we considered to have too little effect on the maximally loaded edge

α to be called wither BE or not BE. We clearly see that for edges

with distance < 2 from the maximally loaded edge, the classifier is

quite accurate: there are very few edges that are not aligned, yet BE or

aligned, yet not BE. The accuracy of this predictor worsens, however,

for edges with distance ≥ 2 from the maximally loaded edge.

6.3.1.1 Reason behind false predictions in Topological classifier

We have seen that the edge distance based classifier fails for a significant

fraction of edges. Now we investigate for which edges this classifier fails.

In Figure 6.6, we illustrate the edges for which the classifier fails in a

Edge distance based classifier
 on a lattice

False predictions
maxflow edge

Flows due to a dipole

Aligned flows
maxflow edge

Figure 6.6: (left) Illustrating which edges are falsely classified by the edge

distance based classifier (we set the threshold ε as per Eq. (6.31) to

0). A region centered around the maximally loaded edge is shown.

(right) In purely dipole flows, the same edges happen to be aligned

with the dipole.

square lattice network. We see that these edges have one property in

common: they have aligned flows due to a purely dipole source term.

Lemma 6.2.1 then explains why our classifier fails at those edges. Only

those edges are Braessian, whose flows are in the same direction as

the flow would have been, if all the inputs were set to zero and a

single dipole were placed across the maximally loaded edge. The flow

alignment based classifier assumes the wrong direction to this dipole

flow on those edges, and consequently wrongly predicts Braessian edges.

6.3.2 Classifier based on cycle distance

Now that we know why our classifier performed poorly at certain edges,

we can build a better one by defining another way of computing align-
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ment of flows, according to which flows due to a single dipole are more

likely to be anti-aligned. Now we will present one such way of comput-

ing alignments of flows by replacing edge distances in definition 6.3.1 by

a certain “cycle distance”. In order to do that, we must define a couple

of graph theoretic quantities.

Figure 6.7: A planar graph (solid edges) and its dual (dashed edges, filled

circular nodes) corresponding to this specific embedding.

Definition 6.3.2. Dual graph

Given a planar graph G(V, E) and an embedding, we choose a cycle

basis BC consisting of the faces of the embedding. The dual graph GD is

a undirected multigraph whose vertex set is equal to BC. Its edge set E′

is as follows. For each edge e ∈ E, if it is shared between two cycles c1

and c2, then an edge between c and c′ is added to E′. We illustrate this

definition in Figure 6.7.

Definition 6.3.3 (Cycle distance). Given two cycles c1 and c2 in the

cycle basis BC of a graph G, the cycle distance between them dcycle (c1, c2)
is simply the shortest path length in the dual graph between the nodes

c1 and c2.

Figure 6.8: Defining alignment of flows, according to cycle distance. The cycles

C+
1/2 are flow-oriented to the flows in edges e1/2, and cycles C+

1/2
are anti flow-oriented to the flows in edges e1/2. As a result, e1 and

e2 are flow aligned by cycle distance, because C+
2 and C+

1 are only

one hop away, less than all other pairs.

Definition 6.3.4 (Flow-cycle alignment). Consider a connected,

simple, planar flow network F = (G, I,F ) in a specific plane embedding.
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Let GD be the dual graph for this embedding. For each edge e := {i, j},
let’s define i to be the “head” and j to be the “tail” when Fij > 0. The edge

e is defined to be flow oriented to a cycle c containing e if the cycle,

when traversed in the anti-clockwise direction, encounters i before j.
Otherwise, e is said to be anti flow-oriented to c.

Definition 6.3.5 (Flow alignment by cycle distance). Consider

a connected, simple, planar flow network F = (G, I,F ) in a specific

plane embedding and let GD be the dual graph for this embedding. For

each edge e, denote the cycle (if it exists) it is flow aligned to by C+
e

and the cycle (if it exists) it is anti flow-oriented to by C−e .

Then two edges e1 and e2 are said to be aligned(anti-aligned) by cycle

distance if and only if

min{dcycle
(
C+

1 , C+
2
)

, dcycle
(
C−1 , C−2

)
}

≷ min{dcycle
(
C+

1 , C−2
)

, dcycle
(
C−1 , C+

2
)
}. (6.32)

If either C+
j or C−j does not exist, then all terms in the min function

containing it is omitted. If both C+
j and C−j does not exist, flow align-

ment by cycle distance between them is undefined. We illustrate this

definition in Figure 6.8.

We evaluate the performance of this cycle-distance based classifier in

Figure 6.9, again in two topologies: square lattice and Voronoi tessel-

lations of uniformly randomly drawn points in R2, for the same flow

network realizations we tested the edge distance based classifier at (see

Figure 6.5). We see that for this classifier, the robustness of the classifi-

cation does not drop as much with distance as the edge distance based

classifier did. However, for Voronoi planar graphs, it fails to classify

more number of edges than the edge distance based one.

A crucial disadvantage of the cycle distance based classifier is that

it is applicable only to planar graphs. This is so because the notion of

flow cycle alignment in definition 6.3.4 cannot be defined for non-planar

graphs. We will now discuss yet another classifier, which overcomes

this restriction, at the same time being no less accurate than the cycle

distance based classifier for plane networks.

6.3.3 Flow rerouting classifier

Definition 6.3.6 (Rerouting alignment). Given a flow network

(G(V, E), I,F ), consider two edges e1 := {s, t} and e2 := {m, n}. As-

sume without loss of generality that Fst > 0, Fmn > 0. Then e2 is defined

to be aligned(anti-aligned) by flow rerouting to e1 if and only if in the

shortest simple path from s to t not containing {s, t} but containing

{m, n}, m appears before(after) n. This is illustrated in Figure 6.10.

We evaluate the performance of this flow rerouting based classifier

in Figure 6.11, the networks being identical to the ones considered for
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Figure 6.9: The cycle distance based flow alignment (see definition 6.3.5) clas-

sifies Braessian edges much better than the edge distance based

classifier (see Figure 6.5), especially at distances larger than 1.

Classifier was tested in two network topologies: 15 × 15 square

lattice and Voronoi tessellation of 20 uniformly randomly chosen

points in the unit square. In each case 200 independent runs were

made.

Figure 6.10: Defining alignment of flows, according to flow rerouting. Edge

e2 is flow aligned to e1 because the shortest path from s to t
involving e2 traverses e2 in the same direction as its flow. For the

same reason, e3 is anti-aligned to e1.
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Figure 6.11: Flow rerouting based alignment (see definition 6.3.6) classifies

Braessian edges better than both the edge distance based one and

the cycle distance based one. Classifier was tested in two network

topologies: 15× 15 square lattice and Voronoi tessellation of 20
uniformly randomly chosen points in the unit square. In each case

200 independent runs were made.
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testing the other two classifiers in Figure 6.5 and Figure 6.9. We see

that this classifier performs better than the edge distance based one

in both lattice and Voronoi graph topologies. Compared to the cycle

distance based one, it performs equally well.

6.3.4 Comparison between classifiers
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Figure 6.12: Comparison of accuracies of three classifiers in predicting Braes-

sian edges in two topologies, 15× 15 square lattice and Voronoi

tessellation of 20 uniformly randomly chosen points in the unit

square. In each case 200 independent runs were made.

In Figure 6.12, we illustrate comparative performances of all the

three classifiers in two different network topologies: square lattices and

Voronoi planar graphs. We observe that for lattice topology, the edge

distance classifier suffers from significant false predictions. The cycle

distance classifier and the rerouting classifier works equally well, with

very little false predictions.

For Voronoi tessellations, the performances are more even across clas-

sifiers. The edge distance based classifier fares almost on par with the

other two, however the cycle distance classifier and rerouting classifier

both perform slightly better still. The cycle distance based classifier

has slightly less false predictions than the rerouting based one, but it

fails to classify (due to alignment being undefined) more edges than the

rerouting based one.

6.3.5 Effect of distance on classifier accuracy

We have already seen in Figures 6.5, 6.9 and 6.11 that all three classi-

fiers work well for edges at distances < 2 from the maximally loaded

edge, and their accuracies decrease for edges that are further away. Now
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Figure 6.13: (solid lines) Classification accuracy = Number of correct predictions
number of all predicted edges

for edge and cycle distance based classifiers. Threshold ε = 10−5,

as before. Simulation done on (left) a 30× 30 square lattice, with

200 independent runs; and (right) Voronoi tessellations of 2000
randomly chosen points, with 50 independent runs. Cycle dis-

tance is much better than edge distance in lattices, especially

at large distances. In Voronoi tessellations, both classifiers work

well, edge distance based one slightly more so. But the gap be-

tween them decreases with distance. (dashed lines) Fraction of

edges that cannot be classified. For lattice networks, close to 0
for both classifiers. For Voronoi, cycle distance based one fails

to classify more edges than the edge distance based one, but the

gap decreases with distance. All error bands depict standard de-

viations.

we systematically study how accurate the classifiers are at identifying

Braessian edges at different distances from the maximally loaded edge.

For our simulations, we choose as before, two network topologies. As

an accuracy measure, we choose the probability of correct prediction

= Number of correct predictions
Number of all predicted edges . Due to the high runtime of the flow rerout-

ing based classifier for large networks, we omitted it from this study.

We present our findings in Figure 6.13. In square lattice topology, the

cycle distance based classifier is seen to be vastly superior to the edge

distance based one: the accuracy of it, after a slight drop till distance

< 6, actually increases with distance afterwards. It remains better in

accuracy than the edge distance based one at all distances. The accu-

racy of the edge distance based one steadily decreases with distance.

The situation, however, is quite different for Voronoi planar graphs.

The cycle distance based classifier is slightly less accurate than the edge

distance based one for distances < 40, after which it gets better. Both

classifiers manage accuracy ≈ 0.8 at all distances. Unlike in square

lattices, both classifiers fail to predict certain fraction of edges due to

alignment being undefined. The fraction of such unclassified edges is

also higher for cycle distance classifier, but the gap steadily declines

with distance.
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6.4 using braessian edges to mitigate a damage

Braessian edges, by their very definition, lessen the flow on the maxi-

mally loaded edge in the network, when they are infinitesimally dam-

aged. Utilizing this property, we will now show, that one can mitigate

overload in a network caused by damage at an edge by damaging a sec-

ond, Braessian edge. We note that a similar phenomenon was reported

in [59]. In Figure 6.14, we illustrate this for a 15× 15 square lattice,
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Figure 6.14: Braessian edges can be intentionally damaged to prevent over-

load caused by damaging another edge. In a lattice network, on

reducing weight of one edge (coloured red) by 10%, the maximally

loaded edge (coloured sky blue) overloads. Among the Braessian

edges, some, when damaged by an extent (depicted in colourmap)

reverses this overload. Edges that cannot reverse the overload

even when completely removed are coloured grey.

with each edge having weight = 1. We damaged the red coloured edge

by reducing its capacity by 0.1, thereby causing an overload in the

maximally loaded edge coloured sky blue. Along the remaining edges,

many, when damaged by a suitable degree (i.e. reducing their capac-

ities), mitigated the overload. The colourmap in the figure illustrates

the amount by which the weight of an edge must be reduced to bring

the maximum flow in the network back to its original value. Not coinci-

dentally, all non-Braessian edges failed to mitigate the overload by this

strategy of weight reduction. However, not all Braessian edges could

do the mitigation either. This was due to one of two reasons. Firstly,

there were edges that, even when damaged to the maximum degree (i.e.
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completely taken out), could not completely reverse the overload. Sec-

ondly, there were some edges, which when damaged suitably, although

reversed the overload in the previously maximally loaded edge, ended

up overloading another edge so much that the maximum flow in the

network increased.
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Figure 6.15: Overload due to damaging one edge can be mitigated by dam-

aging a Braessian edge. But as the amount of damage inflicted

increases, less and less edges are able to mitigate the damage.

The network and the inputs are identical to Figure 6.14.

The second effect becomes more and more pronounced as the amount

of the first damage increases. This is so, because more damage is then

needed to reverse the first damage, which increases the amount of the

“side effects” on other edges as well, thereby increasing the probability

that some other edge becomes the maximally loaded one. We illustrate

this in Figure 6.15, where we compute, if an edge is damaged by a

certain degree, how many edges can mitigate the overload by a second

damage. We see that for very small amount of (first) damage, almost

all Braessian edges can do the mitigation, but with more damage, less

and less such edges can do so.

6.5 conclusion

In a flow network, adding an edge is not always beneficial: this fact, first

discovered in the context of traffic flows in road networks [32], has been

demonstrated in various continuous flow networks [102, 103, 37, 36, 38].

It has been shown in [38] that in a phase oscillator network with chain

topology, based on steady state phases alone, it is possible to determine

which two nodes, if connected by a new edge, will show Braess’ para-

dox. However, neither in the original setting of traffic flow networks,

nor in continuous flow networks, it is well understood which (if any)

topological features cause some edges to exhibit Braess’ paradox.

In complex network topologies, we earlier introduced a concept called

“network susceptibility” [106] to quantify the effect of an infinitesimal
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increase in an edge capacity on the flows in other edges. In this article,

we have used the tools of network susceptibility to study the question:

which edges in a network, when their capacities are infinitesimally in-

creased, cause an increase in the maximal load in the network? Under

a specific class of network dynamics, that we call conservative flow net-

works, we have shown that to answer to this question it is sufficient to

compute the flows in the same network due to a single dipole source

placed along the maximally loaded edge.

Utilizing this equivalence, we proceeded to define a topological notion

of flow alignment between two edges in a network and proposed that

such flow alignment will determine if an edge is Braessian. Our first

definition of flow alignment, based on edge distances, proved promising

but classified significant amount of edges wrongly as Braessian or non-

Braessian. We demonstrated that this classifier is improved significantly

if one replaces edge distances with cycle distances. However, our defini-

tion of cycle distance is not valid for non-planar networks. To overcome

this shortcoming, we defined yet another flow alignment, based on flow

reroutings, that works as well as the cycle distance based one for pre-

dicting Braessian edges, and is applicable for non-planar networks as

well.

We also showed that Braess’ paradox has a useful side effect: it is pos-

sible to mitigate the overload caused by damaging an edge by making

an additional damage at one of the Braessian edges.





A P P E N D I X

6.a moore-penrose pseudoinverse of symmetric ma-

trices

Lemma 6.A.1. If A is a symmetric matrix, then its Moore-Penrose

pseudoinverse A+ is also symmetric.

Proof. By definition, A+ is the unique Moore-Penrose pseudoinverse of

A if and only if

AA+ A = A (6.33)

A+ AA+ = A+ (6.34)

(AA+)T = AA+ (6.35)

(A+ A)T = A+ A (6.36)

Taking transpose of all these equations and exploiting A = AT yields:

A
(

A+
)T A = A (6.37)(

A+
)T A

(
A+
)T

= A+ (6.38)

(A
(

A+
)T

)T = A
(

A+
)T

(6.39)

(
(

A+
)T A)T =

(
A+
)T A. (6.40)

Therefore, AT is a valid Moore-Penrose pseudoinverse of A as well. By

uniqueness of A+, the lemma follows.
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F I N A L C O N C L U S I O N A N D O U T L O O K

In this thesis we have studied three different ways in which topology

influences the flows in a network: Firstly, which topological conditions

guarantee the stability of flows in phase oscillator networks; secondly,

which topological features result in more coexisting steady flows in the

same system; thirdly, which topological features cause certain edges in

a network to exhibit Braess paradox (i.e. the maximum flow in the

network increases when any of these edges are infinitesimally strength-

ened). In this Chapter we will summarize our key results, put them in

the context of existing research, and outline future research directions.

7.1 topology dependence of steady flows and their

stability

In Chapter 4, we studied how topology influences loss of stability in

a phase oscillator network whose dynamics follows the swing equation

(defined in Eq. (4.20)). This equation is frequently used to model the

high voltage AC power grid [19]. Loss of steady states in such systems

results in power outages, and hence establishing criteria for loss of sta-

bility in this system is an important problem.

We first derived an exact mapping between the fixed points and their

bifurcation structure of this model and that of the well studied Ku-

ramoto oscillators [1, 2]. It has been known for more than 40 years that

Kuramoto networks have a unique globally attracting steady state if the

coupling is stronger than a certain critical value, and no steady state

otherwise; for infinite and all-to-all coupled networks. But power grids

are far from all-to-all coupled: In fact, they are almost planar, with

very few long distance edges [20, 21]. For arbitrary topologies, neces-

sary and sufficient conditions for steady states in Kuramoto networks

are still not known.

One necessary condition for steady states (or steady flows) was pre-

sented using a purely graph theoretic approach in [45]: they considered

any cut or 2-partition of the network (i.e. a partition of the network

into two non-overlapping subnetworks, see Definition 2.1.5) and showed

that the power generated in one partition but not consumed there must

be able to flow to the other partition. This means coupling has to be

strong enough so that the edges in the cutset have enough capacity to

deliver this excess power. This leads to a necessary condition for the

existence of steady flows but not to a sufficient one, since steady states

in such networks must fulfill some geometric criteria [108] in addition

to the topological ones considered in this approach.



108 final conclusion and outlook

We improved upon this purely graph theoretic condition by connect-

ing two known results from literature: the fact that the Jacobian for

linear stability for such system has the form of a graph Laplacian [49]

and the fact that the multiplicity of the zero eigenvalue of a graph

Laplacian equals its number of connected components [52]. We showed

that stability of steady flows is lost precisely when a cut of the graph

emerges with the property that all the edges in the cutset carry maxi-

mum possible flows.

While deriving this result, we noticed that it holds only when the

phase differences along each edge is less than π
2 , since otherwise the

graph theoretic relation between Laplacian eigenvalues and connectivity

of a graph no longer holds. This gives rise to the curious phenomenon

where a network loses stability without overload on any line. We showed

using the network topology of the British power grid that this is not

an esoteric scenario, but may take place in practice. This leads to the

insight that determining vulnerable edges in a power grid by looking

at the loads may not be the best choice. This topic was subsequently

studied by our colleagues in [27].

7.2 multistability and topology

In Chapter 5, we demonstrated that certain topological features result

in more coexisting steady flows in networks of Kuramoto oscillators.

Existence of a unique steady flow is typically desired for power grids,

as it guarantees same power flows along the edges for all initial condi-

tions. It is well known that the completely coupled Kuramoto networks

can have only unique fixed points (or none at all) [29]. In very sparse

networks (trees), this uniqueness is also guaranteed.

There exist conflicting claims in the literature about multistability

in Kuramoto networks with arbitrary topology. A well cited paper [28]

presented an analytical argument that one can always find a sufficiently

high coupling strength guaranteeing unique steady flows in any topol-

ogy. However, multistability has been demonstrated in ring networks

[30, 53] multiple times.

We found out that the claim in [28] is flawed, due to a flaw in the

application of Banach’s contraction principle in its proof. So, there is

no guarantee of unique steady states in Kuramoto networks of arbitrary

topologies. We determined the number of steady flows in planar net-

works, extending already existing works [30, 54] and complementing in-

dependent and parallel research published during this thesis work [109,

31, 55]. We showed that three topological features favour more fixed

points: long loops in the minimal cycle basis, high coupling strengths

and geographically homogeneous distribution of power generators and

consumers. In the limit of large loop lengths and high coupling strength,

we derived a scaling law for the number of fixed points, that we numeri-

cally showed to be accurate even for loop sizes as small as 50. Curiously,
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all these results were applicable only to planar networks, because our

method depended on the guarantee that no more than two cycles share

an edge. It remains an open question if our results can be generalized

to non-planar networks.

7.3 topological perturbations and steady flows: braess’

paradox

In Chapter 6, we investigated the intriguing phenomenon of Braess’

paradox (BP), where strengthening an edge of a flow network worsens

the performance of the network. Despite significant research in traffic

engineering [60, 35, 61], BP has only recently been studied for contin-

uous flow networks and oscillator networks such as power grids [36, 37,

38]. Which topological features cause certain edges to exhibit BP still

remains an unanswered question.

We demonstrated that the edges with a certain topological property

of being “flow aligned” to the maximally loaded edge are more likely

to exhibit BP (for a suitable definition of flow alignment). To establish

this result, we studied Braess’ paradox using the network susceptibility

formalism we introduced in [106]. Taking a differential view, we defined

BP as the maximum load in the network increasing on infinitesimally

strengthening an edge. This reformulation allowed us to reduce the

problem of identifying edges exhibiting BP to a much simpler problem

of determining the flows in a linear flow network (e.g. DC resistor

networks) with a single dipole input. This equivalence allowed us to

utilize a certain symmetry of the dipole flow problem, resulting in the

insight that edges with flows aligned to the maximum flow are more

likely to exhibit BP.

In addition, we established an efficient algorithm to detect BP in arbi-

trary conservative flow networks; utilizing our reduction of the problem

of detecting Braessian edges to the problem of computing flows due to

a single dipole.

7.4 outlook

In this thesis, we set out to understand the broad question: “How does

topology influence the flows in a network?”.

Our work shed light on a few aspects of this broad question. We

showed that existence of steady flows in Kuramoto oscillator networks

is intimately related to the connectedness of the residual capacity graph

of the network. The concept of residual capacities has been further

utilized by our colleagues [27] to identify weak links in the same network

model. Residual capacities are readily generalizable to almost all flow

networks where the edges have a upper bound on the flow they can

carry. This leads to the question: Can residual capacities be used to
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understand dynamical properties of other flow networks as well (such

as the third order model of power grids [70])?

We found an answer to the puzzle of conflicting claims in the litera-

ture regarding uniqueness of steady flows in phase oscillator networks.

Building upon and extending existing knowledge [30, 31, 55] on the

number of coexisting steady flows, we demonstrated that the number

of steady flows increase with three topological features: cycle lengths,

edge capacities and input heterogeneities. Our findings indicate that

power grids may cease to have unique steady flows if the distribution

of generators and consumers get more decentral. This may be problem-

atic, since our power grids are gradually getting more decentral; due to

big coal and nuclear power plants being phased out in favour of smaller

and more distributed wind or solar power based generators to reduce

CO2 emissions [62]. In addition, decentral grids have been shown to be

more robust against topological perturbations [71]. Strategies to design

decentral power grids, while maintaining unique steady flows would be

interesting to study.

Knowing the number of steady flows in a network is important for

understanding its dynamics. The next question of interest is measuring

the basin volumes of those steady flows, i.e. answering “how likely is

the network to end up with one specific steady flow, if it is started

from many random initial conditions?”. This topic was first raised for

Kuramoto networks in [53], and aspects of it has been presented in a

recent preprint [110].

While we have made substantial progress into predicting which edges

cause Braess paradox in linear flow networks, it remains to be seen if

our works hold for nonlinear flow networks, e.g. models of AC power

grid. Analytical insights motivating our predictor of Braessian edges

remains valid for a broad class of nonlinear flow networks, including

the swing equation model of power grids.

in many real networks, it is more important to know whether Braess

paradox would occur on adding an edge, rather than on infinitesimally

strengthening an edge. We studied the second question because it was

analytically tractable by using edge-to-edge susceptibilities that we in-

troduced in [106]. However, we hope that our findings can be extended

to find out Braessian edges on adding an edge as well, because there ex-

ists a concept called “line outage distribution factor” (LODF) in power

engineering, that quantifies the flow changes in a network on complete

removal of an edge. LODF’s happen to be related to edge-to-edge sus-

ceptibilities by a prefactor [107].

Much remains to be answered of the question we posed at the begin-

ning of this thesis:“How does topology influence the flows in a network?”

This question will arise in additional contexts in future, as the tools of

network science are introduced to study new systems, e.g. the flow of

information in the world wide web, or the flow of cars in road networks.

While approaches specific to the system at hand are indispensable for
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understanding them, a generalized approach of establishing causal rela-

tionships between topology and dynamics may give rise to new insights

by uncovering unifying features across different systems.
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[22] Jesús Gómez-Gardeñes, Yamir Moreno, and Alex Arenas. “Syn-

chronizability determined by coupling strengths and topology on

complex networks.”In: Physical Review E 75.6 (2007), p. 066106.

[23] Hyunsuk Hong, Moo-Young Choi, and Beom Jun Kim. “Syn-

chronization on small-world networks.” In: Physical Review E

65.2 (2002), p. 026139.

[24] Patrick N McGraw and Michael Menzinger. “Clustering and the

synchronization of oscillator networks.” In: Physical Review E

72.1 (2005), p. 015101.

[25] Motoki Nagata et al. “Smoothing effect for spatially distributed

renewable resources and its impact on power grid robustness.”

In: Chaos: An Interdisciplinary Journal of Nonlinear Science

27.3 (2017), p. 033104.

[26] Martin Rohden et al. “Self-organized synchronization in decen-

tralized power grids.” In: Physical review letters 109.6 (2012),

p. 064101.



bibliography 115

[27] Dirk Witthaut et al. “Critical links and nonlocal rerouting in

complex supply networks.” In: Physical review letters 116.13

(2016), p. 138701.

[28] Ali Jadbabaie, Nader Motee, and Mauricio Barahona. “On the

stability of the Kuramoto model of coupled nonlinear oscilla-

tors.” In: Proceedings of the 2004 American Control Conference.

Vol. 5. IEEE. 2004, pp. 4296–4301.

[29] Richard Taylor.“There is no non-zero stable fixed point for dense

networks in the homogeneous Kuramoto model.” In: Journal of

Physics A: Mathematical and Theoretical 45.5 (2012), p. 055102.

[30] J Ochab and PF Gora. “Synchronization of coupled oscillators

in a local one-dimensional Kuramoto model.” In: Acta Physica

Polonica. Series B, Proceedings Supplement 3.2 (2010), pp. 453–

462.

[31] Robin Delabays, Tommaso Coletta, and Philippe Jacquod.“Mul-

tistability of phase-locking and topological winding numbers in

locally coupled Kuramoto models on single-loop networks.” In:

Journal of Mathematical Physics 57.3 (2016), p. 032701.
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