
A DEVELOPMENT METHOD FOR

DERIVING REUSABLE CONCURRENT

PROGRAMS FROM VERIFIED CSP

MODELS

A thesis submitted in fulfilment of the requirements for the
degree of

DOCTOR OF PHILOSOPHY

of

RHODES UNIVERSITY

by

James Dibley

May 2018

Abstract

This work proposes and demonstrates a novel method for software development that ap-

plies formal verification techniques to the design and implementation of concurrent pro-

grams. This method is supported by a new software tool, CSPIDER, which translates

machine-readable Communicating Sequential Processes (CSP) models into encapsulated,

reusable components coded in the Go programming language. In relation to existing CSP

implementation techniques, this work is only the second to implement a translator and it

provides original support for some CSP language constructs and modelling approaches.

The method is evaluated through three case studies: a concurrent sorting array, a trial-

division prime number generator, and a component node for the Ricart-Agrawala dis-

tributed mutual exclusion algorithm. Each of these case studies presents the formal verifi-

cation of safety and functional requirements through CSP model-checking, and it is shown

that CSPIDER is capable of generating reusable implementations from each model. The

Ricart-Agrawala case study demonstrates the application of the method to the design of a

protocol component.

This method maintains full compatibility with the primary CSP verification tool. Applying

the CSPIDER tool requires minimal commitment to an explicitly defined modelling style

and a very small set of pre-translation annotations, but all of these measures can be instated

prior to verification.

The Go code that CSPIDER produces requires no intervention before it may be used as

a component within a larger development. The translator provides a traceable, struc-

tured implementation of the CSP model, automatically deriving formal parameters and

a channel-based client interface from its interpretation of the CSP model. Each case study

demonstrates the use of the translated component within a simple test development.

ACM Computing Classification System

Classification

Thesis classification under the ACM Computing Classification System1 (2012 version, valid

through 2018):

Computing methodologies – Concurrent computing methodologies

Software and its engineering – Software development techniques

Software and its engineering – Software prototyping

Software and its engineering – Formal software verification

General Terms: software synthesis, verification, model-checking, communicating sequen-

tial processes, reusability, code generation

1https://www.acm.org/publications/class-2012

ii

https://www.acm.org/publications/class-2012

Acknowledgements

I would like to express my heartfelt thanks to my supervisor, Prof. Karen Bradshaw, for the

care, enthusiasm, guidance and wisdom that I have received throughout the course of the

research recorded here.

I would like to gratefully acknowledge email correspondence with Dr. Thomas Gibson-

Robinson, Dr. Ing. Uwe Schulze, Prof. Dr. Michael Leuschel, and Prof. Helen Treharne, each

of whom made time in their schedules to respond to my queries during the exploratory

phase of the research.

This final version of the dissertation has been considerably strengthened by the intellectual

input of the external examiners. I am very grateful to them for their time and insight.

I have my family and friends near and far to thank for their love and support and belief in the

work I was doing, and more besides that I cannot summarise here. My love and gratitude

to you all.

iii

Dedication

This work is for Nishlyn, who made it possible.

iv

Contents

ACM Computing Classification System Classification ii

Acknowledgements iii

List of Figures xi

List of Listings xii

1 Introduction 1

1.1 Context of the research . 1

1.2 Research statement . 3

1.3 Objectives of the research . 3

1.4 Approach . 4

1.5 Original contributions of the research . 5

1.6 Limitations of the research . 5

1.7 Organisation of the thesis . 6

2 Related work 8

2.1 Overview . 8

2.1.1 Applications of verification . 9

2.1.2 Techniques for verification . 9

2.2 Recent case studies in the verification of concurrent software 10

2.3 Verification in software development . 12

2.4 Communicating Sequential Processes (CSP) . 13

2.4.1 Hybrid formulations . 16

2.5 Event-B . 17

2.6 TLA+ . 18

2.7 Selection of a formalism . 19

2.8 Summary . 19

3 Communicating Sequential Processes 20

3.1 Overview . 20

3.2 CSPM . 22

3.2.1 Defining events and processes . 22

3.2.2 Defining sequential processes . 25

v

Contents vi

3.2.3 Defining functions . 29

3.3 Verification and semantic models . 31

3.3.1 The traces model . 32

3.3.2 The failures model . 33

3.3.3 The divergences model . 34

3.3.4 Defining concurrent processes . 34

3.4 Verification through model-checking . 36

3.5 Summary . 41

4 Go 42

4.1 Overview . 42

4.2 Concurrency . 43

4.3 Channels . 47

4.3.1 Input/output and synchronisation . 47

4.3.2 Selecting over channels . 50

4.3.3 Implementation details and comparison with CSP 51

4.3.4 Other communication primitives . 52

4.4 User-defined types . 52

4.5 Packages . 54

4.6 Summary . 54

5 The proposed development method 56

5.1 Overview . 56

5.2 Workflow phases . 57

5.3 Modeling implementation components in CSP . 59

5.3.1 Modelling adaptations . 59

5.3.2 Support for CSPM . 62

5.4 Model verification with FDR . 65

5.5 The CSPIDER tool . 66

5.5.1 Parsing CSPM with the CSPIDER tool . 66

5.5.2 Interpreting CSPM with the CSPIDER tool . 68

5.6 Code generation with CSPIDER . 69

5.7 Summary . 73

6 Parsing and validating CSPM scripts 74

6.1 Parsing and interpretation issues . 74

6.2 Developing a parser and language application using ANTLR 76

6.2.1 Existing CSPM parsers . 78

6.3 Parsing CSPM using ANTLR . 80

6.3.1 Structuring the grammar to support XPath pattern-matching 81

Contents vii

6.3.2 Defining the CSPM expression . 82

6.3.3 Testing the parser . 85

6.4 Input validation . 88

6.5 Summary . 89

7 Interpreting CSPM and building the intermediate representation 91

7.1 Defining implementable style conventions for CSPM 91

7.1.1 Separating specification scenarios . 92

7.1.2 Bounding recursive process definitions . 93

7.1.3 Restricted syntax on channel operations . 94

7.1.4 Type annotation of parameterised expressions 96

7.1.5 Externally-assigned parameters . 97

7.2 Implementing the intermediate representation . 98

7.3 Interpreting and modelling simple declarations . 101

7.3.1 Dependency ordering . 101

7.4 Interpreting CSPM processes and user-defined functions 104

7.4.1 Distinguishing between functions and parameterised processes 106

7.4.2 Channel (re-)classification . 106

7.4.3 Implementing channel encapsulation . 107

7.4.4 Type specification re-interpretation . 108

7.4.5 Renaming . 109

7.4.6 Process and function synthesis . 111

7.4.7 Cataloguing data references . 111

7.5 Directed subtree exploration . 112

7.5.1 Local definition environment declarations . 116

7.6 Consolidating the intermediate representation . 117

7.6.1 Constructing complex communication channels 117

7.6.2 Supporting process composition: synthesising process alphabets . . . 118

7.6.3 Consolidation of the constructed definitions 119

7.7 Summary . 121

8 Model-driven translation and code generation 122

8.1 Overview . 122

8.2 The CSPIDER output model . 123

8.2.1 Process objects . 123

8.2.2 Process networks . 127

8.2.3 Design philosophy . 130

8.3 Templating . 134

8.3.1 StringTemplate principles and applications . 135

8.3.2 Templating the target language . 138

Contents viii

8.4 Model-driven translation . 139

8.4.1 Overview of generative phase . 140

8.4.2 Implementation of generative phase . 140

8.5 Synthesising process networks . 142

8.5.1 Synthesising process objects . 146

8.5.2 The StringTemplate-annotated parse tree . 148

8.5.3 Mapping Boolean-guarded alternatives in CSPM external choice 151

8.5.4 Synthesising functions . 153

8.6 Rendering output . 154

8.7 Summary . 154

9 Evaluation: Three case studies 156

9.1 Linear sorting array . 157

9.1.1 Adaptations . 157

9.1.2 Translation . 159

9.1.3 Testing . 162

9.1.4 Evaluation . 163

9.2 Prime number generator . 164

9.2.1 Verification . 165

9.2.2 Implementation prototype . 166

9.2.3 Translation . 168

9.2.4 Testing . 171

9.2.5 Evaluation . 171

9.3 Ricart-Agrawala distributed mutual exclusion node 172

9.3.1 Motivation as a case study . 172

9.3.2 Verification . 174

9.3.3 Implementation prototype . 181

9.3.4 Translation . 185

9.3.5 Testing . 186

9.3.6 Evaluation . 189

9.4 Discussion . 190

9.4.1 The concurrent prime generator . 190

9.4.2 The Ricart-Agrawala node . 192

9.5 Summary . 193

10 Conclusion 195

10.1 Summary . 195

10.2 Contributions . 196

10.3 Future work . 197

Contents ix

References 199

Appendices 214

A An ANTLR grammar for CSPM 214

B The CSPIDER process network templated in StringTemplate 227

C The CSPIDER process object templated in StringTemplate 232

D Case study: Linear sorting array 235

D.1 CSPIDER-compatible model (adapted from T. Davies (2012, pp. 115-117)) . . . 235

D.1.1 Implementation component . 235

D.1.2 Specification component . 237

D.1.3 Verification . 238

D.2 Lsa: CSPIDER-generated Go implementation . 239

D.2.1 Process network: Lsa . 239

D.2.2 Process object: arraycell . 241

D.3 Demonstration program . 243

D.4 Output from demonstration program . 244

E Case study: Prime generator 245

E.1 CSPIDER-compatible model . 245

E.1.1 Implementation component . 245

E.1.2 Specification component . 248

E.1.3 Verification . 248

E.2 Pg: CSPIDER-generated Go implementation . 249

E.2.1 Process network: Pg . 249

E.2.2 Process object: collector . 251

E.2.3 Process object: filter . 253

E.2.4 Process object: intgenerator . 255

E.3 Demonstration program . 256

E.4 Output from demonstration program . 257

F Case study: Ricart-Agrawala mutual exclusion node 258

F.1 CSPIDER-compatible model . 258

F.1.1 Implementation component . 258

F.1.2 Specification component . 265

F.1.3 Verification . 268

F.2 Ra: CSPIDER-generated Go implementation of a Ricart-Agrawala mutual ex-

clusion node . 270

F.2.1 Process network: Ra . 270

Contents x

F.2.2 Process object: extreq (‘External request processing’) 274

F.2.3 Process object: nodestate . 276

F.2.4 Process object: proto (‘Protocol’) . 278

F.2.5 Process object: rxreq (‘Receives requests’) . 282

F.2.6 Process object: rxrsp (‘Receives responses’) 283

F.3 Demonstration program . 285

F.4 Output from demonstration program . 287

List of Figures

3.1 Sample run of the linear sorting array algorithm, reproduced from T. Davies

(2012, p. 82) . 37

5.1 The proposed development method . 57

5.2 The CSPIDER architecture . 67

6.1 The CSPIDER parser preserves operator precedence in CSPM expressions . . . 86

6.2 The ARRAY process composition, as recognised by the CSPIDER CSPM parser . 87

7.1 A bounded recursively-defined process . 94

7.2 Retrieving a CSPIDER-compatible type annotation from FDR 96

7.3 The TranState class . 98

7.4 The BaseDef class . 99

7.5 The Symbol class . 100

7.6 The BasePass class . 100

7.7 The ChannelDef class . 103

7.8 The ProcFuncCommon class used by Pass07-Pass10 (excerpt) 105

7.9 The ProcessDef class . 111

7.10 The FunctionDef class . 112

7.11 The ChanInputDef class . 115

7.12 The ChanOutputDef class . 115

8.1 The OutputModel class . 140

8.2 The ProcessNetwork class . 145

8.3 The ProcessObject class . 147

8.4 The parse-tree generated for Listing 8.23, with the subtrees corresponding to

each alternative highlighted . 151

xi

List of Listings

3.1 Event identifier declarations in CSPM . 24

3.2 Three simple process declarations . 25

3.3 External and internal choice in two simple processes 26

3.4 Event hiding and event renaming . 27

3.5 Refinement results for Listing 3.4 . 27

3.6 Parameterised process declaration in CSPM . 28

3.7 Definition of three functions . 30

3.8 Differing accounts of processes P and Q . 33

3.9 Refinement results for Listing 3.8 . 33

3.10 The linear sorting array coded in CSPM, after T. Davies (2012) 36

3.11 Sorting zeroes and ones, expressed as a safety condition, adapted from T.

Davies (2012, pp. 114–7) . 39

3.12 Composing the specification and assertion checks . 40

3.13 Refinement check results for Listing 3.12 . 41

4.1 A concurrent prime generator implemented in Go . 44

4.2 Execution of Listing 4.1 . 45

4.3 Coordinating a group of goroutines using a sync.WaitGroup 46

4.4 Input/output over three different channels . 48

4.5 Execution of Listing 4.4 . 50

4.6 Selecting over channel inputs . 50

4.7 IntSet . 53

4.8 Declaring and using an instance of type IntSet . 54

4.9 Execution of Listing 4.8 . 54

5.1 The linear sorting array model adapted for use with CSPIDER 61

5.2 The revised specification script for the linear sorting array 65

5.3 The process network type derived by CSPIDER from Listing 5.1 71

6.1 Specimen arithmetic ‘expression’ rules as an ANTLR grammar 78

6.2 Top-level declaration rules . 81

6.3 The patternDecl and parametricPatternDecl rules . 82

6.4 The expression rule . 83

6.5 The primaryExpr rule . 84

xii

List of Listings xiii

6.6 Automated rejection of any CSPM script containing internal choice 89

6.7 Diagnostic output for an unsupported expression . 89

7.1 Specification and verification of two vending machines in CSPM, adapted

from J. Davies (2006, p.86) . 92

7.2 Channel communications example from the linear sorting array case study . 96

7.3 A type-annotated bounded recursively-defined process declaration 97

7.4 A parameterised implementation script from the linear sorting array case study 97

7.5 Channel declarations containing type specifications 102

7.6 Type-annotated parameterised declaration of the receiveSet function 106

7.7 Type-annotated parameterised declaration of the ARRAYCELL process 106

7.8 The EMITTER process . 109

7.9 Automated reclassification of channels based on visible operations 110

7.10 Scanning process expressions for channel I/O operations 114

7.11 Synthesis and renaming reconciliation for ‘simple’ channel operations 115

7.12 Building up a ‘sync set’ as an alphabet for a composition process declaration 119

7.13 The ‘sync set’ used to define a replicated process composition 119

8.1 The process object for the EMITTER CSPM process . 124

8.2 The process network Pg struct from the prime generator case study 128

8.3 The Pg constructor’s function signature . 129

8.4 NETWORK visibility channel declarations in the Pg constructor 129

8.5 Initialising an EMITTER process object in the Pg constructor 130

8.6 Rendering of replicated alphabetised parallel process by an obsolete CSPI-

DER translation strategy . 131

8.7 Top-level composition of an early version of the prime number generator . . . 131

8.8 Original implementation . 132

8.9 The process network’s eponymous method launches its component goroutines134

8.10 Five fundamental rules from the CSPIDER tool’s Go templates 136

8.11 Function/method, struct declaration/literal and if/then/else templates 137

8.12 Channel operation templates . 139

8.13 Population of the process network constructor by Gen01 143

8.14 Satisfaction of integer declaration dependencies happens in-flight 143

8.15 Channel visibility and renaming determining attribute injection in Gen01 144

8.16 This renaming expression maps client-visibility channels Input, Output to in-

dices of the digitChan channel array . 145

8.17 Process object generation based on catalogued process invocations 146

8.18 Preserving indexing expressions to satisfy process object attribute initialisation147

8.19 The ProcessObject constructor . 148

List of Listings xiv

8.20 Annotating an ‘integer division’ parse tree node with a populated StringTem-

plate instance . 149

8.21 Annotating a ‘channel input’ parse tree node with a populated StringTem-

plate instance . 149

8.22 Mutating the generated Go expression on the basis of prior constructed non-

declarative definitions . 150

8.23 An external choice expression with three alternatives 151

8.24 Implementation of CSP external choice in a Go select statement, including

the implementation of Boolean-guarded alternatives 152

8.25 The Go implementation of guardedIntChan . 153

8.26 The strictLessThanUnderModulo function in CSPM . 153

8.27 The strictLessThanUnderModulo function, as rendered by CSPIDER 154

9.1 The ARRAYCELL process definition . 158

9.2 Composing the linear sorting array in the adapted model 159

9.3 The eponymous ‘driver’ method of the arraycell process object 160

9.4 The ‘cell’ substate method of the arraycell process object 161

9.5 Usage of the Lsa component in a demonstration program 162

9.6 A concurrent prime ‘sieve’, reproduced from Go Project (n.d.) 164

9.7 Verification checks for the prime generator model . 166

9.8 The COLLECTOR process . 167

9.9 The configuration and initialisation of the Pg process network 169

9.10 Verification checks for the Ricart-Agrawala algorithm encoded in CSPM 175

9.11 Assembly of the NODE process . 179

9.12 Checking NODE component interfaces for divergence- and deadlock-freedom . 180

9.13 Correctness checks over component processes of NODE 181

9.14 Assembling process alphabets for the component processes of NODE 183

9.15 Functions that implement sequence number comparison under modulo

arithmetic . 184

9.16 The function signature of the Ra constructor . 185

9.17 The simulated shared resource . 187

9.18 The worker goroutine . 188

9.19 Declaring and allocating channels to interface the Ra objects 189

A.1 ANTLR4 grammar for CSPM . 214

B.1 StringTemplate template for the CSPIDER process network 227

C.1 StringTemplate template for the CSPIDER process object 232

D.1 Implementation component of the linear sorting array CSPM model 235

List of Listings xv

D.2 Specification component of the linear sorting array CSPM model 237

D.3 Verification results for linear sorting array . 238

D.4 Process network Lsa . 239

D.5 Process object arraycell . 241

D.6 Demonstration program for linear sorting array . 243

D.7 Output from demonstration program . 244

E.1 Implementation component of the prime generator CSPM model 245

E.2 Specification component of the prime generator CSPM model 248

E.3 FDR verification report for the prime generator CSPM model 248

E.4 Process network Pg . 249

E.5 Process object collector . 251

E.6 Process object filter . 253

E.7 Process object intgenerator . 255

E.8 Demonstration program for the prime generator . 256

E.9 Output from the prime generator demonstration program 257

F.1 Implementation component of the Ricart-Agrawala node CSPM model 258

F.2 Specification component of the Ricart-Agrawala node CSPM model 265

F.3 FDR verification report for the Ricart-Agrawala node CSPM model 268

F.4 Process network Ra . 270

F.5 Process object extreq . 274

F.6 Process object nodestate . 276

F.7 Process object proto . 278

F.8 Process object rxreq . 282

F.9 Process object rxrsp . 283

F.10 Demonstration program for the Ricart-Agrawala mutual exclusion network . 285

F.11 Output from the Ricart-Agrawala network demonstration program 287

1 Introduction

1.1 Context of the research

Concurrent programs are distinguished by the quality that the determinant of their correct-

ness is the avoidance of synchronisation errors. Consequently, their development often

presents substantial challenges in terms of specification, design, implementation and/or

testing. Synchronisation errors are frequently inconsistent, and as a result a concurrent

program may contain defects that testing cannot dependably expose.

Formal verification offers the potential to engage some of these challenges by providing

a basis for mathematical reasoning about the structure and behaviour of concurrent pro-

grams, although applications and techniques for verification vary widely. The higher avail-

ability of computing resources, and accelerating innovation in the design and implemen-

tation of model checkers, has increased the applicability of verification techniques (Wood-

cock et al. 2009) to offer more accessible workflows than deductive proof strategies, which

are often drawn-out and prone to error.

One such technique is the Communicating Sequential Processes (CSP) process algebra

(Hoare 1985; Roscoe 2010; Schneider 1999), which provides an expressive paradigm for

defining concurrent programs as the composition of simple sequential components that

synchronise and communicate through the performance of visible events.

Performing formal specification and verification in the CSP approach involves defining the

correctness properties of a concurrent program—one such property would be ‘freedom

from deadlock’, which in the semantic model of CSP has a clear and concise definition—as

a specification scenario, and then constructing an implementation prototype that can be

shown to fulfil that scenario. CSP defines a refinement relation that enables the behaviour

of a prototype to be precisely verified against the safe and/or desirable behaviours defined

by its specification(s).

Originally, this verification was performed through the manual construction of mathemat-

ical proofs, but software tool support for verification activities is now commonplace, typi-

cally through exhaustive (tool-assisted) checking of the specification and implementation’s

respective state spaces. In the CSP approach this is accomplished through the implemen-

1

1 Introduction 2

tation of a machine-readable dialect, CSPM (University of Oxford n.d.[b]), which can be in-

terpreted, animated and verified by a number of model-checker programs, including FDR

(University of Oxford 2017) and ProB (Heinrich-Heine-University 2017).

The model-checking approach is not a total replacement for deductive proof techniques.

In general terms, successful model-checking tends to depend on the specification and im-

plementation components each having a finite, and ideally minimal, state space, while as

a specialised approach that resembles but subtly diverges from software testing, model-

checking can be counter-intuitive (Newcombe 2011). However, the benefit of automating

the verification of simple and easily-defined properties is considerable.

However, applying this category of approach in a development also presents other chal-

lenges: developing a program from a formally-verified prototype entails faithfully translat-

ing the model. This activity must be grounded in a thorough understanding of the seman-

tics of the modelling notation, the semantics of the concurrency model of the target imple-

mentation environment, the aspects of concurrent behaviour where the two intersect and

diverge, as well as the domain of the original problem.

One field of research aims to unite theory and practice by providing implementation tech-

niques of one kind or another that ease the process of translating a verified program proto-

type to a concrete implementation. Some of these techniques consist of emulation libraries

that implement the programming paradigm associated with a particular formal approach

within a particular programming/runtime environment: distinguished examples include

JCSP (Welch, Brown, et al. 2007; Welch, Hilderink, et al. 2001) and PyCSP (Bjørndalen et al.

2007; Friborg 2016).

However, implementation techniques that entail manual intervention following the com-

pletion of verification activities are exposed to some risk of introducing new errors. Conse-

quently, other implementation techniques aim to directly refine or translate a verified im-

plementation prototype into program code without further user input: examples of this ap-

proach include CSP++ (Gardner 2005b; Gardner 2015), which translates restricted-syntax

CSP implementation models into C++ program code, and the work described by Yang

(2008) and Yang and Poppleton (2007), in which an extension of the JCSP emulation layer

is complemented by automatic translation from verified B+CSP models.

1 Introduction 3

1.2 Research statement

This research aims to contribute to the practical applicability of correct-by-construction

verification techniques to the development of concurrent programs. It investigates the au-

tomated interpretation of verified CSP models and establishes a translation strategy that

achieves the direct, structured and traceable derivation of encapsulated, reusable1 pro-

gram components for use in the Go runtime environment, which is not presently served

by any existing CSP implementation technique.

1.3 Objectives of the research

In order to fulfil the statement above, the following objectives have to be met:

• Interpreting and mapping the logical design expressed by a CSPM model involves a

number of interpretive and translation challenges. This includes the task of distilling

(and if necessary restricting) some abstract terms of CSP, in particular its notation for

processes and their transactions, to a subset of the language that supports systematic

interpretation.

It also includes the challenge of interpreting, identifying and resolving dependen-

cies between the various logical entities defined through CSPM’s declarative syntax,

which provides no keyword discriminator to distinguish between declarations of sim-

ple and complex data types, computation functions or processes. Interpretation may

only be performed on the basis of analysing the expressions that appear in these dec-

larations, which may be recursively defined from a range of around 50 operators.

• The fundamental objective of maintaining the integrity of the verification results

must be preserved by eliminating the necessity associated with some implementa-

tion techniques (e.g., T. Davies (2012)) of rewriting or otherwise adapting the struc-

ture of an CSPM implementation prototype in order to render it implementable. The

way in which this is achieved should maintain perfect compatibility with the FDR

model checker.

• The superficial resemblance between the constructs and principles of CSP and the

Go programming language and runtime environment needs to be closely examined

1The program components generated through this method are described here as ‘reusable’ to the extent
that they implement modules that are robustly encapsulated and support parameterisation.

1 Introduction 4

to establish confidence that Go provides an appropriate implementation target for

CSP-based designs.

• Since the founding principle of the CSP verification technique is the specification of

complex systems as compositions of smaller, simpler processes, and since the pro-

cedure of verifying CSPM implementations through model checking has been ob-

served to obtain results most efficiently over large combinations of small compo-

nents, rather than small combinations of large components, mapping the semantics

of an arbitrarily complex CSP implementation process demands the design of a scal-

able output model for the derived implementations.

Since the research statement specifically identifies encapsulation and reuse as desir-

able qualities of the derived components, the output model must implement a strat-

egy for mechanically determining the component interface and any formal parame-

ters it must expose to a program that wishes to use it.

1.4 Approach

The approach developed and evaluated by this work is based on the direct translation of

verified CSP models as performed by a new software tool, CSPIDER (‘CSP IMPLEMENTATION

DERIVATION’).

The CSPIDER tool implements a staged parsing and interpretation strategy for CSPM mod-

els that enables verified CSPM implementation prototypes to be translation-ready with

only minimal annotations and style requirements, all of which maintain compatibility with

the FDR model checker.

The research demonstrates and evaluates the CSPIDER tool’s implementation of CSPM

models within the Go programming language and runtime environment, selected on the

basis of its CSP-inspired language-level support for concurrency. The CSPIDER tool is de-

signed (and demonstrated) to implement CSPM models as encapsulated, reusable pro-

gram components, automatically deriving component interfaces and formal parameters.

It is shown to implement an output model and code generation strategy for Go that imple-

ments and composes the component processes of a CSPM implementation prototype in a

modular, predictable and traceable form.

The robustness of the overall technique is evaluated through three graduated case studies

that exercise a variety of CSPM verification scenarios and language constructs, including

1 Introduction 5

some constructs not directly supported by any other CSP implementation technique. Each

case demonstrates modelling strategies that enable the tool to automatically derive com-

ponent parameterisation and interfaces.

1.5 Original contributions of the research

The research presents the following original contributions:

The CSPIDER tool is the first CSPM implementation technique to target the Go program-

ming language and runtime environment.

Original aspects of the tool’s design and implementation include the application of a

staged parsing and interpretation strategy to CSPM, and the scalable approach to de-

riving Go components from complex CSPM process compositions is also original to

this work. It is hoped that either of these approaches in their own right may provide

a basis for further practical experimentation or research.

An original grammar that may be used with the ANTLR 4 parser generator to produce a

reusable CSPM parser. This grammar is included as Appendix A.

An original CSPM model and verification results, along with a derived Go program com-

ponent, for a node which implements the Ricart-Agrawala algorithm for distributed

mutual exclusion. These artefacts are included as Appendix F.

1.6 Limitations of the research

The integrity of the translated components is claimed through the results of empirical test-

ing, and defended informally on the basis of the congruence of CSPM semantics to the

basic application of Go channels employed throughout the translated components. This

research does not offer a proof of correctness for any of the evaluated translations or the

overall strategy.

The case studies over which the implementation technique and its support tool are evalu-

ated represent a diverse sample of CSP language constructs, and the example of the Ricart-

Agrawala node is certainly not a trivial prototype, but do not necessarily constitute obvi-

ously useful programs in the context of the Go runtime environment.

1 Introduction 6

The specification and verification procedures presented within these evaluations are not

claimed to present optimal strategies for constructing or model checking the designs in

question.

Subject to time constraints, the author was unable to investigate the interesting possibility

of modelling or translating processes that perform dynamic process creation.

Some interesting propositions from the literature were left unexamined, principally as a

result of time constraints. For instance, while the CSPIDER tool implements automatic

translation where JCSP does not, the CSPIDER tool does not implement any of the inter-

esting contributions associated with JCSP, such as channel poisoning (Sputh and Allen

2005) or network deployment (Welch, Brown, et al. 2007): relating to the former, at present

CSPIDER-derived components achieve termination principally on the basis of modelled

termination and/or intra-runtime coordination of goroutines via the Go environment’s

sync.WaitGroup construct. Likewise, the CSP++ tool’s concept of ‘selective formalism’ (Gard-

ner 2005a) is not one which the author was able to explore in the evaluations presented here,

although some design decisions in the CSPIDER output model anticipate it.

1.7 Organisation of the thesis

Chapter 2 provides a survey of verification applications and techniques that support the

development of concurrent software, foregrounding case studies of their use. A sur-

vey of tool-supported verification techniques provides the rationale for the selection

of the CSP formalism for investigation in this research.

Chapter 3 provides a brief introduction to the CSP process algebra, focusing on elemen-

tary syntax and model-checking.

Chapter 4 presents an overview of the Go programming language and runtime environ-

ment, focusing on its language-level support and implementation of concurrency

and object-based code structuring.

Chapter 5 presents the proposed development method in outline.

Chapter 6 is the first of three chapters detailing the design and implementation of the

CSPIDER tool. It describes the development of the CSPIDER tool’s CSPM parser.

Chapter 7 discusses the staged interpretive analysis the CSPIDER tool performs over

1 Introduction 7

parsed CSPM input in order to construct an intermediate representation of the CSPM

implementation prototype.

Chapter 8 is the last chapter detailing the operations of the CSPIDER tool. It presents

the design and implementation of an output model to structure reusable and encap-

sulated CSP-derived Go implementations based on ‘process networks’ and ‘process

objects’.

Chapter 9 gives an account of the evaluation of the proposed method through three grad-

uated case studies that each exercise different aspects of CSP modelling, verification

and implementation.

Chapter 10 summarises the findings of the work, reviews its novel contributions and indi-

cates directions for future work.

Appendix A reproduces the ANTLR grammar used within CSPIDER to lex and parse CSPM.

Appendix B reproduces the StringTemplate used within CSPIDER to procedurally gener-

ate and initialise networks of CSP-derived ‘process objects’, which provide the princi-

pal encapsulation and structuring mechanism for CSP-derived Go types.

Appendix C reproduces the StringTemplate used within CSPIDER to procedurally gener-

ate CSP-derived ‘process objects’, which provide the basic derived implementation

for a single CSP process.

Appendix D reproduces the CSP model, verification results and translated Go code for the

linear sorting array case study.

Appendix E reproduces the CSP model, verification results and translated Go code for the

concurrent prime generator case study.

Appendix F reproduces the CSP model, verification results and translated Go code for the

Ricart-Agrawala distributed mutual exclusion node case study.

2 Related work

This chapter surveys related work in the field, expressing the gradual refinement of the re-

search design to the work documented by this thesis.

On the basis of a survey of the academic/practitioner literature that foregrounds case stud-

ies of applied verification at an industrial scale, this chapter reviews the various ways in

which formal verification applications and techniques have been shown to support the de-

sign and implementation of concurrent software systems.

The specific application area that the work presented in this thesis aims to address is iden-

tified, and the originality of the contributions made by this work to the field is thereby es-

tablished.

2.1 Overview

The term ‘formal verification’ denotes a generic, systematic approach to engaging the

mounting challenges associated with identifying and resolving defects under conditions

of advancing complexity and concurrency.

In the context of software development, the formal verification approach can be charac-

terised as that of applying mathematical techniques to describe and analyse some aspects

of the possible behaviours of a software system, including some aspects of behaviours that

would be very difficult to explore and analyse through the application of conventional test-

ing applications1.

The discipline of verification is thus one based on the precise specification of scenarios

of behaviour that must be fulfilled or avoided by a system, typically complemented by an

equally precise design model of that system. An associated field involves the development

and use of tools such as animators, which can help to clarify whether the precisely-specified

scenarios are also accurate representations of the system requirements.

1In this characterisation, it should be considered that the application of mathematical techniques may de-
scribe the use of tools that apply mathematical techniques on the developer’s behalf: the popular stereo-
type that program verification necessarily entails writing deductive proofs is, as Hall (1990) argues, a
‘myth’.

8

2 Related work 9

2.1.1 Applications of verification

Applications of verification may be classified by the phase(s) of the development process

that they aim to support.

Applications that support the precise formulation of behavioural requirements, and pro-

vide some means of establishing that a formally-expressed design satisfies them, are well-

established in the academic literature. Original formulations of these approaches were

typically based on proof techniques, which as Lamport (2016) remarks, are ‘usually too

difficult’; the use of proof techniques have in most instances been supplanted by model-

checking, although using this technology effectively presents its own category of chal-

lenges.

A number of the case studies and accounts of applying verification to software design hint

that the process of accurately deriving an implementation from a verified model is not a

straightforward one (Newcombe 2011; Newcombe et al. 2015), and some developments

of this category of application aim to extend its reach by providing guided or machine-

assisted techniques to directly derive implementations from verified designs. For exam-

ple, the B method (Abrial 1996; Schneider 2001) defines a procedure whereby a verified

model of a sequential software component may be incrementally transformed into a pseu-

docode notation that maps onto many high-level programming languages. In other in-

stances, an equivalent process has been automated, to a greater or lesser degree: for in-

stance, Wright (2009) describes and demonstrates a tool that transforms models composed

using the Event-B method to C implementations; a number of other instances are reviewed

in the remainder of this chapter.

Verification applications that support more mainstream software development paradigms

by using formal specifications as a basis for the automated generation of software accep-

tance tests (Aichernig et al. 2012; Bowen, Bogdanov, et al. 2002; Cavalcanti and Hierons

2013; Peleska 2013; Stocks and Carrington 1996) have also gained widespread adoption in

software engineering practice outside academia (Woodcock et al. 2009).

2.1.2 Techniques for verification

Techniques for verification—sometimes called formalisms—may be classified in terms

of:

2 Related work 10

The aspects of behaviour of a system that they are capable of precisely describing and reason-

ing about. For example, Event-B reasons about the behaviour of a system primarily

in terms of the states that it may occupy or transition between (Abrial 2010, p. xiii),

and so while it describes under what conditions a transition may occur, it does not

explicitly articulate possible sequences of transition; consequently, it is classified as

a state-based technique.

Conversely, CSP primarily describes and reasons about a system in terms of its com-

ponent processes and the events2 they may be observed to participate in, and is thus

classified as a process algebra technique (Roscoe 2010, p. 2). While CSP can articu-

late sequences of behaviour extremely clearly, it does not provide sophisticated tech-

niques for reasoning about systems that process or manipulate complex data.

The theory and principles by which they describe and reason about those behaviours and/or

aspects. For example, both CSP and Event-B support the incremental development of

system models (stepwise refinement), but provide substantially different mechanisms

to verify the integrity of such developments.

The software tool assistance that a technique provides to support its application. In gen-

eral terms, verification techniques that take a process algebra-like approach typically

implement support tools based on model checking (e.g., the primary support tool

for CSP modelling is the FDR model checker (University of Oxford 2017)), whereas

state-based verification techniques typically provide interactive proving tools (e.g.,

the Event-B development environment RODIN provides a set of provers among its

many features (Abrial et al. 2009)).

2.2 Recent case studies in the verification of concurrent

software

As Hall (1990)’s influential article, ‘Seven Myths of Formal Methods’, approaches its thirtieth

anniversary, the seventh of the positions it set out to debunk—that ‘Nobody uses [verifica-

tion] for real projects’—appears to have definitively turned ‘into a myth [...] or into history’

(Hall 1990, pp. 12,19). However, as Newcombe et al. (2015, p. 71) reports, the extent to which

this evolution has been recognised among the wider community of practice is limited:

2Typically representing point-to-point or multi-way transactions at a fairly high level of abstraction.

2 Related work 11

This raised a challenge—how to convey the purpose and benefits of formal

methods to an audience of software engineers. Engineers think in terms of de-

bugging rather than ‘verification,’ so we called the presentation ‘Debugging De-

signs.’ [...] We initially avoid the words ‘formal,’ ‘verification,’ and ‘proof’ due

to the widespread view that formal methods are impractical.

On the basis of reviewing case studies and accounts that feature within the recent aca-

demic/practitioner literature, the technology transfer from research to practice motivated

for by Bowen and Hinchey (1995) is taking place: verification techniques and applications

are established at industrial scale in a wide range of fields (Hierons et al. 2009; Peleska 2013;

Romanovsky and Thomas 2013; Woodcock et al. 2009), and supported by numerous book-

length treatments of verification techniques and applications written for a general prac-

titioner audience, such as Ben-Ari (2005), Jacky (1997), Kourie and Watson (2012), Mills

(2009), Roscoe (2010), Schneider (1999), and Utting and Legeard (2006).

The familiar use case of designing safety-critical systems is well-represented in the liter-

ature, with Woodcock et al. (2009)’s comprehensive survey of industrial use featuring de-

tailed accounts of experience in the development of train control, avionics, biometric se-

curity and environmental barriers. Secure financial applications (Hall and Chapman 2002),

high-volume manufacturing automation systems (Broadfoot 2005; Hopcroft and Broad-

foot 2005) and extremely high-volume transaction systems (Newcombe et al. 2015) are also

represented.

Another long-established application area for verification is establishing the integrity

and/or security of communications protocols (Ryan et al. 2000), which consequently inter-

mingles with accounts of experience applying verification in the development of service

protocols and distributed services (Johnson et al. 2004; Newcombe 2011; Newcombe et al.

2015; Zave 2012).

An application of verification that appears to be growing in viability is the use of tool-

assisted verification techniques to analyse existing systems by deduction or model check-

ing. Wright (2011) describes the analysis through formal modelling in Event-B of the in-

struction set architecture of the XCORE microprocessor, a descendant of the Transputer

architecture (XMOS n.d.). Cheng (2014) documents the verification of the FREERTOS em-

bedded operating system in Z notation. The aforementioned work by Zave (2012) discov-

ered defects in the published version of the Chord distributed hash table protocol (The

Chord Project n.d.) through a ‘lightweight’ formal analysis. On similar terms, Lowe (1996)

demonstrated the existence and resolution of vulnerabilities in the Needham-Schroeder

public key protocol through FDR model checking.

2 Related work 12

The application of verification techniques to the automatic generation of software tests is

claimed to have the potential to make strong complementary contributions to the ongo-

ing development of software test automation (Hierons et al. 2009), but there is some con-

tention about how this may be accomplished (Bowen, Bogdanov, et al. 2002). Hierons et

al. (2009) report that automated test generation from labelled transition systems (LTS)—

which provide efficient representation of process algebra specifications, not least within

FDR itself (Gibson-Robinson, Armstrong, et al. 2013)—is a fruitful and active area of re-

search. This is borne out by numerous publications detailing test generation from CSP

specifications (Cavalcanti and Gaudel 2007; Cavalcanti and Gaudel 2014; Cavalcanti and

Hierons 2013; Dahlweid and Schulze 2003; Tretmans 2008).

However, while FDR’s programming interface enables the retrieval and exploration of its

LTS representations of CSP specification and implementation processes (Gibson-Robinson

2014), making the exploration of an approach at least viable, surveying the literature indi-

cated there were a large number of related open questions—e.g., constraining state explo-

sion (Hierons et al. 2009, p. 63), and reconciling CSP’s synchronisations with conventional

notions of input/output (Cavalcanti and Hierons 2013)—limiting the likelihood of perform-

ing a meaningful investigation within available time and resources.

At this point in the literature review, and in response to the abortive investigation of test

generation applications, the research proposal was re-focused on the direct application of

verification to the design and automated implementation of concurrent software (Dibley

and Bradshaw 2016).

2.3 Verification in software development

Concurrent programs are distinguished by the quality that the determinant of their correct-

ness is the avoidance of synchronisation errors. As such, textbooks and teaching materials

on concurrent programming techniques—e.g., Ben-Ari (2010) and Raynal (2013)—are com-

pelled to present each algorithm alongside a proof of its correctness.

Lamport (2016, p. 40) offers a succinct and appropriately qualified case for the application

of verification to the design process of concurrent software:

Tests are unlikely to catch errors that occur only occasionally—which is typical

of design errors in concurrent systems. Such errors can be caught only by proof,

which is usually too difficult, or by exhaustive testing. Exhaustive testing—for

example, by model checking—is usually possible only for small instances of an

2 Related work 13

abstract specification of a system. However, it is surprisingly effective at catch-

ing errors—even with small models.

As Woodcock et al. (2009, p. 11) remarks, the joint impact of increases in computing

resources and significant theoretical advances in modelling technology—e.g., Gibson-

Robinson, Armstrong, et al. (2013), Gibson-Robinson and Roscoe (2014), and Roscoe et al.

(1995)—mean that the scale of problem that may be addressed through model checking

is likely to provide a basis for reasoning about larger instances and less abstract specifica-

tions.

Since in any event the state-of-the-art model checkers are already capable of effective de-

fect detection on problems of significant scale, at this point in the literature review the ac-

tive development of a model checker became a key criterion in the selection of the central

verification technique for the study.

This had the consequence of effectively eliminating a number of verification techniques

from consideration, including some interesting ‘hybrid’ formulations for which only proof

by deduction or partial model-checking support were available (Subsection 2.4.1). The re-

maining candidates for inclusion were CSP (Roscoe 2010), Event-B (Abrial 2010), and TLA+

(Lamport 2002).

2.4 Communicating Sequential Processes (CSP)

CSP is a verification technique3 that describes and reasons about software systems at an

abstract level in terms of the events they can be observed to participate in (Roscoe 2010).

While these events are commonly used to represent point-to-point message-passing com-

munications, and as a consequence CSP is strongly associated with verifying the integrity of

communications protocols, this is not enforced by the descriptive capabilities of the tech-

nique: events may represent any transaction between components within a system.

CSP’s basic notion of verification is generic to many of the techniques presented in this

survey. Firstly, a formal statement of the requirements of (some aspects of) the behaviour

of a system is formulated. Subsequently, this abstract description may be developed and

enriched in detail by incremental steps (so-called stepwise refinement) until it provides a

precise description of an implementation prototype at an appropriately concrete level. At

each incremental step the germinal prototype may be refinement-checked against the origi-

3A more detailed discussion of its theory and practice is provided in Chapter 3.

2 Related work 14

nal specification, which establishes the theoretical result that the behaviour of the most re-

cent development maintains consistency with the formalised requirements (Roscoe 2010,

pp. 39–40). Generic CSP specifications have been established for correctness properties

such as the deadlock-freedom of a concurrent system.

Comparable techniques provide approximately equivalent forms of this mechanism: for in-

stance, the B method and Event-B verification techniques (Abrial 1996; Abrial 2010) also in-

volve development of concrete implementations by stepwise refinement, but the integrity

of a new refinement step is established by means of satisfying proof obligations.

In addition to a comprehensive algebraic notation and proof system, CSP has been imple-

mented as a functional programming language, CSPM. The standard support tool for de-

sign and verification activities using CSPM is FDR (University of Oxford 2017), which pro-

vides animation, type-checking and model-based refinement-checking of CSPM programs.

Other tools that support CSPM include the ProB animator and model-checker (Leuschel

and Butler 2008), which owing to differences in its computational strategy has been shown

(Leuschel and Fontaine 2008) to support reasoning over some CSPM models that resist

computation within FDR.

CSP has been applied at industrial scale to a wide variety of design problems, of which no-

table examples include the communications and avionics infrastructure for a fault-tolerant

computer platform onboard the International Space Station (Peleska 2004), and the In-

mos Transputer and its associated programming language occam (which, as May (2004)

describes, entailed experiments with software synthesis from formal specifications).

Accounts of CSP-based or -derived implementation techniques figure strongly in the liter-

ature. Lawrence (2004)’s contribution is rare in that it provides a detailed case study of the

design of an industry-level concurrent component in CSP and its subsequent transcription

to a native Java implementation. Lawrence highlights some limitations of the (contempo-

rary) state of CSP model checking and the experiential benefits of structuring concurrent

designs around formal specification for software development and maintenance. He pro-

poses that applying verification to the initial design and implementation of a project does

not necessarily commit the entire lifecycle of the project to a verification-based workflow.

Barnes (2006) describes the implementation and use of NOCC (‘New occam-π compiler’)

to compile programs expressed in a unique CSP notation. This notation is described by the

author as ‘machine-readable CSP . . . currently incompatible with other machine-readable

CSP implementations (e.g. that used by FDR)’. The NOCC compilers’s ability to produce ex-

ecutable code in occam-π (Welch and Barnes 2004) is reported, although the author reports

the absence of several common CSP features from the specialised notation and compiler.

2 Related work 15

More characteristic are techniques that aim to support the verified development of con-

current programs in diverse implementation/runtime environments by providing emula-

tion layers that allow imperative programs to be structured around a CSP-like concurrency

model.

JCSP is an extensively-documented ‘CSP for Java’ library (Welch n.d.; Welch 1998; Welch,

Brown, et al. 2007; Welch, Hilderink, et al. 2001). Originally presented in terms of providing

an occam-inspired alternative to the Java concurrency model (Welch 1998), JCSP has pro-

vided the basis for a formidable set of contributions, including the capability to implement

CSP-paradigm distributed systems over the network layer (Welch, Brown, et al. 2007). The

author could not locate any examples of direct translation between CSPM and the JCSP

library, and T. Davies (2012) asserts in his critical study of three CSP implementation tech-

niques that:

JCSP [does not have] a specifically spelled out methodology [for translating

CSPM entities] anywhere in [its] documentation. Therefore the approach that

one must take to correctly translate using [JCSP] is based on various statements

made within the literature.

CSP++ (Gardner 2005b; Gardner 2015; Gardner et al. 2009) implements a CSPM translator

and CSP emulation layer to enable CSPM-verified developments in C++, interpreting the

CSPM model as a design prototype and automatically generating source code, which when

built against the CSP++ framework behaves as defined by the original model. Originally de-

veloped as a synthesis framework for a dialect of CSP named CSP12 (Gardner 1999), CSP++

was re-engineered in 2005 to translate and execute ‘a useful subset of CSPM’ (Doxsee 2005;

Gardner 2005b; Gardner et al. 2009), and further extensions were implemented by Garner

(2012), who introduced translator support for sets and sequences. CSP++ introduces the

original concept of ‘selective formalism’, claiming that CSP models can be integrated with

informally-developed functions through the use of CSP channels to model calls and return

values. Like JCSP, CSP++ is evaluated by T. Davies (2012), who asserts that it is the only

CSP implementation technique to implement an automated-translation approach.

PyCSP (Bjørndalen et al. 2007; Friborg 2016) implements a CSP library for Python with

the stated goals of providing a research tool for efficient scientific computing and a ba-

sis for teaching CSP to computer science students. Bjørndalen et al. (2007) take the view

that while existing Python libraries support a number of distributed and cluster computing

paradigms, none provide the clarity and platform-independence of CSP’s abstractions; in

addition to these, PyCSP ‘borrows ideas’ (Bjørndalen et al. 2007, p. 234) from JCSP, includ-

ing channel poisoning. Friborg (2011) documents the application of PyCSP in several case

2 Related work 16

studies and the introduction and verification through model checking of a revised channel

implementation for PyCSP.

Bartels and Kleine (2011) and Kleine et al. (2011) present two novel approaches to achieving

CSP-verified implementations, CSP4J and LLVM2CSP. The former implements a Java execu-

tion framework and automated translation from a syntax-restricted subset of CSPM; the

latter synthesises low-level CSP code from the LLVM4 compiler’s intermediate representa-

tion of concurrent programs which, it is shown, may then be model-checked using FDR. In

Bartels and Kleine (2011) these translation tools are presented within a framework for the

CSP-based verification and implementation of adaptive systems.

2.4.1 Hybrid formulations

As a notation that may be added, perhaps by subset, to broad procedural notations in what

Pike (2012) describes as ‘a mostly orthogonal way’, CSP has also contributed to the devel-

opment of a series of ‘hybrid’ verification techniques. These characteristically use CSP as

a means of expressing control flow, scheduling and/or communications between compo-

nents modelled in a state-based formalism. Among these are CSP-OZ (Wehrheim 2000),

which combines CSP with an object-oriented extension of the Z notation (Jacky 1997), and

CSP∥B (Colin et al. 2008; Moller et al. 2012; Schneider and Treharne 2005), which applies

a subset of CSP as a communications and control executive for sequential components

modelled in the state-based B method. Yang (2008) and Yang and Poppleton (2007)’s work

details an involved study that takes as its basis a ‘hybrid’ formulation of CSP and the B

method and implements an extension of JCSP alongside a rare instance of automated trans-

lation from (somewhat) CSP-based models, the latter implemented through rule-based ex-

tensions to the ProB model checker.

CSP does not, for the most part, provide descriptive techniques for specifying or verify-

ing complex properties concerning how a system may manipulate data—and to the extent

that it does, may challenge the capacity of model checking tools to obtain useful results

as a result of the so-called ‘state explosion’ problem (Roscoe 2010, p. 156). Since for the

most part verification techniques that are better-suited for reasoning about complex data

manipulation have tended not to be highly expressive of communications or concurrency,

the motivation for these hybrid methods has been to develop unified models of control

components and their communications and support their verification in terms of either

formalism. For example, in Colin et al. (2008)’s thorough account of verifying the design of

the control and communications firmware of autonomous vehicles through CSP∥B, tool-

4https://llvm.org

2 Related work 17

assisted techniques from both CSP and the B method are combined following the proce-

dure first established and formalised by Treharne and Schneider (1999).

2.5 Event-B

The Event-B verification technique (Abrial 2009; Abrial 2010) is state-based; it models a

specification of a system, and reasons about its correctness, primarily in terms of the finite

number of states it may occupy. An Event-B model of a program is intended to support

the traceability of the program’s requirements, analysis and reasoning of the program’s cor-

rectness, the stepwise refinement of program requirements, and correctness by construc-

tion.

As such, the process of building a model starts from a structured list of program defini-

tions and requirements. Abrial (2010) recommends that modelling proceeds by a process of

stepwise refinement from high-level (‘abstract’) to low-level (‘concrete’) requirements, and

Event-B provides explicit modelling techniques to do so, along with proof rules to verify

that each refinement step preserves the correctness of the ones that went before: individ-

ual instances of refinement steps are proven correct by satisfying proof obligations (Abrial

2009, p. 31).

The fundamental language of modelling in Event-B is comprised of logical predicates, sets,

numbers, relations, and models that are partitioned between context components, which

express static properties of the system under consideration, and machine components,

which are dynamic systems that participate in guarded events under state invariants.

Event-B refinement is thus defined as a refinement over data in the model. A state variable

in an ‘abstract’ machine may be refined into a more complex combination of variables in

a refinement. Refinements may also extend the existing model. The integrity of such steps

may be proven in terms of gluing invariants (Abrial 2009, p. 32). Events may also be re-

fined: as a state variable in an abstract machine is refined into multiple variables in a new

machine, so an event that modified that state variable in the abstract machine will need

to be refined into a new event, or several new events, in the more concrete machine. Pa-

rameterised events may additionally need a witness predicate, which expresses the corre-

spondence between the refined state variables and the abstract parameters or variables

that featured in the abstract event’s actions.

Tool support for the Event-B method is provided by the RODIN platform (Abrial et al. 2009;

Event-B.org 2018; Métayer et al. 2005), which includes tools that automatically generate

2 Related work 18

proof obligation rules for any syntactically valid model, and that automatically attempt to

solve proof obligations raised by refinement steps.

A number of studies report on implementation techniques to expedite Event-B develop-

ments, including automated code generation from Event-B models to a variety of lan-

guages, including C (Edmunds 2014; Fürst et al. 2014; Wright 2009), Ada (Edmunds et al.

2012), and Java (Edmunds 2010).

The direct applicability of Event-B to concurrent developments is complicated by its lim-

ited capacity to express scheduling and control flow (Boström et al. 2014; Iliasov 2009); the

latter-cited work introduces a language to address this which ‘can be seen as a small sub-

set of CSP’, whereas the theoretical issues around combining Event-B with CSP were ex-

plored in a series of papers by Schneider et al. (2010; 2011; 2014). The B method (Abrial

1996; Schneider 2001), which constitutes something of a precursor to Event-B, developed

system specifications on approximately similar lines and additionally implemented a con-

gruent notion of refinement to an ‘implementation-level notation’, B0, but this provided no

basis for specifying concurrent systems (Edmunds 2010, p. 1).

2.6 TLA+

TLA+ (the ‘Temporal Logic of Actions’) is a specification and verification technique devel-

oped by Lamport that may be used to specify concurrent systems (Lamport 2002; Lamport

2015). The standard textbook (Lamport 2002) demonstrates the technique by example on

a series of familiar engineering examples, specifying and verifying safety, liveness and fair-

ness properties.

The language is supported by a model checker TLC, the ‘algorithm language’ PLUSCAL, and

an interactive proof checker TLAPS, all of which are distributed as ’The TLA+ Toolbox’ (TLA+

Project 2015). Newcombe (2011) and Newcombe et al. (2015) describe the adoption and

application of TLA+ at Amazon Web Services.

The literature review located exceedingly few articles concerning TLA+ in relation to auto-

mated implementation. The closest match found was Methni et al. (2015), which presents

an industrial-scale case study of a translation tool that transforms C implementation code

into TLA+ specifications that may then be model checked using TLC.

2 Related work 19

2.7 Selection of a formalism

On the basis of this literature review, the research design nominated CSP as the formalism

for which an implementation technique would be investigated.

The related literature concerning Event-B established that such techniques were not only

possible for that formalism, but already established in a more or less usable form.

The literature concerning CSP, on the other hand, offered the possibility of providing an

original contribution to knowledge: in particular, the majority of CSP implementation

techniques being reliant upon manual transcription of verified models to implementation

code.

2.8 Summary

This chapter has presented a survey of verification techniques and application areas in or-

der to provide a general impression of the state of the discipline and to supply a narrative

of the formulation of the research documented by this thesis. The considerations that in-

formed the decision to investigate the automated implementation of verified CSP models

included the ideal of synchronising specification with implementation, the possibility of

eliminating categories of transcription error between model and artefact, and the concep-

tual correspondence between the proposed verification technique and the proposed im-

plementation environment (Go).

Likewise, the ubiquitous limiting factor of so-called ‘state space explosion’ on the size and

detail of models viable for verification through model checking motivated the active con-

sideration of targeting and producing reusable components, rather than self-contained sys-

tems. The correspondence between CSP and Go will be presented and explored in the fol-

lowing two chapters, whereas subsequent chapters, particularly Chapters 7 and 8, discuss

the research’s approach to deriving implementations of CSP designs that are effectively en-

capsulated, parameterised and reusable.

3 Communicating Sequential Processes

This chapter provides a brief introduction to the CSP process algebra from a practice-based

viewpoint, focusing on areas of key relevance to the work presented in this dissertation:

syntax and semantics, verification through model-checking, and existing implementation

techniques. An exhaustive account of any one of these topics would include much infor-

mation of little relevance to the proposed development method, so within this chapter CSP

verification is discussed purely in terms of model-checking, CSP language examples are pre-

sented solely in CSPM rather than their algebraic equivalents, and the presentation of CSP

operators and expressions focus on the subset of the language supported by the CSPIDER

tool. Illustrative examples of CSP modelling and verification are principally drawn from

the case study of a linear sorting array provided in T. Davies (2012).

3.1 Overview

The process algebra Communicating Sequential Processes (CSP) was first formulated and

presented by Hoare (1978) as a minimal programming notation that explicitly engaged is-

sues around the development of concurrent software by featuring language-level support

for input/output and parallel composition. At this time CSP was presented as a descriptive

technique, and the 1978 paper ‘does not suggest any proof method to assist in the develop-

ment and verification of correct programs’ (Hoare 1978, p. 260).

By the subsequent publication of Communicating Sequential Processes (Hoare 1985), a pre-

liminary version of a proof method had been established, and the algebraic notation had

also undergone some revision. Further research and development resulted in new and

more discriminating semantic models for the notation, increasing its potential as a ver-

ification technology1. These new models enriched the descriptive clarity of the original

formulation—where program components were characterised on the basis of their visi-

ble participation in synchronous input/output events—by providing the ability to reason

about the behaviour and composition of program components (typically termed processes)

in successively more sophisticated ways.

1For this reason, the author recommends J. Davies (2006) as a modern introduction to CSP in preference to
Hoare (1985).

20

3 Communicating Sequential Processes 21

There is a substantial body of literature documenting the theory and techniques associ-

ated with CSP, detailing descriptive and verification techniques: Roscoe (2010) provides

the most up-to-date book-length account of CSP theory and practice, with a valuable focus

on model-checking strategies and techniques, while Schneider (1999) presents an exhaus-

tive account of CSP that focuses on verification by proof construction.

For a concise, practice-focused introduction to CSP, J. Davies (2006) provides a clear

and comprehensive tutorial article with many worked examples and practical exercises.

Lawrence (2004) contributes a rare and detailed case study of the practical application of

CSP to procedural software design, including the manual recasting of a verified CSP design

prototype in Java program code, along with practical heuristics on modelling and model-

checking ‘real-world’ software components in CSP.

The general specification and verification procedure consists of formalising the require-

ments of the desired system as one or more specification processes defined over a set of

synchronisation and communication events. An implementation prototype may then be

modelled by stepwise increments and verified against the specification processes at each

increment until the refinement checks all evaluate to ‘true’ (University of Oxford n.d.[h])

and the implementation process defines the required behaviour at an acceptable level of

detail. The specification(s) and implementation may each participate in events that the

other does not—for instance, the implementation may introduce new events to concretise

the abstract specification—but for the comparison of the specification and implementa-

tion to be meaningful, they must share some common events.

The whole collection of processes constitute a model, with the specification processes

defining acceptable or mandatory behaviour at a straightforward, abstract level, and the

implementation processes defining a prototype system, typically as a network of concur-

rently executing processes.

CSP represents any process in terms of the events it can observably participate in: the set

of these events is termed the alphabet of the process and for a process P is denoted αP

(Roscoe 2010, p. 3). The CSP representation of a process is a formal statement of its observ-

able control flow. (A process may only interact with its environment or other processes via

its alphabet and its control flow.)

At the lowest level, a process is represented as a sequential control flow. This control flow

may include various kinds of choice, and may also be recursive and/or parameterised.

Once defined in this way, the name of such a process may then be used as a term in the

definition of higher-level processes.

3 Communicating Sequential Processes 22

At higher levels, parallel combinations of processes may be used to represent a concurrent

system. Processes within a parallel combination interact with each other through synchro-

nising on sets of events. Although concurrent systems typically involve some degree of

nondeterminism, as well as the possibility of deadlock or livelock, a CSP representation

of a concurrent system can be analysed and re-modelled to produce a final system that is

deadlock-free and divergence-free, and that can be verified to correctly satisfy the desired

behaviour.

3.2 CSPM

CSPM is a functional programming language, originally developed by Scattergood (1998),

that provides a machine-readable form of the CSP process algebra and an implementation

of its semantics.

CSPM has enabled the creation of a range of software support tools for CSP specifica-

tion and verification activities, including the FDR model-checker (Gibson-Robinson, Arm-

strong, et al. 2013; University of Oxford 2017). This section provides a basic overview of

CSP constructs expressed in CSPM form; a more comprehensive account including the al-

gebraic notation can be found in J. Davies (2006).

3.2.1 Defining events and processes

CSPM scripts define systems in terms of observable events, the component and composed

processes that have participated or may participate in those events, and a range of sim-

ple and abstract data types that may be used to parameterise the declarations of processes

and sets of related events. The basic CSP operators express process behaviour in terms of

event participation, conditional control flow, and various kinds of choice between alterna-

tive patterns of behaviour (Roscoe 2010, pp. 3–16), as well as several coordination schemes

for multiple processes to execute in parallel (Roscoe 2010, pp. 49–61). More advanced op-

erators express behaviours such as timeout and nondeterministic choice, but this account

focuses on directly implementable language constructs wherever possible. By convention,

process identifiers are UPPERCASE, event identifiers are lowercase, and abstract data type iden-

tifiers begin with an Initial capital letter.

Events in CSP and CSPM mark abstract, instantaneous and synchronous interactions be-

tween a process and its environment. This may mean an interaction between a process

3 Communicating Sequential Processes 23

and other processes within the model, or it may denote an interaction between a process

and something not represented within the model (for instance, a human operator).

When an event appears in a process expression, it does not denote that the process exe-

cutes an interaction; rather, it denotes a point in the behaviour of the process at which it

becomes able to participate in an interaction (Roscoe 2010, pp. 18–19). If an event repre-

sents a synchronisation between two processes, the interaction can only take place once

each process has reached points where both are able to participate in the event.

In one sense, an event represents a boundary between two states of the process: before,

when the event represented an action (possibly one of many) that the process could engage

in, and afterwards, where the subsequent possible actions of the process are expressed by

whatever follows the appearance of the event.

While events are commonly used to denote synchronisations or communications between

processes, they do so at an abstract level: in particular, events do not directly express the

initiating or responding processes of any synchronisation or communication, and events

may also denote transactions between more than two processes.

To generalise, this reflects the ethos of CSP, which is that the fundamental structures of the

notation express behaviour in the most abstract terms possible and then provide refine-

ment techniques to support developing the resulting abstract specifications into concrete

prototypes.

In a CSPM script, event identifiers may be declared using the channel keyword (Listing 3.1)

(University of Oxford n.d.[a]). When an event represents a parameterised transaction (e.g.,

a transaction where data is exchanged, a transaction between specific instances of a set of

generic processes, or a combination of the two), it is declared with a static type specification

that declares the parameterisation as a set expression or tuple of set expressions.

The syntax of CSPM does not express which fields of a type specification represent messag-

ing indexes and which represent data components, which presents substantial difficulties

for (automatically) implementing software from CSPM models, as Gardner (2005b, p. 135)

reports: ‘If any area of CSPM could be described as a quagmire for software synthesis, [chan-

nel input/output] is it.’ Subsection 7.1.3 presents Gardner’s strategy to overcome these dif-

ficulties, which this work adopts and modestly extends.

3 Communicating Sequential Processes 24

Listing 3.1: Event identifier declarations in CSPM

1 -- declares a simple event

2 channel a

3 -- declares an event that can exchange members of the set {0, 1}

4 channel zerosOnesChan : {0..1}

5 -- declares an event that can exchange an ordered pair from the

6 -- Cartesian product {0..arraySize} X {0..1}, probably (we can infer)

7 -- between members of a process group parameterised by ‘arraySize’

8 channel digitChan : {0..arraySize}.{0..1}

9 -- declares an event that can exchange any of the set of 32-bit integers

10 channel intChan : Int

Event declarations in CSPM scripts have important consequences for the computability

of the resulting model. The FDR model-checker’s ability to compare and verify process

behaviour is based on compiling each process that appears in a CSPM script into a labelled

transition system; processes that feature fewer states and transitions are more amenable

to verification through model-checking2. When compiling CSPM scripts, FDR generates

a discrete transition for each possible permutation of values expressed by an event’s type

specification. So, assuming a CSPM script features exactly one input operation on each of

the typed channels declared in Listing 3.1:

• An input operation zerosOneChan?y compiles to two transitions. zerosOnesChan.0 and

zerosOnesChan.1

• An input operation digitChan?x.y compiles to 2× (a r r a y Si z e +1) transitions.

• An input operation intChan?x compiles to 232 transitions.

Consequently, FDR encounters difficulty in modelling, compiling or comparing processes

that manipulate large data types owing to the very large number of unrelated states they typ-

ically compile to, and CSPM models very rarely feature event declarations such as the one

given above for intChan (Roscoe 2010, p. 156). The example of practical model-checking that

follows in Section 3.4 demonstrates one approach to working around this; Roscoe (2010,

pp. 155–158, 385–415) provides comprehensive demonstrations of several others.

2This is one reason why model-checking has not wholly supplanted verification through proof techniques,
which are not subject to the same limitations.

3 Communicating Sequential Processes 25

3.2.2 Defining sequential processes

The simplest CSP processes are STOP and SKIP. STOP is a process that never participates in any

event—for example, STOP is how CSP represents a deadlocked state between two or more

concurrent components (Roscoe 2010, pp. 3,19). SKIP is a process that can perform a special

‘tick’ event that represents its successful termination (Roscoe 2010, p. 131).

The distinction is that if a process has been defined as the sequential composition of several

behaviour patterns (e.g., ‘behave as P; behave as Q’), a process expression for P ending in the

process label SKIP denotes that P may now terminate and immediately behave as Q. At more

sophisticated levels of reasoning about processes (the so-called stable failures semantic

model of CSP (Roscoe 2010, p. 115)), the distinction between SKIP and STOP also provides an

important way to reason about processes that terminate successfully (i.e., by design) and

processes that terminate unsuccessfully (typically, through reaching a deadlocked state)

(Roscoe 2010, pp. 131–132).

In CSPM, a process is declared as the assignment of a process expression to an identifier (and

an optional tuple of parameters). Therefore, in Listing 3.2, the process P can participate in

a single event ok exactly once. The prefix operator -> (pronounced ‘then’) denotes a state of

the process whose declaration it appears in. Before P participates in ok, it is in a state where

it is only capable of performing ok; in participating in ok, it transitions to a subsequent state

where it cannot participate in any further events. CSPM permits recursive definitions, so

in Listing 3.2 the process P1 may participate in the ok event any number of times.

Listing 3.2: Three simple process declarations

1 -- P can participate in ‘ok’ exactly once

2 P = ok -> STOP

3 -- P1 can participate in ‘ok’ any number of times

4 P1 = ok -> P1

5 -- P2 declares a process expression that does not end in a process

6 P2 = ok -> ok -> ok

A process expression may consist of any number of prefixes, branches or alternatives, but

must end in a process label in order to be valid; in Listing 3.2, P2 is an invalid process dec-

laration.

At any given state, a process may engage in alternative patterns of behaviour, and CSPM

provides two operators to express different kinds of choice between these alternatives. Ei-

ther choice operator may be used to express selection over any number of alternatives.

The first choice operator is environmental choice or external choice, in which a process pre-

3 Communicating Sequential Processes 26

sented with alternative patterns of behaviour may be ‘set’ to participate in one of them

on the basis of interactions with other processes or the wider environment (Roscoe 2010,

p. 10). For example, in Listing 3.3, PRINTER provides a specification of a rudimentary printer

that may either accept a job and then print it or be switched off. Note that, as specified

here, the printer should not allow a shutdown to take place between the acceptance and

printing of a job.

Listing 3.3: External and internal choice in two simple processes

1 PRINTER =

2 acceptJob -> printJob -> PRINTER [] shutdown -> STOP

3

4 THERMALPRINTER =

5 acceptJob ->

6 (printJob -> THERMALPRINTER |~| catchFire -> STOP)

7 []

8 shutdown -> STOP

The second operator, non-deterministic choice or internal choice, provides a way to reason

about behaviour that, in concrete terms, is generally undesirable:

Since non-determinism does appear in CSP whether we like it or not, it is nec-

essary for us to be able to reason about it cleanly. (Roscoe 2010, p. 11)

A process that reaches a state of non-deterministic choice over alternative patterns of be-

haviour deprives the environment of any control over which pattern of behaviour the pro-

cess subsequently participates in.

In Listing 3.3, the THERMALPRINTER behaves exactly as the first PRINTER except for the fact that

after accepting a print job it behaves unpredictably: it may print the job, catch fire, or do

neither. The only way in which a process in a state of internal choice is obliged to partici-

pate in any of its alternatives is if more than one of them are simultaneously offered by the

environment. As indicated by the chosen example, internal choice is more typically used

to write specification scenarios (such as the possibility that a communications link might

lose a message) than to prototype system designs.

Records of process behaviour may be altered—effectively mapped or concealed—on an

event-by-event basis by two CSP operators, hiding and renaming (Roscoe 2010, pp. 93,114),

illustrated at a trivial level of application by Listing 3.4.

3 Communicating Sequential Processes 27

Listing 3.4: Event hiding and event renaming

1 channel a, b

2

3 P = a -> P

4 Q = b -> Q

5

6 -- Event renaming:

7 -- Q does not trace-refine P because Q cannot perform ’a’

8 assert P [T= Q

9 -- Q (with b renamed to a) trace-refines P

10 assert P [T= Q [[b <- a]]

11

12 -- Event hiding:

13 R = a -> b -> R

14 assert P [T= R

15 assert Q [T= R

16 assert P [T= R \ {b}

17 assert Q [T= R \ {a}

As the refinement results (Listing 3.5) indicate, the effect of Q [[b <- a]] is to rename every

observed participation of Q in the event b to a participation in the event a, enabling the

second refinement check to succeed. Likewise, hiding the process R’s participation in a or

b renders it trace-equivalent to Q or P, respectively.

Listing 3.5: Refinement results for Listing 3.4

1 Welcome to FDR Version 4.2.3 copyright 2016 Oxford University Innovation Ltd. All Rights

Reserved.

2 License: Academic license for non-commercial use only

3 P [T= Q: Failed

4 P [T= Q [[b <- a]]: Passed

5 P [T= R: Failed

6 Q [T= R: Failed

7 P [T= R \ {b}: Passed

8 Q [T= R \ {a}: Passed

Process declarations may also be parameterised over simple integer, character and Boolean

datatypes as well as set and sequence abstract data types, although Roscoe (2010, p. 155)

cautions that, as with event parameters/type specifications, the quantity and data type of

process parameters have implications for the state space and tractability of the resulting

model.

The parameterised processes shown in Listing 3.6 describe a printer that is aware of the

paper remaining in its feed tray. It may participate in three events—acceptJob, printJob and

3 Communicating Sequential Processes 28

load—which denote communications of how many pages have been reserved, consumed,

or loaded from/into the printer’s feed tray, and a fourth, pcLoadLetterError, which signals

the user that the feed tray is empty and needs to be reloaded.

If the printer accepts a job that requires more pages than remain in the feed tray, the printer

prints until its tray is empty and enters the error state defined by PRINTERROR, signalling the

user to load more paper. PRINTERRORdeadlocks until the user loads more pages, and its subse-

quent actions depend on whether enough pages have been loaded to clear the interrupted

job; the printer will only return to behaving as FINITEPRINTER (e.g., accepting new jobs) once

the user has loaded the minimum number of pages necessary to complete printing the in-

terrupted job.

Listing 3.6: Parameterised process declaration in CSPM

1 channel acceptJob, printJob, load : {0..10}

2 channel pcLoadLetterError

3

4 FINITEPRINTER(pages) =

5 if pages > 0

6 then

7 acceptJob?pageCount

8 -> if pages - pageCount > 0

9 then printJob!pageCount -> FINITEPRINTER(pages - pageCount)

10 else printJob!pages -> PRINTERROR(pageCount - pages)

11 else PRINTERROR(0)

12

13 PRINTERROR(pendingPages) =

14 pcLoadLetterError

15 -> load?newPages

16 -> if pendingPages > 0

17 then

18 if newPages > pendingPages

19 then printJob!pendingPages -> FINITEPRINTER(newPages -

pendingPages)

20 else printJob!newPages -> PRINTERROR(pendingPages -

newPages)

21 else FINITEPRINTER(newPages)

Listing 3.6 introduces the if..then..else construct, which enables branching between pro-

cess expressions based on Boolean conditions, and the channel operations ? (‘input’) and

! (‘output’) on the acceptJob, printJob and load channels.

3 Communicating Sequential Processes 29

3.2.2.1 Interpretive pitfalls in event operations

Within CSP and CSPM, these last two operators essentially provide syntactic sugar for event

synchronisation: a process that offers to participate in load?newPages is offering to accept

any value that another process may offer over the load channel; the value provided is bound

to the newPages identifier. Likewise, a process that offers to participate in printJob!pageCount

is offering to participate in a single event on the printJob channel defined by the current

value of the identifiers appearing to the right-hand side (RHS) of the ! operator.

The typical application for these operators is to represent message-passing between pro-

cesses, although for this to be valid two conditions apply: the channel in question must

have a type specification, and must be shared between exactly two processes (J. Davies

2006, p. 108).

Within this application, however, the CSPM level of abstraction allows some expres-

sions that confound the commonplace understanding of input/output. For example,

chan?x!y -> P appears to represent simultaneous atomic bidirectional input/output, when

in fact—if we assume chan has a type specification of {0..1}.Bool—it expresses an external

choice chan.0.y -> P [] chan.1.y -> P.

Another common CSPM expression is restricted input (University of Oxford n.d.[d]), ex-

pressed in the form load!newPages:{0..200}, where the set expression following the : opera-

tor defines a set of values that the process is prepared to synchronise upon. In the context

of input/output, this suggests the capability to refuse to receive a range of messages based

on knowledge of their unreceived contents. In some other contexts, this makes more sense:

for instance, in the context of a specification.

3.2.3 Defining functions

CSPM also permits the definition and application of functions. Listing 3.7 shows decla-

rations for several functions, the last of which, queueControlInvariant, is adapted from the

invariant of a connection pool controller described by Lawrence (2004). Note that the types

of parameters and return values are not explicitly declared, and the declaration syntax is

the same as that for processes3: the only way to distinguish declarations of CSPM functions

3In one strict interpretation, the latter are functions that return processes, but for the purposes of efficiently
organising automated interpretation, it was found useful to establish a distinction between the two as
early as possible.

3 Communicating Sequential Processes 30

from those of parameterised processes is by close examination of the declaration expres-

sions.

As with any parameterised declaration in CSPM, functions may be defined ‘by cases’ on the

basis of value patterns (e.g., emptylist and emptylist’). When this declaration style is used,

the function is evaluated on the basis of the first declaration whose pattern matches the

values; consequently, emptylist’’ implements the null-sequence test incorrectly4.

Listing 3.7: Definition of three functions

1 parity(x) =

2 x % 2 == 0

3

4 -- emptylist emulates the built-in function null()

5 emptylist(s) =

6 if s == <> then True else False

7

8 -- equivalent declaration by cases

9 emptylist’(<>) = True

10 emptylist’(s) = False

11

12 -- non-equivalent declaration by cases:

13 -- emulates null() incorrectly (first case _always_ matches)

14 emptylist’’(s) = False

15 emptylist’’(<>) = True

16

17 -- adapted from Lawrence (2004)

18 maxConn = 3

19 queueSize = 10

20 queueControlInvariant(activeConns, queue) =

21 empty(inter(activeConns, set(queue)))

22 and card(activeConns) < maxConn

23 and #queue <= queueSize

24 and (card(activeConns) == maxConn or null(queue))

As in any other language, CSPM functions may be used to lift complex computations out

of expressions. queueControlInvariant is a minor adaptation from Lawrence (2004), who ap-

plies the expression (empty(inter(activeConns, set(queue)))..., etc.) as a Boolean guard in

the declaration of a supervisor process. As a consequence of the fact that a guarded al-

ternative or process expression evaluates to STOP when its guard is false, model checking

Lawrence’s model for deadlock-freedom will expose any situation where the invariant is

violated.
4Declaration ‘by cases’ is expressly not supported by the CSPIDER tool.

3 Communicating Sequential Processes 31

Although each of the examples given here return Boolean values, CSPM functions may re-

turn any data type supported by the language: for example, functions provide a convenient

way to build up process alphabets or synchronisation interfaces (Subsection 3.3.4).

3.3 Verification and semantic models

In CSP, verification typically takes the form of expressing the requirements of a system as

one or more specification processes. If a desired correctness property can be formulated in

terms of visible events—for instance, as a scenario that represents the safe behaviour pat-

terns of a possibly-unsafe system—it can be described and verified within the CSP traces

model; verification over the traces model can reveal whether the implementation is capable

of behaving outside of the safe scenario(s). Subsequent developments in enriched seman-

tic models (failures and divergences) enabled a process to be additionally characterised in

terms of its readiness to perform further events and its ability to become trapped partici-

pating in infinite sequences of ‘internal’ (i.e., non-visible) events5, which allows the verifi-

cation of correctness properties concerning guaranteed or mandatory behaviour.

The three primary semantic models for CSP are the traces model, the failures model, and

the divergences model (Roscoe 2010, pp. 29–40, 115–130, 229–254). Each model provides a

complementary perspective on the behaviour of a process, and a complete picture of the

process can only be gained by considering it under all three models.

Under any of these models, the correctness of a process may be established through re-

finement checking, a general mechanism for comparing the behaviour of CSP processes

(Roscoe 2010, pp. 16, 29–40, 161–166). The behaviour that a refinement check considers is

determined by the semantic model in force. Performing a refinement check becomes more

demanding under each successive semantic model, as more and more aspects of process

behaviour must be taken into consideration.

Many important properties of a process can be expressed (and thereby proved) in terms of

refinement under one semantic model or another (Roscoe 2010, pp. 29–40). This represents

a development of the approach originally given in Hoare (1985), which specified property

conditions as explicit sets of traces (Roscoe 2010, p. 36).

In the original formulations of the major CSP semantic models, refinement was confirmed

by applying proof techniques, but the development and evolution of CSPM, a machine-

5This latter condition is a risk factor in large compositions of processes that encapsulate their internal com-
munications.

3 Communicating Sequential Processes 32

readable dialect of CSP, and associated software verification tools such as FDR has meant

that verification may be automated in many cases through exhaustive model-checking.

Achieving an implementation of a verified CSP prototype presents some substantial chal-

lenges owing to the considerable distance between the abstracted descriptions of a CSP

prototype and the implementation constructs of a typical systems programming language.

Mirroring the ways in which CSPM model-checking has enabled developers to obtain veri-

fication results without resorting to proof techniques, a number of researchers have investi-

gated implementation techniques to partly or wholly automate (or, failing that, support in

some partial way) the final refinement or translation of a CSP implementation prototype.

3.3.1 The traces model

Under the traces model, a process P is considered in terms of traces(P), the set of all finite

event sequences it can possibly perform. If every trace of a process P is also a trace of Q —

that is, if traces(Q) is a superset of traces(P)—we say that P trace-refines Q , coded in CSPM

assertion checks as Q [T= P.

P [T= Q is an example of a refinement check: the T in [T= indicates that this check is per-

formed under the traces model. Two processes are said to be trace-equivalent if each trace-

refines the other.

Roscoe (2010, pp. 36–40) demonstrates that an implementation IMPL can be shown to satisfy

a specification SPEC under the traces model if SPEC [T= IMPL.

The traces model provides a useful but partial account of the behaviour of a process. It is ad-

equate for proving simple ‘please don’t do this undesirable and/or unsafe thing’ properties,

but there are clear limits to what it may express. As Roscoe (2010, p. 115) states:

Traces tell us about what a process can do, but nothing about what it must do.

At the most basic level, verification results obtained under traces do not reveal whether or

not a process can deadlock.

3 Communicating Sequential Processes 33

3.3.2 The failures model

This problem can be addressed by considering processes in terms of what they can refuse

to do: in other words, by enumerating a set of events (the refusal set) that a process may

decline to perform after a trace. A failure of a process P is then a pair (s , X) where s is a

trace of P and X is a refusal of P after s .

Failure-refinement, or refinement under the failures model SPEC [F= IMPL (Roscoe 2010,

pp. 115, 236–241), consists of first establishing that SPEC [T= IMPL and then establishing that

the failures of SPEC are a superset of the failures of IMPL: in short, showing that IMPL can nei-

ther accept nor refuse an event unless SPEC does (Roscoe 2010, p. 117). Two processes are

said to be failure-equivalent if each process failure-refines the other.

Listing 3.8: Differing accounts of processes P and Q

1 channel a, b, c, d

2

3 -- P can participate in ’a’ indefinitely

4 P = a -> P

5 -- Q may unpredictably behave either as P or STOP

6 Q = P |~| STOP

7

8 -- Under the traces model, P and Q are indistinguishable

9 assert P [T= Q -- ’True’

10 -- Under the failures model, Q is not equivalent to P

11 assert P [F= Q -- ’False’

Listing 3.9: Refinement results for Listing 3.8

1 Welcome to FDR Version 4.2.3 copyright 2016 Oxford University Innovation Ltd. All Rights

Reserved.

2 License: Academic license for non-commercial use only

3 P [T= Q: Passed

4 P [F= Q: Failed

This may be illustrated by considering the processes defined in Listing 3.8. Process P may

participate in the event a indefinitely. Process Q will non-deterministically behave as P or

deadlock, in which case it refuses all events. The FDR refinement check results are shown

in Listing 3.9.

Reasoning about the refusals of a process under the failures model allows us to reason

about the possibility of deadlock, since any trace of a process P with a refusal set equal to

αP (that is, refusing every event in the process alphabet) indicates a state where the process

deadlocks.

3 Communicating Sequential Processes 34

Unfortunately, the failures model does not provide a comprehensive basis for verifying the

behaviour of systems either. As the traces model cannot verify that a process will not dead-

lock, the failures model cannot verify that a process guarantees to do something.

3.3.3 The divergences model

In many CSP processes, particularly those that describe concurrent systems, certain events

are often hidden from visibility (Roscoe 2010, pp. 97–100, 241–247). This reflects a familiar

‘black box’ notion of encapsulation, where a system can be observed to interact with its en-

vironment or clients, but where interactions between the components of the system occur

out of sight.

This introduces the possibility, if not the certainty, that during the behaviour of the system

some component or set of its components may enter a state where it can always perform

an internal event, with the result that the system considered as a whole may never return

to a state where it can participate in a visible event. This is termed divergence or occasion-

ally livelock. In effect it is equivalent to deadlock, but in principle it is significantly more

demanding to reason about or model-check6.

As a consequence, the most comprehensive basis for reasoning about the behaviour of a

process, including its ability to guarantee to participate in a desirable sequence of events, is

the so-called failures-divergences model, which—as the name suggests—combines reason-

ing over the visible actions of a process, reasoning over a process’s capacity for deadlock,

and reasoning over a process’s capacity for divergence.

3.3.4 Defining concurrent processes

CSP provides three binary operators that may be used to define a concurrent process on the

basis of combining two processes over sets of events, and a further three unary operators

that may be used to define a concurrent process as a collection of instances of some generic

process combined over a set of events.

In CSP terminology, a process defined through the application of one of these operators is

typically referred to as a composition. There are no restrictions on the processes that these

6Primarily on the basis of the greater storage requirements involved in exhaustively exploring a state space
under the divergences model.

3 Communicating Sequential Processes 35

operators may be applied to: in other words, a composition process may be used in the

definition of a larger composition.

Each composition operator is distinguished by its unique execution policy: in other words,

by how it defines how and when the component processes synchronise, if at all, and how it

constrains what each process can do independently of the synchronisation.

The first composition operator is alphabetised parallel (Roscoe 2010, pp. 49–57). Each com-

ponent in a composition over alphabetised parallel provides an alphabet of the events it can

possibly participate in. The resulting process permits each process to perform events from

its respective alphabet, under the restriction that each process may only perform an event

common to both alphabets as a synchronisation with the other. The alphabetised parallel

composition of P and Q over their respective alphabets, expressed by the set declarations aP

and aQ, is expressed in CSPM as

P [aP || aQ] Q

where aP is a set expression denoting the alphabet of P and aQ likewise for Q.

Interleaving describes the process defined by two processes that do not synchronise on any

event (Roscoe 2010, pp. 57–8). Each process operates entirely independently of the other,

even when their process alphabets share some events: in this case, the process defined by

interleaving performs the event as a non-deterministic choice between one process and

the other. It is expressed in CSPM as

P ||| Q

The interface parallel operator defines a more selective form of composition than alpha-

betised parallel, where the synchronising events between the two component processes

are defined as a subset of the events their alphabets actualy share (Roscoe 2010, pp. 59–61).

The resulting process performs events given in the explicit interface set as synchronisations

between the two processes and interleave all other events. The interleaving of P and Q over

a set declaration interfaceSet is expressed in CSPM as:

P [| interfaceSet |] Q

Replicated alphabetised parallel defines the process formed by several instances of a pa-

rameterised process (Roscoe 2010, p. 51). Any parameterisation of an event that appears

in the alphabet of more than one instance can only be performed as a synchronisation be-

tween those instances. A replicated alphabetised parallel composition over a range {0..4}

is expressed in CSPM as:

3 Communicating Sequential Processes 36

|| i : {0..4} @ [parameterisedAlphabet(i)] parameterisedProcess(i)

Replicated interface parallel defines the process formed by several instances of a parame-

terised process that synchronise over an explicit interface set: all instances of the process

must synchronise on any event within the set, and interleave on all other events (Roscoe

2010, p. 64). A replicated interface parallel composition over a range {0..4} and an interface

set R is expressed as

[| R |] i:{0..4} @ parameterisedProcess(i)

Replicated interleaving defines the process formed by instances of a parameterised process

that do not synchronise on any event (Roscoe 2010, p. 64). Each instance operates entirely

independently of the others. It is expressed in CSPM as:

||| i:{0..4} @ parameterisedProcess(i)

3.4 Verification through model-checking

In this section, verification through model-checking is demonstrated and discussed

through an example drawn from T. Davies (2012)’s critical analysis of CSP implementa-

tion techniques.

Davies describes and provides a CSP model for an algorithm that sorts a fixed-size input

stream of integers by implementing a linear array of sorting cells. Figure 3.1 reproduces

from T. Davies (2012, p. 82) an illustration of a sample run for an array of six cells and an

input stream of 110100.

A stream of unsorted integers is input on the leftmost end of the array and a stream of

sorted integers may be retrieved from the opposite end of the array. Within the array, each

cell inputs an initial value from its left-hand channel and stores it.

Subsequently, each cell reads in a further value and compares it to the stored value. The

larger of the two values is output on the cell’s right-hand channel and the smaller is stored.

This is repeated by each cell until the entire input stream has been input to the array. Once

no more input is available, each cell outputs its stored value on its right-hand channel and

so to the far end of the array.

The CSPM coding of the implementation part of this model is shown in Listing 3.10.

3 Communicating Sequential Processes 37

7. Linear Sorting Array

Algorithm

Listing 7.1: Linear Sorting Array algorithm
1 There are a number of cells forming a linear array,
2 along with a user process feeding in a string of integers.
3 Each cell c stores an initial value read from c-1,
4 where for c=0, c-1 is the user.
5 Each cell c reads in a value and compares it to the stored value
6 sending the larger value to cell c+1 and keeping
7 the smaller value in the store.
8 Repeat until no more input is expected, then send stored value to
9 the end of the array and out of the array as a sorted string.

We can further demonstrate this algorithm using a sample run:
Sample Run

We have six cells in our sorting array and an input stream of the form 110100, where the
rightmost bit enters the array first.

i n p u t c1 c2 c3 c4 c5 c6 o u t p u t
Round 1 1 1 0 1 0 0
Round 2 1 1 0 1 0 0
Round 3 1 1 0 1 0 0
Round 4 1 1 0 0 0 1
Round 5 1 1 0 0 0 1
Round 6 1 0 0 0 1 1
Round 7 0 0 0 1 1 1
Round 8 0 0 0 1 1 1
Round 9 0 0 0 1 1 1
Round 10 0 0 0 1 1 1
Round 11 0 0 0 1 1 1
Round 12 0 0 0 1 1 1
Round 13 0 0 0 1 1 1

The resulting output stream is 000111, thus successfully sorted.

7.2 Reflections on Sorting: The 0-1 Principle

In our specification of the linear sorting array, we sort only strings of 0s and 1s, as seen in the
sample run above. While this may not seem particularly useful, [Akl85] provides us with the
0-1 Principle, the idea of which states that if we have a sorting array which sorts for 0s and 1s,
then it will sort for any string of integers, allowing for the principles of our model to be applied
to a more complex set of integers. The principle as laid out below follows [Knu73].

Definition 7.1 Let A and B be ordered sets. A mapping f : A ! B is called monotonic if for
all a1, a2 2 A

a1 a2) f (a1) f (a2)

74

Figure 3.1: Sample run of the linear sorting array algorithm, reproduced from T. Davies (2012,
p. 82)

Listing 3.10: The linear sorting array coded in CSPM, after T. Davies (2012)

1 arraySize = 6

2 -- limiting this value range constrains the number of transitions generated

3 -- by events and the ensuing state space of the processes that perform them.

4 Vals = {0..1}

5

6 channel digitChan : {0..arraySize}.Vals -- array interconnect

7 channel ok, notSorted -- used by the specification

8

9 -- these parameterised set declarations compose the process alphabet for

10 -- each member of the sorting array, defining the events they synchronise on.

11 receiveSet(id) =

12 {digitChan.id.a | a <- {0,1}}

13 sendSet(id) =

14 {digitChan.to.a | a <- {0,1},

15 to <- {id + 1}, id != arraySize}

16 synchroSet(id) =

17 union(receiveSet(id), sendSet(id))

18

19 -- CELL defines the initial behaviour of a cell within the array, as it

20 -- receives input from the ‘left’ and compares that input against its

21 -- stored values. The number of times a cell performs this operation

22 -- during this phase is defined by its position within the array

23 CELL(id, store, count) =

24 count == 0 &

25 digitChan.id?x -> CELL(id, x, count+1)

26 []

27 count > 0 and count < arraySize - id &

28 digitChan.id?x ->

3 Communicating Sequential Processes 38

29 (if x > store

30 then

31 digitChan.id+1!x -> CELL(id, store, count+1)

32 else

33 digitChan.id+1!store -> CELL(id, x, count+1))

34 []

35 count == arraySize - id &

36 OUTPUT(id, store, count)

37

38 -- OUTPUT defines the subsequent behaviour of a cell within the array;

39 -- by this point it is no longer performing comparisons.

40 OUTPUT(id, store, count) =

41 count < arraySize &

42 digitChan.id+1!store -> digitChan.id?x -> OUTPUT(id, x, count+1)

43 []

44 count == arraySize &

45 digitChan.id+1!store -> OUTPUT(id, 0, count+1)

46 []

47 count == arraySize+1 &

48 CELL(id, 0, 0)

49

50 RECEIVEONES(count) =

51 if count == 0

52 then ok -> RECEIVEONES(arraySize)

53 else digitChan.arraySize?x ->

54 if x == 1

55 then RECEIVEONES(count - 1)

56 else RECEIVEZEROS(count - 1)

57

58 RECEIVEZEROS(count) =

59 if count == 0

60 then ok -> RECEIVEONES(arraySize)

61 else digitChan.arraySize?x ->

62 if x == 0

63 then RECEIVEZEROS(count - 1)

64 else notSorted -> STOP

65

66 SYSTEM(arraySize) =

67 RECEIVEONES(arraySize)

68 [| {| digitChan.arraySize |} |]

69 (|| id : {0..arraySize-1} @ [synchroSet(id)] CELL(id, 0, 0))

70

71 P = ok -> P

72

73 HIDINGSYS =

74 SYSTEM(arraySize) \ {| digitChan |}

75

3 Communicating Sequential Processes 39

76 assert SYSTEM(arraySize) :[divergence free]

77 assert SYSTEM(arraySize) :[deadlock free [F]]

78 assert HIDINGSYS [T= P

79 assert P [T= HIDINGSYS

Besides showing freedom from deadlock and divergence, the most desirable correctness

property of an implementation of this algorithm is that it should sort any fixed-size stream

of integers. However, as described earlier in this section, specifying a CSP communications

channel of the built-in integer type will result in FDR generating 232 possible transitions for

a single input/output operation on that channel, grossly enlarging the state space of any

CSP process under consideration and making model-checking very inefficient.

Davies’ model mitigates this by constraining the type of the channels within the sorting ar-

ray to the range {0..1} (Listing 3.10, line 13). Davies cites results from Akl (1985) and Knuth

(1973)—the so-called zero-one principle—to claim that successful verification results over

this range will establish that the array is capable of sorting any fixed-size stream of inte-

gers.

Consequently, the sorting-capable correctness property may be expressed as a safety con-

dition in the traces model by the specification given in Listing 3.11, which defines correct

sorting behaviour over the {0..1} range. The RECEIVEONES process will input any number of

1s until either the output stream has been exhausted or it inputs a 0, after which point it

behaves as RECEIVESZEROS. RECEIVEZEROS will then input any number of 0s until the output

stream has been exhausted, but if it instead receives a 1 it will perform the notSorted event.

A successfully sorted output stream is signalled by performance of the ok event.

Listing 3.11: Sorting zeroes and ones, expressed as a safety condition, adapted from T. Davies

(2012, pp. 114–7)

1 arraySize = 6

2

3 RECEIVEONES(count) =

4 if count == 0

5 then ok -> RECEIVEONES(arraySize)

6 else output?x ->

7 if x == 1

8 then RECEIVEONES(count - 1)

9 else RECEIVEZEROS(count - 1)

10

11 RECEIVEZEROS(count) =

12 if count == 0

13 then ok -> RECEIVEONES(arraySize)

14 else output?x ->

15 if x == 0

3 Communicating Sequential Processes 40

16 then RECEIVEZEROS(count - 1)

17 else notSorted -> STOP

The implementation may then be model-checked against this specification by defining

a process SYSTEM that composes the RECEIVEONES process in interface parallel with the sort-

ing array with the output channel as the interface (Listing 3.12). The specification process

jointly defined by RECEIVEONES and RECEIVEZEROS will synchronise with the ARRAY implementa-

tion process each time the sorting array writes a value to the output stream.

Listing 3.12: Composing the specification and assertion checks

1 SYSTEM(arraySize) =

2 RECEIVEONES(arraySize)

3 [| {| output |} |]

4 ARRAY

5 \ {| digitChan |}

6

7 P = ok -> P

8

9 HIDINGSYS =

10 SYSTEM(arraySize) \ {| digitChan, output, input|}

11

12 assert ARRAY :[divergence free]

13 assert ARRAY :[deadlock free [F]]

14 assert SYSTEM(arraySize) :[divergence free]

15 assert SYSTEM(arraySize) :[deadlock free [F]]

16 assert HIDINGSYS [T= P

17 assert P [T= HIDINGSYS

The process P is defined as only being capable of performing the ok event. If the HIDINGSYS

process is then defined as the SYSTEM process with all events except the specification signals

ok, notSorted hidden, the trace-refinement checks P [T= HIDINGSYS and HIDINGSYS [T= P will

establish whether P and HIDINGSYS are trace-equivalent. In other words, if HIDINGSYS (and

therefore SYSTEM) can ever perform the notSorted event, it is because the implementation

prototype ARRAY has, for some particular permutation of the input stream, produced an un-

sorted output stream where a 1 follows a 0.

The remaining correctness properties—that the implementation prototype is free from di-

vergence and deadlock—can be performed via built-in FDR checks. Figure 3.13 shows the

result of these checks.

3 Communicating Sequential Processes 41

Listing 3.13: Refinement check results for Listing 3.12

1 Welcome to FDR Version 4.2.3 copyright 2016 Oxford University Innovation Ltd. All Rights

Reserved.

2 License: Academic license for non-commercial use only

3 ARRAY :[divergence free]: Passed

4 ARRAY :[deadlock free [F]]: Passed

5 SYSTEM(arraySize) :[divergence free]: Passed

6 SYSTEM(arraySize) :[deadlock free [F]]: Passed

7 HIDINGSYS [T= P: Passed

8 P [T= HIDINGSYS: Passed

3.5 Summary

This chapter provided a brief introduction to the CSP process algebra and syntax, comple-

menting the high-level account of verification techniques presented in Chapter 2. Exam-

ples of the basic building blocks of the notation were provided, focusing on its machine-

readable form CSPM, alongside a general overview of refinement-checking under the three

primary semantic models. The chapter concluded by presenting a concise account of spec-

ification and verification in CSPM and FDR.

4 Go

The Go Project (n.d.[f]) originated as a Google research project to develop a systems

programming language, standard library and build toolchain optimised for the rapid

industrial-scale development of scalable distributed programs. Pike (2012) provides a com-

prehensive historical and technical discussion of these factors and their influence on sub-

sequent design decisions. Consequently, the project as a whole and the design of the lan-

guage in particular express what Donovan and Kernighan (2016) characterise as ‘a cultural

agenda of radical simplicity’.

This background chapter introduces the basic Go language concepts, features, and syntax

relevant to the aims and implementation of the proposed development method.

As such, the chapter focuses on introducing and demonstrating the features of Go that sup-

port its selection as the target environment for the CSP-based development method pro-

posed by the research project. The definitive online references for the language and its

expressive idioms are Effective Go (Go Project n.d.[a]) and the language specification (Go

Project 2017), while a comprehensive account of the language is provided by Donovan and

Kernighan (2016).

4.1 Overview

Pike (2012) summarises the design goals of the Go project as the intention to develop a new

programming environment that provides ‘modernity’, ‘familiarity’ and scalability.

‘Modernity’ is characterised by Pike (2012) in terms of:

the language’s type system, which is based on the concepts of packages, structs, interfaces,

embedding and exports. The language’s type system does not implement inheritance

or polymorphism, instead promoting composition as the primary principle of object-

oriented implementation;

language and runtime support for concurrency, based on lightweight units of execution

42

4 Go 43

termed goroutines and message-passing channels that extend the equivalent CSP

concept in powerful ways;

packages, which unify the concepts of namespaces and libraries, providing the basic

mechanism for structuring programs and their dependencies.

‘Familiarity’ is characterised in terms of the language’s procedural idiom, C-derivative syn-

tax, straightforward semantics, enforced uniform formatting style and extensive toolchain,

while scalability is presented by Pike (2012) in terms of:

maximising the build efficiency of large developments through a strict approach to depen-

dency management, as partly implemented through the introduction of packages;

promoting composition through interfaces as the organising principle of design, and ex-

cluding type inheritance altogether.

In concrete terms, the Go programming language resembles a derivative of C (Donovan

and Kernighan 2016, p. xii) with the addition of garbage collection, an extensive ‘standard

library’ of packages, a module/object system derived from the Modula-2/Oberon family

of languages (Donovan and Kernighan 2016, p. xiii), a rich set of built-in data structures,

and language-level support for concurrent programming styled after CSP. Go programs

compile to native machine code, incorporating a statically-linked runtime environment

that implements memory management, concurrent garbage collection and a multiplexing

scheduler Deshpande et al. 2012 that enables Go programs to exploit concurrency without

directly engaging the operating system scheduler.

4.2 Concurrency

At a conceptual level, the Go concurrency model is a clear descendant of CSP: concurrent

Go programs are structured as communicating collections of lightweight thread-like units

of execution termed goroutines, which are scheduled by the runtime environment and mul-

tiplexed onto one or more operating system threads (Deshpande et al. 2012; Go Project

n.d.[c]).

Goroutines can be launched dynamically, and any function call may be executed as a gor-

outine by prefixing the call with the go keyword. Listing 4.1 shows an implementation of a

concurrent prime number generator that extends its processing pipeline each time a prime

4 Go 44

is discovered by declaring a new channel (line 36) and launching a new goroutine to read

from it (line 37). Listing 4.2 shows the result of executing this program.

Listing 4.1: A concurrent prime generator implemented in Go

1 // A concurrent prime generator, after https://golang.org/doc/play/sieve.go

2 package main

3

4 import (

5 "fmt"

6 "runtime"

7)

8

9 // Send the sequence 2, 3, 4, ... to channel ’ch’.

10 func generate(ch chan<- int) {

11 fmt.Printf("generate() running with output channel [%v]\n", ch)

12 for i := 2; ; i++ {

13 ch <- i // Send ’i’ to channel ’ch’.

14 }

15 }

16

17 // Copy values from ’in’ to ’out’, removing those divisible by ’prime’.

18 func filter(in <-chan int, out chan<- int, prime int) {

19 fmt.Printf("\t[filter(%2d)] in channel: [%v] out channel: [%v]\n", prime, in, out)

20 for {

21 i := <-in // Receive value from ’in’.

22 if i%prime != 0 {

23 out <- i // Send ’i’ to ’out’.a

24 }

25 }

26 }

27

28 // The prime sieve: Daisy-chain filter processes.

29 func main() {

30 runtime.GOMAXPROCS(1) // Run this program on one OS thread.

31 ch := make(chan int) // Create a new channel.

32 go generate(ch) // Launch generate goroutine.

33 for i := 0; i < 10; i++ {

34 prime := <-ch

35 fmt.Printf("\t\t[%v] -> main: %v \n", ch, prime)

36 ch1 := make(chan int)

37 go filter(ch, ch1, prime)

38 ch = ch1

39 }

40 }

4 Go 45

Goroutines are optimised for fast context-switching, with no implementation of a local ad-

dress space and a minimal initial memory footprint. Consequently, concurrent programs

in Go are made memory-safe through program design, rather than through the implemen-

tation of the language.

Communications and synchronisations between goroutines are idiomatically expressed

by operations over message-passing channels, which are strongly-typed and by default

synchronous (i.e., blocking) (Go Project n.d.[b]). Go channels may be declared and al-

located dynamically (e.g., Listing 4.1, line 34). Go channels may be applied in multiple-

producer and/or multiple-consumer patterns: for example, replicated instances of a gor-

outine might individually pull work items from a common channel fed by a single producer

goroutine.

Listing 4.2: Execution of Listing 4.1

1 generate() running with output channel [0x4211600c0]

2 [0x4211600c0] -> main: 2

3 [filter(2)] in channel: [0x4211600c0] out channel: [0x421160180]

4 [0x421160180] -> main: 3

5 [filter(3)] in channel: [0x421160180] out channel: [0x4211601e0]

6 [0x4211601e0] -> main: 5

7 [filter(5)] in channel: [0x4211601e0] out channel: [0x421160240]

8 [0x421160240] -> main: 7

9 [filter(7)] in channel: [0x421160240] out channel: [0x4211602a0]

10 [0x4211602a0] -> main: 11

11 [filter(11)] in channel: [0x4211602a0] out channel: [0x421160300]

12 [0x421160300] -> main: 13

13 [filter(13)] in channel: [0x421160300] out channel: [0x421160360]

14 [0x421160360] -> main: 17

15 [filter(17)] in channel: [0x421160360] out channel: [0x4211603c0]

16 [0x4211603c0] -> main: 19

17 [filter(19)] in channel: [0x4211603c0] out channel: [0x421160420]

18 [0x421160420] -> main: 23

19 [filter(23)] in channel: [0x421160420] out channel: [0x421160480]

20 [0x421160480] -> main: 29

The execution of the program in Listing 4.1 is determined by the lifetime of the for loop

in its main function. The program spawns a total of 11 goroutines before it terminates, but

the lifetime of these goroutines is not managed in any way. In this example, this is of little

consequence: at the point the program binary terminates, all of its resources are released,

and in any event the program’s resource usage is limited to one thread as a result of the

runtime.GOMAXPROCS() call.

Within the server applications that Go is intended to facilitate, however, resource manage-

4 Go 46

ment and safe termination are contentious issues, and so most programs require some

means of coordinating the execution and/or termination of groups of goroutines. This is

provided by the sync package’s WaitGroup type (Go Project n.d.[e]), as demonstrated by List-

ing 4.3.

Listing 4.3: Coordinating a group of goroutines using a sync.WaitGroup

1 package main

2

3 import (

4 "fmt"

5 "math/rand"

6 "sync"

7 "time"

8)

9

10 const (

11 naptime = 2500

12 sleepers = 500

13)

14

15 func randomDuration(r *rand.Rand, bound int64) time.Duration {

16 return time.Duration(r.Int63n(bound)) * time.Millisecond

17 }

18

19 func sleeper(id int, wg *sync.WaitGroup, r *rand.Rand) {

20 wg.Add(1)

21 go func() {

22 time.Sleep(randomDuration(r, naptime))

23 wg.Done()

24 }()

25 }

26

27 func main() {

28 r := rand.New(rand.NewSource(time.Now().UnixNano()))

29 var wg sync.WaitGroup

30 t0 := time.Now()

31 for i := 0; i < sleepers; i++ {

32 sleeper(i, &wg, r)

33 }

34 wg.Wait()

35 t1 := time.Now()

36 fmt.Println("Took ", sleepers, "sleepers ", t1.Sub(t0), "to wake up")

37 }

4 Go 47

The main() function uses the wg variable to coordinate the concurrent execution of the 500

sleeper goroutines; the call to wg.Wait() (line 34) will not return until all 500 goroutines have

woken and signaled wg.Done().

To avoid the possibility of a race condition, the sync.WaitGroup variable must always be incre-

mented before a goroutine is launched. Doing so in main is one option, but the technique

demonstrated in the sleeper function encapsulates this bookkeeping more cleanly. Here,

the sleeper runs 500 times, on each occasion incrementing the sync.WaitGroup variable be-

fore spawning an anonymous goroutine (lines 21–24). Anonymous functions in Go retain

the scope of the invoker, so each goroutine is capable of signalling its termination via the

call to wg.Done(). The main() function, executing in its own goroutine, does not return from

the call to wg.Wait() until every spawned goroutine has done so.

4.3 Channels

Go channels are strongly-typed and must be declared and allocated before use. Channels

may be declared as being of any first-class value, including user-defined types, functions

and channels themselves. A channel that is only used to enforce synchronisation between

two processes may explicitly indicate its function by being declared as of the ‘empty struct’

type (Listing 4.4).

Go channels are named for their resemblance to CSP channels, and arrive in Go from a

lineage of previous CSP-influenced programming languages (Cardelli and Pike 1985; Mul-

lender 2018; Pike 1989; Schuster 2011). However, during the evolution from abstract mod-

elling notation to concrete language implementation, some capabilities have been lost and

others have been gained. The following examples of usage are restricted to illustrations of

how Go channels may be declared and used to emulate CSPM input, output and synchro-

nisation operations.

4.3.1 Input/output and synchronisation

Listing 4.4 demonstrates input/output operations over elementary synchronous channel

types.

4 Go 48

Listing 4.4: Input/output over three different channels

1 package main

2

3 import (

4 "fmt"

5 "sync"

6)

7

8 type tuple struct {

9 f00 int

10 f01 bool

11 }

12

13 func a(wg *sync.WaitGroup, nada chan struct{}) {

14 wg.Add(1)

15 go func() {

16 <-nada

17 nada <- struct{}{}

18 fmt.Println("a() terminates.")

19 wg.Done()

20 }()

21 }

22

23 func b(wg *sync.WaitGroup, ping chan int) {

24 wg.Add(1)

25 go func() {

26 v := <-ping

27 ping <- v + 1

28 v = <-ping

29 ping <- v + 1

30 _ = <-ping

31 ping <- v + 1

32 fmt.Println("b() terminates.")

33 wg.Done()

34 }()

35 }

36

37 func c(wg *sync.WaitGroup, stuff chan tuple) {

38 wg.Add(1)

39 go func() {

40 things := <-stuff

41 fmt.Printf("c received: (%d, %v)\n", things.f00, things.f01)

42 stuff <- tuple{things.f00 + 1, !things.f01}

43 fmt.Println("c() terminates.")

44 wg.Done()

45 }()

46 }

4 Go 49

47

48 func main() {

49 var wg sync.WaitGroup

50 nada := make(chan struct{})

51 ping := make(chan int)

52 stuff := make(chan tuple)

53 a(&wg, nada)

54 b(&wg, ping)

55 c(&wg, stuff)

56

57 nada <- struct{}{}

58 <-nada

59 fmt.Println("main: done with a()")

60

61 ping <- 0

62 fmt.Println("main: received ", <-ping, " from b()")

63 ping <- 0

64 fmt.Println("main: received ", <-ping, " from b()")

65 ping <- 0

66 fmt.Println("main: received ", <-ping, " from b()")

67

68 stuff <- tuple{330, false}

69 dsm := <-stuff

70 fmt.Println("main: received dsm: ", dsm.f00, dsm.f01)

71 fmt.Println("main() terminates.")

72 }

Channel input and output operations share a basic operator, <-. Channel identifiers appear

on the RHS of <- in input expressions, and on the left hand side (LHS) in output expres-

sions.

That convention aside, channel input/output syntax mutates with channel type and intent:

in function a(), line 16 shows the idiomatic expression for waiting on a signal from another

goroutine, and line 17 shows the idiomatic expression for sending a signal to another gorou-

tine (the RHS is read as ‘an anonymous instance of an empty struct’). Both these operations

block.

In function b(), line 26 shows the syntax for inputting a value to a new variable; line 28

shows the syntax for inputting a value to an existing variable; and line 30 shows the syntax

for inputting a value from a channel and discarding it.

Line 52 demonstrates the syntax for creating a channel of a struct (tuple) type, and lines 42

and 68 show performing output operations over a channel of this type in a single line by

the declaration of tuple struct literals.

4 Go 50

This program executes as shown in Listing 4.5.

Listing 4.5: Execution of Listing 4.4

1 a() terminates.

2 main: done with a()

3 main: received 1 from b()

4 b() terminates.

5 main: received 1 from b()

6 c received: (330, false)

7 c() terminates.

8 main: received dsm: 331 true

9 main() terminates.

4.3.2 Selecting over channels

The select statement somewhat resembles a Go or C switch statement (Go Project 2018b),

in that it allows a goroutine to define alternative paths of execution based on channel input

or output operations (Go Project 2018a). Unlike a switch statement, there is no notion of a

default clause: if a goroutine enters a select statement where/when none of the case opera-

tions are ready, the goroutine will block until one of them is. In Listing 4.6, the main function

selects over two alternative channel inputs. When more than one case is ready, as is the case

in Listing 4.6, the select statement selects a case to execute non-deterministically.

Listing 4.6: Selecting over channel inputs

1 package main

2

3 import (

4 "fmt"

5 "sync"

6)

7

8 const (

9 reps = 5

10)

11

12 func P(wg *sync.WaitGroup, a chan int) {

13 wg.Add(1)

14 go func() {

15 for i := 0; i < reps; i++ {

16 a <- i

17 }

18 }()

19 }

4 Go 51

20

21 func Q(wg *sync.WaitGroup, b chan int) {

22 wg.Add(1)

23 go func() {

24 for i := 0; i < reps; i++ {

25 b <- i

26 }

27 }()

28 }

29

30 func main() {

31 var wg sync.WaitGroup

32 a := make(chan int)

33 b := make(chan int)

34 P(&wg, a)

35 Q(&wg, b)

36 for i := 0; i < reps*2; i++ {

37 select {

38 case x := <-a:

39 fmt.Printf("a (%d)\t", x)

40 case y := <-b:

41 fmt.Printf("b (%d)\t", y)

42 }

43 }

44 fmt.Println()

45 }

4.3.3 Implementation details and comparison with CSP

Go channel operations provide syntactic sugar for concurrent sharing of memory. Within

the runtime environment, a Go channel is implemented as a static area of the global mem-

ory space, and Go channel operations abstract the details of accessing, locking and unlock-

ing this area from the developer (Kennedy 2014).

This justifies why Go channels are strongly-typed and have to be explicitly allocated before

use, but Go channels are also dynamic and mobile in that channels may be created, allo-

cated, and exchanged between goroutines. These are not operations that mainstream CSP

is capable of describing or reasoning about, and attempts to describe or formally verify de-

signs that exploit these interesting language features fall outside the scope of this study.

Channels may be declared, allocated and addressed in uni- or multi-dimensional arrays,

4 Go 52

enabling a direct analogue to the CSPM idiom of events or channels that are parameterised

over particular instances of a replicated process.

In pipeline or stream-processing configurations, an upstream goroutine may signal the end

of a stream to downstream consumers by permanently deactivating the channel with the

built-in function close (Go Project 2018c). This enables some convenient idioms for termi-

nation, but demands careful coordination when channels are shared between processes:

while reads from a closed channel fail in a non-blocking fashion, a producer that attempts

to write to a channel which a fellow producer has already closed will trigger a runtime

panic.

However, these additional features do not detract from the capability of Go channels to

implement a meaningful subset of CSP synchronisation and communication behaviour,

including external choice over alternatives, more or less directly.

Go channels may also be declared and used as buffered asynchronous message queues,

although this is typically treated in the programming literature as an advanced usage pat-

tern that withdraws the guarantee of known state associated with synchronised channel

communications (Donovan and Kernighan 2016, pp. 233–4). As a consequence of the

lightweight nature of goroutines and the decoupling of context-switching from the operat-

ing system, the latency cost conventionally associated with synchronous message-passing

operations becomes trivial within the Go runtime environment.

4.3.4 Other communication primitives

In addition to channel-based synchronisation and communication, the Go package sync

provides implementation of ‘traditional’ synchronisation primitives such as mutexes, ren-

dezvous and pools (Go Project n.d.[d]).

4.4 User-defined types

The idiomatic way to construct a user-defined type in Go is to declare a struct. Listing 4.7

displays part of the implementation of IntSet, a Go type declared within the cspiderpackage,

which emulates CSPM’s implementation of integer sets and sequences1.

1http://bitbucket.com/jdibley/cspider go

http://bitbucket.com/jdibley/cspider_go

4 Go 53

As implicit in the declaration of the IntSet struct type, a very basic implementation of an

integer set could be achieved by declaring an instance of the Go built-in map type with an

integer key and a Boolean value (as performed by the init() method, lines 18–21). Defining

IntSet as a wrapper around the members map permits the interface of the underlying type to

be extended: in this instance, IntSet defines a equivalent method for almost all of the built-

in set functions defined by CSPM (University of Oxford n.d.[i]), starting with an equivalent

of the card() cardinality function.

Listing 4.7: IntSet

1 package cspider

2

3 import "sort"

4

5 type IntSet struct {

6 members map[int]bool

7 }

8

9 // NewIntSet returns a set containing the supplied integers.

10 func NewIntSet(nums ...int) *IntSet {

11 rs := new(IntSet).init()

12 for _, num := range nums {

13 rs.members[num] = true

14 }

15 return rs

16 }

17

18 func (is *IntSet) init() *IntSet {

19 is.members = make(map[int]bool)

20 return is

21 }

22

23 // Card returns the cardinality of the receiver set.

24 func (is *IntSet) Card() int {

25 return len(is.members)

26 }

Methods may be attached to any user-defined Go type by declaring a function with a re-

ceiver type. A parenthesised declaration of a pointer to a struct type between the func key-

word and the function identifier declares the function as a method of that type, as occurs

in the declarations of init and Card.

User-defined types, and selected members or methods of user-defined types, are exported

from the package that contains them on the basis of their identifiers. Declaring a type,

function, or type attribute with an identifier that begins with a capital letter defines it as ex-

4 Go 54

portable. Consequently, the function NewIntSet is a constructor function that may be called

from any package, and the function Card may be called as a method of a variable of type

IntSet. Listing 4.8 provides a trivial example and Listing 4.9 shows its execution.

Listing 4.8: Declaring and using an instance of type IntSet

1 package main

2

3 import (

4 "fmt"

5

6 "bitbucket.com/jdibley/cspider"

7)

8

9 func main() {

10 somePrimes := cspider.NewIntSet(2, 3, 5, 7)

11 fmt.Printf("somePrimes contains %v and has cardinality %v\n", somePrimes.Members()

, somePrimes.Card())

12 }

Listing 4.9: Execution of Listing 4.8

1 somePrimes contains [2 3 5 7] and has cardinality 4

4.5 Packages

Go defines a packageas the highest-level unit of program structure: standalone programs de-

clare themselves as package main and import externally-defined types or functions by pack-

age name. Listing 4.8 imports the cspider package for access to the IntSet type and the fmt

package for access to the Printf function; while the cspider package imports the sort pack-

age in order to emulate the fact that the CSPM seq function returns a sequence containing

the elements of a set in a stable iteration order, whereas the Go built-in map type returns its

keys in a random order.

4.6 Summary

This chapter presented a brief overview of the Go programming language and runtime

environment, focusing on the areas most relevant to the research project: its runtime-

and language-level support for concurrency, which is shown to implement a superset of

4 Go 55

the channel mechanics associated with CSP, and its object and encapsulation mechanics,

which are broadly compatible with the objective of implementing CSP designs as reusable

components. Chapter 8 provides more detail on how this was accomplished.

5 The proposed development method

This work proposes and demonstrates a development method that facilitates the use of

verification in design and implementation of concurrent programs by providing a software

tool that automates the implementation of verified CSP prototypes.

This chapter summarises the proposed method.

5.1 Overview

The development method begins with the modelling and verification of a concurrent de-

sign in the CSPM dialect of the CSP process algebra, and through the application of auto-

mated implementation achieves the generation of reusable, parameterised, cleanly encap-

sulated Go components that may be invoked and tested.

The proposed workflow enables a developer to specify, animate and/or verify a CSP pro-

totype using standard tool support such as FDR (University of Oxford 2017) and, once the

correctness properties of the model have been verified, automatically generate a Go pack-

age that implements that prototype. To use the automated software tool, CSPIDER (‘CSP

IMPLEMENTATION DERIVATION’), the developer is required to implement a small set of struc-

tural adaptations and annotations in preparing the CSP prototype. These requirements are

however fully compatible with the FDR model checker tools and do not disrupt verification

or in any way alter the text of the model once verification has been completed.

A central objective of this work is that the proposed development method makes use of

software automation to the fullest extent possible to minimise the opportunities for the

introduction of human error.

CSPIDER is intended to support the work of structuring concurrent programs by making

the application of CSP in the design process more feasible: most obviously through pro-

viding an automated translation, but also by structuring the Go code it produces to enable

straightforward tracing from the original CSP prototype. CSPIDER is also capable of pro-

viding an audit log of its translation activities.

56

5 The proposed development method 57

5.2 Workflow phases

The proposed development method provides a linear workflow for the design, verification

and implementation of reusable concurrent programs. The phases of the development

method are illustrated in Figure 5.1.

Figure 5.1: The proposed development method

The system safety and functional requirements are encoded as CSP specification scenarios

(where possible), and an implementation prototype is then developed in CSP, possibly by

stepwise refinement, and verified against these specifications.

While the proposed development method involves machine translation of the CSP script

that defines the implementation component, and requires the adoption of a particular

modelling style and a particular set of annotations, all of these requirements preserve the

CSP script’s syntactic compatibility with FDR’s parser and interpreter.

Likewise, because using CSPIDER mandates the separation of specification scenarios and

assertion checks into one CSP script and implementation components into another script,

the aforementioned style and annotation requirements do not apply to the coding of the

CSP model’s specifications. Consequently a CSPIDER-compatible CSP model may be veri-

fied using any or all of FDR’s existing verification features, and at the time of writing CSPI-

DER expects that any input script has been successfully syntax- and type-checked by FDR

already.

5 The proposed development method 58

Following successful verification of the CSP model, it may be loaded into CSPIDER to gener-

ate a Go implementation package. This is an automated process and, as long as the annota-

tion and style requirements have been met in full, should run to completion. CSPIDER pro-

vides a rudimentary account of its activities (to be expanded in later revisions) and aborts

the translation with a diagnostic message if it encounters a successfully-parsed construct

that it nonetheless cannot interpret.

In order to minimise the risk of introducing new errors, the parsing, translation and code

generation phases of the CSPIDER tool have been implemented to remove any direct need

for manual user editing of either the CSP implementation model or the code generated

from it between model verification and deployment of the generated code.

Once verification has been completed successfully, the parsing, interpretation and code

generation phases of the workflow are fully automated (Figure 5.2). The CSPIDER tool is

invoked with arguments providing paths to the CSP implementation script and to a target

directory for the implementation code to be placed.

The CSPIDER tool parses and validates the CSP script before incrementally building up an

intermediate representation of the CSP implementation component. All supported dec-

larations (global constants, channels, functions, processes, sets and sequences, as well as

process-local definitions of constants, functions, and [substate-]processes) are explicitly

modelled within this internal representation, as are semantically complex CSP constructs

such as process invocations, event renaming and hiding clauses, channel input/output op-

erations, process alphabet expressions, and incidences of external choice.

A successful run of CSPIDER over a CSPM implementation script generates a self-contained

Go package directory that only requires to be moved into the developer’s Go workspace

(that is, if CSPIDER was not directed to place its output there in the first place).

At this point, the majority of generated code is ready to be imported and instantiated within

another development, with one minor exception: code generated from models that include

processes parameterised over integer set or sequence state variables will require the devel-

oper to retrieve the Go CSPIDER package1 that provides CSPM-style implementations of

these abstract data types. This accomplished, the Go goimports tool should then be run

on the directory containing the generated code to automatically reconcile the packaging

dependencies. At this point, the developer may proceed with coding a client program.

The remainder of this chapter provides an overview of how this development method may

be applied in practice, illustrated by the linear sorting array example introduced in Chap-

1https://bitbucket.org/jdibley/cspider_go/

5 The proposed development method 59

ter 3. The following section summarises the subset of CSPM that the CSPIDER tool is capa-

ble of implementing, the structural and style conventions that must be followed to prepare

a CSP implementation script for use with CSPIDER, and the (minimal) implications for the

verification of that script. Subsequently, the remainder of the chapter summarises the au-

tomated activities of CSPIDER at a high level: its parsing of CSPM, its construction of an

intermediate representation of the parsed input, and its generation of Go code.

5.3 Modeling implementation components in CSP

The proposed development method assumes that verifications have been completed suc-

cessfully, but does not enforce or require this. In other words, it is not necessary to model-

check the CSP implementation file in order to translate it with CSPIDER, although parame-

terised declarations must be type-annotated, and the easiest way to obtain the text of these

type-annotations and check them for consistency is to load the model file into FDR and is-

sue queries to the internal type checker2.

In order to minimise the risk of introducing new errors, the parsing, translation and code

generation phases of the CSPIDER tool have been implemented to remove any direct need

for user editing of either the CSP implementation model or the code generated from it be-

tween model verification and deployment of the generated code. However, this degree of

automation depends on the developer complying with structural and style guidelines when

preparing the input CSP model, most of which exist to resolve abstraction for the purposes

of enabling software synthesis3.

5.3.1 Modelling adaptations

As a simple example, a central structural requirement is that the specification scenarios and

assertion checks must be coded in a separate CSP script from the implementation compo-

nents. This separate specification script may then include the implementation script for

model-checking purposes, while the only script that CSPIDER actually parses or interprets

is the one containing the implementation components. This imposition serves three pur-

poses:

2Automating this procedure was investigated, but the author was unable to locate functionality to obtain
individual type annotations in the FDR application programming interface (University of Oxford n.d.[f]).

3The identification and imposition of these abstraction-reducing guidelines is one reason why the author
characterises the work presented here ‘a development method’ as distinct from ‘an automated translation
tool’.

5 The proposed development method 60

1. It relieves CSPIDER of the interpretive burden of discriminating between process,

function and channel declarations that are used to define specification scenarios

and those that are used to define implementation scenarios. (For example, in List-

ing 3.10, the ok and notSorted channels serve no function in the implementation pro-

totype; as presented in Section 3.4, they only exist to provide visible events in the

trace-refinement checks performed against specification processes, and so their dec-

larations are moved into the specification script.)

2. It allows the developer to express specification scenarios and processes with the great-

est degree of freedom, since other CSPIDER style requirements intended to provide

a basis for software synthesis activities do not apply.

3. It allows implementation scripts to unambiguously express (from the point of view

of the CSPIDER tool) that they are parameterised over an externally-supplied value

or values; in the example of the linear sorting array (Section D.1), the author’s adap-

tation codes the declaration of the array process and channels against an identifier,

arraySize, which is only assigned by the specification component. CSPIDER inter-

prets this to mean that the Go type it generates from the CSP implementation proto-

type must receive a corresponding value at initialisation, and adapts the signature of

the initialisation method accordingly.

This contrasts to the common practice of ‘implicitly’ parameterising the size of a CSP

network over a ‘magic number’ defined somewhere in the implementation compo-

nent, which provides no textual indication of whether the identifier represents a truly

constant value or a temporary assignment of a particular value to a variable.

Other low-level structural and style requirements are applied to support software synthe-

sis, typically by providing concrete interpretation of ambiguous or abstract CSP expres-

sions4.

CSPIDER adopts Gardner (2005b)’s restricted syntax for channel operations that represent

message-passing; CSPIDER also modestly extends these restrictions by encouraging the

use of CSP event renaming to express synchronisation events in a way that enables CSPI-

DER to interpret the initiator and respondent of such events while maintaining FDR’s abil-

ity to model and analyse the events in a conventional way.

CSPIDER also requires developers to adopt the style of modelling demonstrated through-

out J. Davies (2006). Listing 5.1 shows a version of the linear sorting array model introduced

in Section 3.4 adapted for compatibility with CSPIDER, showing the separation of the im-

4The basis of the following requirements are discussed in detail in Section 7.1.

5 The proposed development method 61

plementation part of the CSPM script from its specification scenarios, the type annotations

inserted for all parameterised declarations, and the encapsulation of the original CELL and

OUTPUT processes as substates of the new ARRAYCELL process. Also visible in this revised ver-

sion are three minor changes to assist CSPIDER in implementing the model:

1. the explicit declaration of the arraySize identifier as an external parameter of the im-

plementation model (line 2);

2. the declaration of the channels input and output (line 6) and their application in a

renaming clause to function as ‘aliases’ of each end of the digitChan array (line 54);

3. the explicit declaration of the ARRAY process, previously expressed as an anonymous

composition within the SYSTEM process (Listing 3.10, line 74).

Listing 5.1: The linear sorting array model adapted for use with CSPIDER

1 {- !!! Do not delete the following line if you intend to translate this model using

CSPIDER !!! -}

2 --# arraySize :: Int

3 Vals = {0..1}

4

5 channel digitChan : {2..arraySize}.Vals

6 channel input, output : Vals

7

8 receiveSet :: (Int) -> {Event}

9 receiveSet(id) =

10 {digitChan.id.a | a <- {0,1}}

11

12 sendSet :: (Int) -> {Event}

13 sendSet(id) =

14 {digitChan.to.a | a <- {0,1},

15 to <- {id + 1},

16 id != arraySize}

17

18 synchroSet :: (Int) -> {Event}

19 synchroSet(id) =

20 union(receiveSet(id), sendSet(id))

21

22 ARRAYCELL :: (Int) -> Proc

23 ARRAYCELL(id) =

24 let

25 CELL :: (Int, Int, Int) -> Proc

26 CELL(id, store, count) =

27 count == 0 &

28 digitChan.id?x -> CELL(id, x, count+1)

29 []

5 The proposed development method 62

30 count > 0 and count < arraySize - id &

31 digitChan.id?x ->

32 (if x > store

33 then

34 digitChan.id+1!x -> CELL(id, store, count+1)

35 else

36 digitChan.id+1!store -> CELL(id, x, count+1))

37 []

38 count == arraySize - id &

39 OUTPUT(id, store, count)

40 OUTPUT :: (Int, Int, Int) -> Proc

41 OUTPUT(id, store, count) =

42 count < arraySize &

43 digitChan.id+1!store -> digitChan.id?x -> OUTPUT(id, x, count+1)

44 []

45 count == arraySize &

46 digitChan.id+1!store -> OUTPUT(id, 0, count+1)

47 []

48 count == arraySize+1 &

49 CELL(id, 0, 0)

50 within CELL(id, 1, 0)

51

52 ARRAY =

53 (|| id:{0..arraySize-1} @ [synchroSet(id)] ARRAYCELL(id))

54 [[digitChan.0 <- input, digitChan.arraySize <- output]]

5.3.2 Support for CSPM

CSPIDER is capable of translating and implementing a large subset of CSPM. The following

applies only to the implementation script of a CSPM development: CSPIDER does not pro-

cess the specification script in any way, so specification scenarios may be defined in any

way the developer wishes. With the exception of internal choice, all the expressions and

declarations introduced in Section 3.2 are supported.

CSPIDER implements event declarations, including parameterised event declarations. The

semantic ambiguity of parameterised event declarations is resolved by scanning process

expressions for instances of the event identifier, such as renaming clauses or input/out-

put operations. When models are assembled in compliance with Gardner (2005b)’s guide-

lines for expressing CSPM channel operations (Subsection 7.1.3), this enables events to be

definitively assigned to one of three visibility levels, which are principally used to deter-

5 The proposed development method 63

mine whether the corresponding Go channel may be exported from the implemented Go

type.

CSPIDER implements any integer set expression that appears in a type specification as a

field of the underlying type, with no regard for the expressed range. CSPIDER can imple-

ment parameterised events that are declared with multi-field type specifications; the trans-

lator will classify and infer which fields (if any) define array indexes through scanning pro-

cess expressions, and treat the remaining fields as a data specification.

CSPIDER implements non-parameterised events, which ordinarily (and deliberately) ex-

press no sense of which process initiates the denoted transaction, by requiring the devel-

oper to apply event renaming. In this approach, a network-level event (e.g., an event named

signal) is renamed within each participating process to a suffixed identifier that expresses

the directionality of the event (e.g., signalOut or signalIn).

This allows the occurrence of a non-parameterised event to be definitively recognised

(by CSPIDER) as either an input or an output operation, and the corresponding Go code

to be generated, while maintaining compatibility with CSPM in general and FDR model-

checking in particular. (Unfortunately, the implementation script for the linear sorting ar-

ray model does not demonstrate this particular technique, but the prime generator case

study (Listing E.1) does, particularly in the declarations of FILTER and COLLECTOR.)

These principles allow every event given in a process expression to be implemented as ei-

ther an input operation or output operation on a Go channel, regardless of the type spec-

ification of the event in question. Input and output operations that involve events param-

eterised by multiple data fields are automatically implemented to marshal/unmarshal the

data components into a single atomic communication.

CSPIDER’s support for events is limited to point-to-point communications between exactly

two processes. The CSPM convention of a non-parameterised event denoting synchroni-

sation between arbitrary numbers of processes is explicitly not supported at the time of

writing.

CSPIDER supports and implements event renaming clauses when they appear in one of

two situations:

1. when they suffix an entire process expression

2. when they suffix a process invocation

CSPIDER is capable of implementing event renaming expressions that feature subscripted

5 The proposed development method 64

event names. This may be used, for example, to assign a local event name to one subscript

of an array of network events: the revised version of the linear sorting array implementation

demonstrates this technique.

CSPIDER also implements event hiding, adjusting the visibility of all the events identified

by the hiding expression. At the time of writing, hiding is only supported when it appears

after process composition expressions. Hiding events may be expressed as set literals, set

enumerations, function names or unions of sets.

CSPIDER implements global declarations of integer, Boolean, character, string, integer set

and integer sequence types, as well as ‘external’ identifiers referenced within the implemen-

tation component but defined outside it. (An example of the latter is the arraySize identifier

appearing in the linear sorting array model.) Type annotations must be supplied for this

last category of identifiers, in the form

--# identifier :: type

CSPIDER translates and implements parameterised function and process declarations, but

requires that each declaration is immediately preceded by an FDR type annotation.

CSPM processes may be defined over any number of parameters/state variables, and a pro-

cess parameter may be of integer, Boolean, integer set or integer sequence type. Processes

may additionally declare any number of substates, with the requirement that all the sub-

states of a process must be declared within a local definition environment. CSPIDER im-

plements the process SKIP but not (at present) STOP.

CSPIDER does not support the ‘pattern matching’ style of process definition, where several

adjacent declarations provide a ‘definition by cases’ of the behaviour of a single process

over different conditions of its parameters. This is true of any parameterised declaration of

any type: only one declaration may appear for any given identifier. ‘Pattern matching’ dec-

larations can always be rewritten as equivalent single declarations—having been rewritten,

they may even be tested for equivalence with the original formulation.

CSPIDER implements the following forms of process composition: alphabetised parallel,

interface parallel, and replicated alphabetised parallel. No other forms of composition are

supported at present, including sequential composition, but this last form may be approx-

imated by process rewriting using prefix. Support for replicated alphabetised parallel is

presently limited to one-dimensional arrays of processes.

5 The proposed development method 65

5.4 Model verification with FDR

As a result of the fact that CSPIDER requires developers to separate specification scenarios

and implementation prototype into separate files, the aforementioned changes have very

little impact on verification or specification style. Listing 5.2 shows the separated specifica-

tion script that complements the implementation script previously shown in Listing 5.1:

Listing 5.2: The revised specification script for the linear sorting array

1 include "lsaImpl.csp"

2

3 channel ok, notSorted -- only used by the specification

4

5 arraySize = 6

6

7 RECEIVEONES(count) =

8 if count == 0

9 then ok -> RECEIVEONES(arraySize)

10 else output?x ->

11 if x == 1

12 then RECEIVEONES(count - 1)

13 else RECEIVEZEROS(count - 1)

14

15 RECEIVEZEROS(count) =

16 if count == 0

17 then ok -> RECEIVEONES(arraySize)

18 else output?x ->

19 if x == 0

20 then RECEIVEZEROS(count - 1)

21 else notSorted -> STOP

22

23 SYSTEM(arraySize) =

24 RECEIVEONES(arraySize)

25 [| {| output |} |]

26 ARRAY

27 \ {| digitChan |}

28

29 P = ok -> P

30

31 HIDINGSYS =

32 SYSTEM(arraySize) \ {| digitChan, output, input|}

33

34 assert ARRAY :[divergence free]

35 assert ARRAY :[deadlock free [F]]

36 assert SYSTEM(arraySize) :[divergence free]

37 assert SYSTEM(arraySize) :[deadlock free [F]]

5 The proposed development method 66

38 assert HIDINGSYS [T= P

39 assert P [T= HIDINGSYS

The changes in this file consist of the added includes directive which, when processed by

FDR, includes the text of the implementation component so that model-checking may pro-

ceed, and the simplification of the declaration of SYSTEM. Refinement checks have also been

added to check the deadlock- and livelock-freedom of the ARRAY process: in strict terms,

these are redundant if the checks against SYSTEM pass. Verification proceeds as described in

Section 3.4.

5.5 The CSPIDER tool

This section presents an overview of the automatic functions of the CSPIDER tool, which

incorporates parsing, interpretation and code generation from the CSP implementation

script. Figure 5.2 provides a schematic of the architecture of the CSPIDER tool.

5.5.1 Parsing CSPM with the CSPIDER tool

Each of the primary verification tools that support CSPM model-checking or animation im-

plement a parser for the language. FDR, which constitutes the reference implementation

of CSPM, parses CSPM through the Haskell libcspm library (Gibson-Robinson n.d.), while

the ProB model-checker provides an independent CSPM parser implemented in a combi-

nation of Haskell and Prolog (Leuschel and Fontaine 2008).

Despite the appeal of maintaining consistency with existing verification tools by ‘borrow-

ing’ their parsing capability, investigations into integrating the intended functionality of

the CSPIDER tool with either of these environments were not encouraging. (A detailed

justification for this decision is provided in Section 6.2.) Consequently, the CSPIDER tool

implements a new top-down parser, developed with the ANTLR 4 parser generator (Parr

n.d.[a]; Parr 2012a), to provide a basis for interpreting and translating CSPM scripts.

5 The proposed development method 67

Figure 5.2: The CSPIDER architecture

5 The proposed development method 68

Chapter 6 discusses the development of this parser in detail, but in summary the selec-

tion of the ANTLR 4 parser generator over a more conventional approach—for instance, a

bottom-up parser generator, which was the approach taken in Scattergood (1998)’s orig-

inal work on CSPM and in Gardner (2008)’s CSPT translator—provided several critical ad-

vantages in the development of the CSPIDER tool. As such, the CSPIDER parser meets

the recognition and ambiguity challenges of parsing the complex and expressive syntax of

CSPM within a top-down approach; it automatically constructs a parse tree of the CSPM in-

put script, and automatically generates access methods for the parse-tree nodes associated

with each rule (and optionally, each alternative) defined by the grammar.

5.5.2 Interpreting CSPM with the CSPIDER tool

ANTLR 4-generated parsers also enable the decoupling of actions from grammars by au-

tomatically generating tree-walker and listener classes (Parr 2012a, pp. 18–19, 114–117).

These effectively enable a style of analysis and interpretation (Parr 2012b) that could be

characterised as ‘progressive annotation’: rather than transforming a parse tree into an ab-

stract syntax tree and performing subsequent model- or rule-based rewriting or code gen-

eration from that, an application may perform many passes over regions or all of a parse

tree, annotating nodes of the parse tree with products of analysis. Once the intermediate

representation has been fully assembled, the code generation phase may commence based

on the structure of the parse tree and/or the information captured in the intermediate rep-

resentation.

In the context of synthesising Go code from CSPM, this specifically allows the CSPIDER

tool to perform a sequence of analytic and interpretive passes over (subtrees or the whole

of) the parse tree of the input script, collecting symbols and constructing a model of the

CSP system through a process of elimination, from the most elemental CSP constructs—

starting with global value declarations, non-parameterised events, set expressions, and pa-

rameterised events—to the most complex: process expressions.

In addition to the basic undertaking of building up a model of the input, this approach

also enables subtler interpretive tasks, such as the progressive classification of the visibil-

ity and parameterisation of events based on their appearance in input/output operations

and renaming clauses in process definitions. The intermediate representation of events are

initially constructed in the third and fifth passes, but these definitions are not complete un-

til their usage in process expressions have been read and analysed by the seventh, eighth,

ninth and tenth5 passes.

5These passes analyse and build internal representations of global process declarations, global parame-

5 The proposed development method 69

Elements of the intermediate representation may be identified from collected symbols

and/or from associated nodes of the parse tree, as an ANTLR-generated parser provides

a specialised map class, ParseTreeProperty, that enables arbitrary definition objects to be as-

sociated with specific nodes of a parse tree. When combined with a straightforward scoped

symbol table, this map class provides all of the necessary lookup and retrieval capabilities

to implement an incremental approach to analysis and interpretation (Parr 2012a, pp. 123–

127).

The opportunity to implement interpretation of the CSPM script in this incremental way

relieves the parser of the responsibility of identifying and discriminating between similar

forms of declaration, which are common in CSPM. A minority of CSPM declarations are

identified by keywords (for instance, event and assertion declarations, channel and assert,

respectively), but the majority are not: values, sets, sequences and processes may all be

defined by a declaration of the basic form <identifier> = <expression>, whereas a param-

eterised declaration of the form <identifier>(<args>)= <expression> may define a process,

function, set, sequence, or other parameterised data type.

Consequently, a pattern declaration may only be accurately identified by thorough analysis

of the expression as part of a process of elimination, and even then, for assurance of con-

sistency with verification tools, CSPIDER requires that developers annotate parameterised

declarations with FDR type annotations. The style prescriptions outlined in Section 5.3 are

not required in order for CSPIDER to parse CSPM implementation scripts; rather, these are

principally required because they ensure consistency of interpretation with the verification

tools that are assumed to have been applied to the CSPM script.

5.6 Code generation with CSPIDER

Once the previous phases have been completed, code generation takes place. By this point,

the CSPIDER tool has performed symbol collection, reference collection, and constructed

an intermediate representation of the CSP implementation component. The components

of the intermediate representation are multiply referenced by scoped symbol tables as well

as the structure of the original parse tree.

For the purposes of generating Go implementations, the CSPIDER tool implements an out-

put model that structures a CSP-derived program component as a Go type that encapsu-

lates a ‘process network’ and a flattened hierarchy of ‘process objects’, which may include

terised process and function declarations, local definition environment process declarations, and local
definition environment parameterised process and function declarations, respectively.

5 The proposed development method 70

replicated arrays of process objects. The design and justification for this model is presented

in Chapter 8, but it preserves the semantics of a CSP process composition while enabling

the systematic generation of program code through two file-scale string templates and a

moderately-sized, structured collection of expression- and line-scale string templates.

This enables code generation to commence in a systematic fashion from the collated in-

stances of intermediate representation: the set of all global process declarations, the set

of all global process invocations (which, in CSP’s functional paradigm, provide the explicit

initialisation of state variables), the set of all channel declarations, the set of all global data

declarations, and so on.

The result of this is that a CSP implementation script is finally rendered as a Go package

that comprises a single exported ‘process network’ type. This type implements and exports

constructor and ‘run’ methods.

Each distinct recursively-defined process within the original CSP script is rendered to a

‘process object’, with a driver method that implements a jump table-based execution loop,

and additional methods derived from each of its substates. State variables and the origi-

nal process’s global value and function references are mapped to member attributes. Each

process object is defined by its own file within the target code generation directory.

The CSPIDER tool has by this point classified every event and parameterised event defined

within the script at one of three visibility levels on the basis of their usage within the script:

in ascending order of visibility, these are OBJECT, NETWORK and CLIENT. Section 7.4.2 presents

this mechanism in detail.

The process network type then encapsulates instances of the ‘process object’ types, each

of which it declares and initialises through its constructor method. Any NETWORK-visibility

channels are declared and allocated within the process network constructor and assigned

to their respective process objects based on the CSPIDER tool’s reference-collection of

each process and process substate’s channel operations. Other dependencies—data, script-

defined function calls—are fulfilled in much the same fashion. CLIENT-visibility channels

within the original CSP script are promoted to exported channels on the process network

type, while ‘external’ references are promoted to formal parameters of the generated type.

The process network’s ‘run’ method then executes each process object as a member of a

coordinated sync.WaitGroup.

Returning to the example of the linear sorting array, CSPIDER generates a package named

lsa which implements a ‘process network’ type Lsa (Listing 5.3).

5 The proposed development method 71

Listing 5.3: The process network type derived by CSPIDER from Listing 5.1

1 package lsa

2

3 import "sync"

4

5 type Lsa struct {

6 wg *sync.WaitGroup

7 // process network parameters

8 arraySize int

9 // client channels

10 Input chan int

11 Output chan int

12 // processes

13 arraycells []*arraycell

14 }

15

16 func NewLsa(arraySize int) *Lsa {

17 var wg sync.WaitGroup

18

19 // allocate internal channels

20 var digitChan []chan int

21 for i := 0; i <= arraySize; i++ {

22 digitChan = append(digitChan, make(chan int))

23 }

24

25 // allocate replicated processes

26 var arraycells []*arraycell

27 for id := 0; id <= arraySize-1; id++ {

28 arraycells = append(arraycells, &arraycell{wg: &wg,

29 id: id,

30 arraySize: arraySize,

31 digitChan: digitChan,

32 })

33 }

34

35 pn := &Lsa{wg: &wg,

36 arraySize: arraySize,

37 arraycells: arraycells,

38 Input: digitChan[0],

39 Output: digitChan[arraySize],

40 }

41 return pn

42 }

43

44 func (pn *Lsa) Lsa() {

45 for _, p := range pn.arraycells {

46 p.arraycell()

5 The proposed development method 72

47 }

48 }

49

50 // Functions for guarded channel operations

51 func guardedIntChan(b bool, c chan int) chan int {

52 if !b {

53 return nil

54 }

55 return c

56 }

57

58 func guardedSignalChan(b bool, c chan struct{}) chan struct{} {

59 if !b {

60 return nil

61 }

62 return c

63 }

The constructor function NewLsa takes a parameter named arraySize, generates a replicated

channel and process array based on that parameter, and returns an initialised object of the

Lsa type. NewLsa’s configuration of the object it returns to the client (lines 35–40) maps the

client-visibility Input and Output channels to either end of the digitChan array, as directed by

the renaming clause in the declaration of the ARRAY replicated process in the revised CSP im-

plementation script (Listing 5.1, line 69). Note that the member names of these channels

are also automatically capitalised to render them exportable attributes of the Lsa type, with-

out which client programs would be unable to perform input/output to them, as outlined

in Section 4.4.

A modest program demonstrating the use of this generated type is provided in Ap-

pendix D.3.

Following completion of the automatic translation and code generation phases, the result-

ing Go package is written into the user-assigned target directory. If this target directory

is located within the user’s Go workspace, the package is ready for testing and use within

other projects, with one exception: if the originating CSP script features processes param-

eterised over integer set or sequence types, the automated goimports command must first

be executed in the generated package’s source directory to pull in the generated code’s de-

pendency on the cspider support package.

5 The proposed development method 73

5.7 Summary

This chapter has proposed in outline a development method for the verified design and im-

plementation of concurrent program components in Go that maintains compatibility with

the existing tool support for modelling and verifying CSP-based designs while exploiting a

newly-developed tool, CSPIDER, that automatically derives reusable Go implementations

of concurrent components from verified CSP models.

The means by which CSPIDER performs this derivation have been summarised in this pro-

posal, and the following three chapters expand on this presentation. Chapter 6 provides

a detailed account of the design and implementation of the CSPIDER tool’s CSPM parser.

Chapter 7 presents a technical discussion of how CSPIDER performs analysis and interpre-

tation of a CSPM script through ‘progressive annotation’.

Chapter 8 describes the development of a CSPM output model for reusable Go types that

strategically translates CSPM principles of process composition to a more direct model,

and demonstrates how the generative process of the CSPIDER tool systematically aggre-

gates, transforms and templates its constructed interpretation of the CSP implementation

component through this output model in order to generate the source code of the derived

implementation.

6 Parsing and validating CSPM scripts

The CSPIDER tool1 derives encapsulated Go program components from verified CSPM im-

plementation prototypes. To accomplish this, it has to parse the declarations that appear

in a CSPM implementation script, scan and validate the parsed declarations as appropriate

input for the CSPIDER tool, repeatedly traverse the parse tree to classify the CSPM declara-

tions by order of increasing complexity and declaration dependency, building up a scoped

symbol table and intermediate representation associatively mapped to nodes of the parse

tree by a strategy of ‘progressive annotation’, and completing reference collection and in-

terpretive analysis.

This accomplished, the CSPIDER tool collates the accumulated intermediate representa-

tion, filtering and mapping its contents to an output model capable of expressing and en-

capsulating a network of CSP-derived goroutines, which maintain state variables and com-

municate and synchronise over an internal network of Go channels. Channels declared

in the implementation script are analysed by their use in process expressions to classify

their visibility within the mapped system, automatically determining a channel-based ex-

ternal interface for the derived type, effectively mapping CSPM ‘environment’ events onto

Go channels that are exported from the derived type. Unassigned CSPM identifiers that

parameterise other declarations (such as channels or processes) are mapped by a similar

procedure, thereby promoted to formal parameters of the derived type’s constructor func-

tion.

This chapter details the parsing and validation phases of this process.

6.1 Parsing and interpretation issues

CSPM is a dynamically-typed functional programming language, the primary purpose

of which is to support exhaustive reasoning about the state space of processes defined

by (possibly parameterised) declarations. In the context of FDR, these declarations are

compiled into labelled transition systems that may then be interpreted under the terms

of several semantic models, allowing verification to be performed through exhaustive

1https://bitbucket.org/jdibley/cspider/

74

https://bitbucket.org/jdibley/cspider/

6 Parsing and validating CSPM scripts 75

refinement-checking. The complexity and (relative) brevity of CSPM syntax means that

parsing and building up an input model from a CSPM implementation file engages several

challenges.

Go is a statically-typed imperative programming language. The fact that the language im-

plements a set of concurrency primitives modelled after CSP channels means that the visi-

ble coordination of a CSPM process and a Go goroutine can be more-or-less congruent, but

otherwise the languages are very distinct. Syntactically, a CSPM process does not resemble

a Go goroutine: the two languages express concepts at very different levels of abstraction.

In many cases this ‘abstraction gap’ can be bridged through systematic interpretation and

translation, as described in this and the following chapter. In a few cases, this work bridges

the abstraction gap by mandating constraints on how the CSPM input is expressed or struc-

tured, although as a general principle this has only been resorted to when an interpretive

solution would have involved precariously emulating computations already carried out by

a verification tool.

CSPIDER takes an iterative approach to bridging this ‘abstraction gap’. The first phase of

this work entails recognising CSPM input and extracting information of interest. Recognis-

ing CSPM input entails parsing a dynamically-typed language where functions, processes

and structured data types share a common declaration syntax, where a single entity may

be defined by cases listed over multiple adjacent declarations2, and where an expression

may be structured from over forty operators.

Interpreting recognised CSPM input is complicated by the implicit computation dependen-

cies between the declarations that appear in a typical CSPM file, and the fact that CSPM

does not enforce declaration order3. For example, if the expression supplied by a CSPM

process declaration includes channel operations of the form foo?bar.quux, binding bar and

quux as identifiers, the types of bar and quux can only be reliably determined by looking up

the type specification supplied by the channel declaration of foo.

CSPIDER meets these initial challenges through using the ANTLR 4 parser generator and

runtime to implement the basis of its parsing and interpretation phases. The CSPM im-

plementation script is parsed once by an ANTLR-generated parser; since ANTLR 4 parsers

provide an automatically-generated framework for decoupling grammar recognition rules

and actions (Parr 2012a, pp. 243–244), each node of the resulting parse tree is rendered as

an instance of an automatically-generated ‘context object’, which implements attributes

2Although CSPIDER does not support this declaration syntax at this time, a set of such declarations may
always be rewritten as a single declaration.

3CSPIDER’s support for out-of-order declarations is experimental and largely untested at the time of writing.

6 Parsing and validating CSPM scripts 76

and access methods as defined by the corresponding grammar rule. In combination with

classes that implement tree traversal and the Listener pattern, this allows the parse tree to

be searched and traversed over any number of passes, with analytic or generative actions

defined on a per-node, per-pass basis.

Section 6.4 presents the first of these passes, which walks the parse tree to identify disal-

lowed input (e.g., CSPM assert declarations, which should only appear in a specification

script) and aborts the translation if it encounters any.

6.2 Developing a parser and language application using

ANTLR

The selection of the ANTLR 4 parser generator and runtime for the development of the CSPI-

DER tool took place after due consideration of existing CSPM parsers (Subsection 6.2.1),

and was informed by several anticipated challenges of interpreting and synthesising exe-

cutable code from CSPM:

• the complexity of CSPM ‘expressions’, which constitute the primary component of

the language’s grammar and feature approximately 40 operators of varying prece-

dence and associativity;

• the computation dependencies between CSPM declarations, which require multiple

interpretive passes to resolve for the purposes of software synthesis (as discussed in

Section 7.3–7.6.3);

• the likelihood of requiring (and parsing) CSPIDER-specific annotations for extended

CSPM modelling techniques (e.g., Subsection 7.1.5);

• the desirability of using the original parsed input to structure and sequence some

aspects of final code generation.

Based on the accounts of Scattergood (1998) and Gardner (2005b), prior CSPM parsers have

been bottom-up parsers, typically generated using Bison4. This strategy has traditionally

provided the most direct means of dealing with the uncommonly large set of operators that

may constitute a CSPM expression, although it requires the author of the grammar to de-

sign a number of tie-breaking precedence rules. Conventional top-down parsing strategies

4https://www.gnu.org/software/bison/

6 Parsing and validating CSPM scripts 77

would likewise be challenged by the size and self-similarity present in CSPM expressions.

ANTLR 4 generates top-down parsers; however, the parsers it generates depart from con-

vention in a number of ways.

Foremost among these is the capability of ANTLR 4-generated parsers to perform gram-

mar analysis at runtime, which allows the parser to resolve many types of ambiguous input

by launching speculative sub-parsers for each possible alternative (Parr et al. 2014) while

also constraining the parser to speculations over the concrete input sequences, compared

to the larger set of possible input sequences defined by the grammar. Sub-parsers are killed

off when they fail to match further input, and if more than one sub-parser survives until the

end of the input, the ambiguity is resolved in favour of the alternative with greater prece-

dence.

In a related way, directly left-recursive rules become acceptable productions in ANTLR

grammars, permitting rules like the specimen ‘expression’ rule shown in Listing 6.1, as

ANTLR automatically rewrites such rules to be non-left-recursive and non-ambiguous

(Parr et al. 2014).

As demonstrated in Listing 6.1, ANTLR 4 grammars permit the convenient definition of

lexer and parser rules in a single file: identifiers beginning with upper-case letters denote

lexical rules and identifiers beginning with lower-case letters denote syntactic rules.

When an ANTLR 4-generated parser fails to resolve ambiguity by the sub-parser strategy,

grammars resolve ambiguity between rules or alternatives by their order of appearance

within the grammar (Parr 2012a, p. 288). In Listing 6.1, this allows the ordering of alter-

natives in the expression rule to naturally express the precedence of the arithmetic opera-

tors. By default ANTLR 4 grammars associate operators left-to-right, but right-associativity

can be expressed succinctly for a specific alternative (such as the CSP -> operator) with the

grammar annotation <assoc=right>.

By default, ANTLR 4 also generates a set of ‘context objects’, each of which correspond to

a rule defined by the grammar, and each of which implements attributes and access meth-

ods corresponding to the elements of the production (Parr 2012a, pp. 16–18, 265). ANTLR

may also optionally generate subclasses from the alternatives of a specific grammar rule:

the ‘hashtags’ appended to the alternatives of the expression and primaryExpr rules enable

this option and provide names for the generated subclasses (Parr 2012a, pp. 119–120, 263–

264).

6 Parsing and validating CSPM scripts 78

Listing 6.1: Specimen arithmetic ‘expression’ rules as an ANTLR grammar

1 grammar exprexample;

2

3 sourcefile

4 : expression* EOF;

5

6 expression

7 : ’(’ expression ’)’ # exprParens

8 | expression ’*’ expression # exprMul

9 | expression ’/’ expression # exprDiv

10 | expression ’%’ expression # exprMod

11 | ’-’ expression # exprNeg

12 | expression ’+’ expression # exprAdd

13 | expression ’-’ expression # exprSub

14 | primaryExpr # exprPrimary

15 ;

16

17 primaryExpr

18 : Name # pExprName

19 | Int # pExprInt

20 ;

21

22 //

23 // Lexer rules

24 //

25 Name : Alpha (AlphaNum | UScore)* Primes? ;

26 Int : [0-9]+ ;

27 fragment Alpha : [a-zA-Z] ;

28 fragment AlphaNum

29 : [0-9a-zA-Z] ;

30 fragment NonAlphaNum

31 : ~[0-9a-zA-Z] ;

32 fragment Primes : ’\’’+ ;

33 fragment UScore : ’_’ ;

34 WS : (’ ’|’\t’) -> skip ;

35 NL : ’\r’? ’\n’ -> skip ;

6.2.1 Existing CSPM parsers

The possibility of developing the CSPIDER tool through integration with an existing parser

and/or verification tool was considered. The superficial appeal of this possibility is the

maintenance of a high degree of compatibility with existing CSPM verification tools.

6 Parsing and validating CSPM scripts 79

The literature review indicated three possible candidates for such integration:

• libcspm is the implementation of parsing, syntax- and type-checking for CSPM, as

used by FDR (Gibson-Robinson n.d.). It constitutes the reference implementation of

CSPM parsing.

• Leuschel and Fontaine describe the development of a CSPM parser (2008) which

forms part of the animation and model-checking capabilities of ProB (Heinrich-

Heine-University 2017).

• cspt is an open-source translator (Gardner 2008) that parses a ‘large and useful’ sub-

set of CSPM.

The most general argument against these candidates is provided by the challenge of resolv-

ing computation dependencies in CSPM models. CSPM channels provide a motivating ex-

ample5. In CSPM, channels may be parameterised by a tuple type expression. Within this

type expression, a numeric tuple element may be taken to mean either a data element or an

index (e.g., in the case of channels that connect the members of a replicated CSP process).

CSPM provides no syntactic hint as to the correct interpretation, and this can only be es-

tablished (as discussed in Gardner (2015)) by scanning process declarations for references

to the channel under consideration.

For the purposes of synthesising executable code, accurate interpretation of channel dec-

larations and expressions is of critical importance. The approach taken by cspt (Gardner

2015) is a radical one, influenced by the underlying concurrency framework of the tool it

was developed for: CSPM channel declarations are simply ignored, and all interpretation

takes place in a single pass on the basis of a limited syntax for channel references in pro-

cess expressions. Consequently, the CSP++ toolset can only implement channels typed as

data-free events or tuples of limited-range integer type.

While both libcspm (Gibson-Robinson n.d.) and the Leuschel and Fontaine CSPM parser

(2008) recognise channel declarations, and are more generally capable of generating ab-

stract syntax trees or equivalent data structures to represent parsed input, neither provide

the immediate convenience of the ANTLR framework (e.g., mapping of nodes to arbitrary

data structures).

Likewise, the theoretical benefit of maintaining strict consistency with a ‘reference imple-

mentation’ of CSPM parsing is eroded by the anticipated scenario where annotation exten-

5As a fundamental CSPM construct, dealing with channels in this systematic way enables higher-level imple-
mentation: for example, systematic analysis of processes, channels, and channel renaming is fundamen-
tal to how the CSPIDER tool implements CSPM models structured around nested process composition.

6 Parsing and validating CSPM scripts 80

sions to CSPM are introduced. Since these could only be implemented by directly extend-

ing the parser or preprocessing its input, the proposed translation tool would no longer be

strictly consistent with the verification tool.

Finally, the introduction of a new CSPM parser may be defended on the basis of the re-

stricted subset of ‘implementable’ CSPM supported by the CSPIDER tool (e.g., Subsec-

tion 5.3.2, Section 6.4). For the purpose of the CSPIDER tool, the ANTLR-based CSPM

parser does not need to be strictly consistent over the entirety of CSPM, but only over the

limited subset of operators and declarations permitted in CSPIDER-compatible CSPM pro-

totypes.

6.3 Parsing CSPM using ANTLR

The FDR online documentation provides the definitive current reference for CSPM, its func-

tional syntax (University of Oxford n.d.[e]), its type system (n.d.[j]), its built-in definitions

(n.d.[c]), as well as a summary of how it may be used to define processes (n.d.[d]).

As a consequence of the innovative features of ANTLR v4, defining a grammar to recognise

CSPM becomes a remarkably straightforward process. The primary hazard is mistakenly

pre-empting the work of the interpretive passes: the large variety of CSPM declarations that

are not qualified by a language keyword such as channel simply cannot be interpreted with-

out systematic analysis of the expression and/or access to a symbol table. Consequently the

parser is obliged to recognise all unqualified declarations as patterns or parametric patterns

(Listing 6.2).

To generalise, much of the subsequent interpretive work consists of whittling away at this

mass of undifferentiated declarations by eliminating the categories of CSPM declaration

with fewest dependencies first, annotating the parse tree and progressively collecting sym-

bols and building up definitions within the intermediate representation in order to assist

with interpreting more advanced declarations. (As a simple example, interpretation-by-

elimination on a declaration-by-declaration basis can be implemented by simple presence

and category tests for definition mappings.)

6 Parsing and validating CSPM scripts 81

Listing 6.2: Top-level declaration rules

1 sourcefile

2 : declaration* EOF;

3

4 declaration

5 : assertionDecl

6 | chanDecl

7 | chanDeclWithSpec

8 | datatypeDecl

9 | extPatternDecl

10 | nametypeDecl

11 | patternDecl

12 | parametricPatternDecl

13 | subtypeDecl

14 | transparentDecl

15 ;

6.3.1 Structuring the grammar to support XPath pattern-matching

The ANTLR 4 runtime implements XPath, an implementation of pattern-matching for parse

trees, which can be used to return the set of every instance of a token or rule within

the parse tree (ANTLR n.d.), providing a more selective means of traversing the tree than

the full traversal implemented by ANTLR’s ParseTreeWalker class. However, XPath can only

pattern-match grammar rule objects, not their subclasses. Consequently, it is often con-

venient to differentiate between variants of a common declaration—for example, between

chanDecl and chanDeclWithSpec6 in Listing 6.2—at the level of grammar rules rather than al-

ternatives.

In the case of chanDecl and chanDeclWithSpec, this is particularly useful because interpreting

channel declarations with type specifications depends on information about set declara-

tions and set expressions. Simpler channel declarations do not depend on set declarations,

but the identifiers of simple channels frequently appear in set declarations (e.g., sets that

define process alphabets). Elsewhere, as with patternDecl and parametricPatternDecl (List-

ing 6.3), separating the variants into their own grammar rules also results in cleaner and

more conveniently identifiable listener classes.

6The naming of these grammar rules and their corresponding definition objects reflects the structure of the
CSPM language declaration, rather than the concept (‘events and parameterised events’) it represents.

6 Parsing and validating CSPM scripts 82

Listing 6.3: The patternDecl and parametricPatternDecl rules

1 patternDecl

2 : patternLHS ’=’ letClause? expression ;

3

4 parametricPatternDecl

5 : Name ’::’ (’(’ .*? ’)’ ’=>’)? ’(’ expressionList ’)’ ’->’ expression

6 patternLHS ’=’ letClause? expression

7 ;

Line 5 of Listing 6.3 recognises the complex syntax of CSPM type annotations, of which

the only interesting-to-CSPIDER components are the comma-separated list of parameter

type identifiers recognised by expressionList and the first expression non-terminal, which

declares the return value of the declared function: if the declaration defines a process, this

will read Proc.

Declaring patternDecl and parametricPatternDecl as two separate rules allows XPath to

pattern-match against each individually, which in turn significantly simplifies the logic of

each of the four interpretive passes responsible for interpreting and modelling globally-

and locally-defined patterns that define processes or (user-defined) functions (see Sec-

tion 7.4).

6.3.2 Defining the CSPM expression

A grammar rule for CSPM expressions must incorporate all of the operators used to de-

fine CSPM processes and datatypes in addition to the conventional arithmetic, logical, and

conditional operators. Fortunately, a comprehensive list of CSPM expression operators

by binding strength and associativity is provided in University of Oxford (n.d.[g]). Since

ANTLR 4 grammars provide support for left-recursive rules and express precedence by the

ordering of alternatives, the resulting expression rule (Listing 6.4, or see Listing A, lines

134–232) closely follows the original list, with the addition of a final alternative for the

primaryExpr rule.

6 Parsing and validating CSPM scripts 83

Listing 6.4: The expression rule

1 expression

2 : ’(’ expression ’)’ # exprParens

3 | expression renamingClause # exprRename

4 | expression ’^’ expression # exprConcat

5 | ’#’ expression # exprLength

6 | expression ’*’ expression # exprMul

7 | expression ’/’ expression # exprDiv

8 | expression ’%’ expression # exprMod

9 | ’-’ expression # exprNeg

10 | expression ’+’ expression # exprAdd

11 | expression ’-’ expression # exprSub

12 | expression ’==’ expression # exprEq

13 | expression ’!=’ expression # exprNEq

14 | expression ’<’ expression # exprLT

15 | expression ’<=’ expression # exprLTE

16 | expression ’>’ expression # exprGT

17 | expression ’>=’ expression # exprGTE

18 | ’not’ expression # exprNot

19 | expression ’and’ expression # exprAnd

20 | expression ’or’ expression # exprOr

21 | expression ’:’ primaryExpr # exprType

22 |<assoc=right>

23 expression ’.’ expression # exprDotted

24 | expression ’?’ expression # exprInput

25 | expression ’!’ expression # exprOutput

26 |<assoc=right>

27 expression ’->’ expression # exprPrefix

28 |<assoc=right>

29 expression ’&’ expression # exprGuarded

30 | expression ’;’ expression # exprSeqComp

31 | expression ’[>’ expression # exprTimeout

32 | expression ’/\\’ expression # exprInterrupt

33 | expression (’[]’ expression)+ # exprExtCh

34 | expression (’|~|’ expression)+ # exprIntCh

35 | expression ’[|’ primaryExpr ’|>’ expression

36 # exprException

37 | expression ’[’ primaryExpr ’||’ primaryExpr ’]’ expression

38 # exprAlphaParallel

39 | expression ’[|’ primaryExpr ’|]’ expression

40 # exprInterfaceParallel

41 | expression ’[’ primaryExpr ’<->’ primaryExpr ’]’ expression

42 # exprLinkedParallel

43 | expression ’|||’ expression # exprInterleave

44 | expression ’\\’ primaryExpr # exprHide

45 | ’||’ expressionList ’@’ ’[’ primaryExpr ’]’ expression

46 # exprReplAlphaParallel

6 Parsing and validating CSPM scripts 84

47 | ’[]’ expressionList ’@’ expression # exprReplExtCh

48 | ’[|’ primaryExpr ’|]’ expressionList ’@’ expression

49 # exprReplInterfaceParallel

50 | ’|||’ expressionList ’@’ expression # exprReplInterleave

51 | ’|~|’ expressionList ’@’ expression # exprReplIntCh

52 | If expression Then expression (Else expression)?

53 # exprIf

54 | primaryExpr # exprPrimary

55 ;

The primaryExpr rule (Listing 6.5) provides a briefer example of alternative precedence. Here

the ordering of the first seven alternatives (pExprGoReservedFunc . . .setExpr) ensures that the

generated parser will recognise Go and CSPM-specific functions and keywords as such,

rather than as user-defined identifiers. In the case of the CSPM functions and keywords

this is necessary because the translator needs to map them in specialised ways; in the case

of the Go functions and keywords this is necessary because we need to reject user-defined

identifiers that accidentally match reserved words (of which the most obvious example is

the identifier chan). The seqExpr and setExpr alternatives appear in this block because they

contain CSPM built-in functions such as concat and union, which return sequence types and

set types, respectively.

Listing 6.5: The primaryExpr rule

1 primaryExpr

2 : goReservedFunc # pExprGoReservedFunc

3 | goReservedKeyword # pExprGoReservedKeyword

4 | builtInFunc # pExprBuiltInCall

5 | builtInProcess # pExprBuiltInProcess

6 | builtInIdentifier # pExprBuiltInIdentifier

7 | seqExpr # pExprSeqExpr

8 | setExpr # pExprSetExpr

9 | Name ’(’ expressionList ’)’ # pExprUserFuncCall

10 | Name ’::’ Name # pExprModuleAccess

11 | Name # pExprName

12 | mapLit # pExprMapLit

13 | tupleExpr # pExprTupExpr

14 | literal # pExprLiteral

15 ;

6 Parsing and validating CSPM scripts 85

6.3.3 Testing the parser

The development of the parser proceeded mainly from analysis of the CSPM reference doc-

umentation provided at the FDR website (University of Oxford n.d.[b]), with occasional ref-

erence to (Scattergood and Armstrong 2011).

Language samples for testing were drawn from several sources:

• the algebraic CSP examples in the first three chapters of Schneider (1999)

• the algebraic CSP examples in J. Davies (2006)

• the CSPM examples in Scattergood and Armstrong (2011)

• the demonstration CSPM files provided at the websites for Roscoe (2010) and Schnei-

der (1999)

• the CSPM ‘Supervisor’ example in Lawrence (2004, pp. 153–156) (with some adapta-

tions: FDR 4 no longer supports assertion-checking for Boolean logic, and CSPIDER

only presently supports let...within clauses at the head of pattern definitions).

ANTLR’s runtime library provides a TestRig tool that provides command-line or graphical

diagnostics of how the grammar under test recognises a given input (Parr 2012a, pp. 26–

28).

The TestRig testing tool’s acceptance of language samples and visual inspection of the gen-

erated parse trees formed the basis of parser testing, particularly with respect to verifying

operator precedence within CSPM expressions. For example, University of Oxford (n.d.[g])

gives the example P = STOP [] STOP; STOP. Since the ; sequential composition operator has

higher precedence (binds more tightly) than the [] external choice operator, ‘this means

that P [...] is parsed as P = STOP [] (STOP; STOP)’. Figure 6.1 shows this to be the case using

the CSPIDER CSPM parser.

Figure 6.2 shows a more substantial parse tree generated by the CSPIDER CSPM grammar

from the ARRAY process composition declaration for the linear sorting array CSPM script

(Listing 5.1, lines 52–54). This clearly demonstrates the ANTLR-generated parser’s recogni-

tion of the complex production for replicated alphabetised parallel composition, including

the presence of a renaming clause applied to the entire composition, rather than, as more

commonly seen, the process label within the composition expression.

6 Parsing and validating CSPM scripts 86

P

expression []

expression ;

builtInProcess

=

sourcefile

primaryExpr

declaration <EOF>

namePattern

expression

expression

patternDecl

STOP

primaryExpr

STOP

builtInProcess

STOP

primaryExpr expression

patternLHS

builtInProcess

Figure 6.1: The CSPIDER parser preserves operator precedence in CSPM expressions

6 Parsing and validating CSPM scripts 87

Figure 6.2: The ARRAY process composition, as recognised by the CSPIDER CSPM parser

6 Parsing and validating CSPM scripts 88

Within this testing effort, attention was focused on the ‘useful subset’ of operators and dec-

larations outlined in Subsection 5.3.2. Testing for recognition of unsupported language

constructs, as identified in the following section, focused on ensuring that CSPIDER would

be able to recognise an unsupported construct and abort the translation effort.

6.4 Input validation

The CSPIDER tool’s implementation of input validation focuses entirely on ensuring that

the CSPM script it is attempting to translate has been appropriately prepared for use with

CSPIDER.

CSPIDER assumes that any input CSPM script has been verified using FDR: consequently,

CSPIDER makes no attempt to perform syntax or type-checking on the input script

beyond rejecting identifiers that match against grammar rules that define the target

language’s reserved keywords and built-in functions (grammar rules goReservedFunc and

goReservedKeyword, Listing A, lines 271–295).

In other words, the only source code validation performed is to establish that the input file

broadly conforms to CSPIDER’s style requirement of separating specification components

from the implementation script.

While the CSPIDER grammar aims to provide comprehensive recognition of CSPM as per

the definitive language reference (University of Oxford n.d.[b]), the CSPIDER tool itself only

implements a subset of the language. The extent of that support is indicated below.

Unsupported declarations: assert refinement checks, datatype declarations, nametype dec-

larations, subtype declarations, transparent declarations;

Unsupported operators: sequential composition, timeout, interrupt, internal choice, ex-

ception, linked parallel, interleave, replicated external choice, replicated interface

parallel, replicated interleaving, replicated internal choice;

Unimplemented functions: sequence concatenation (concat(), as distinct from the ^ se-

quence append operator), distributed intersection, distributed union, distributed

powerset.

CSPIDER implements a validation pass, Pass00, which overrides the traversal methods for

6 Parsing and validating CSPM scripts 89

context objects that correspond to unsupported CSPM declarations or operators7. Through

an instance of the ANTLR runtime’s ParseTreeWalker class, Pass00 executes a traversal of the

entire parse tree. On encountering an instance of a context object (Listing 6.6) that repre-

sents an unsupported CSPM construct, a diagnostic error is written to the operator console:

once this occurs, CSPIDER aborts the translation on completing the Pass00 traversal (List-

ing 6.7); otherwise, the translation continues.

Listing 6.6: Automated rejection of any CSPM script containing internal choice

1 @Override

2 public void exitExprIntCh(ExprIntChContext ctx) {

3 logger.error("Unsupported expression detected at line "

4 + ctx.start.getLine()

5 + ": internal choice.");

6 tState.abortTranslation();

7 }

Listing 6.7: Diagnostic output for an unsupported expression

1 TRACE Cspider - Cspider starting...

2 TRACE Translator - Translator starting...

3 TRACE Pass00 - Scanning for unsupported declarations.

4 ERROR Pass00 - Unsupported expression detected at line 121: internal choice.

5 TRACE Pass00 - Pass00 over.

6 TRACE Translator - Abort: Unsupported syntax.

6.5 Summary

This chapter presented the design and implementation of the CSPM parser employed by

the CSPIDER tool, which makes novel application of the ANTLR framework to meet sev-

eral challenges that the recognition of CSPM poses to conventional top-down or bottom-

up parsers. The basic principles behind the design of the CSPM grammar included as Ap-

pendix A were explained and demonstrated.

The chapter also introduced the ANTLR framework’s parse tree and context objects, which

play a fundamental role in the interpretive activities discussed in Chapter 7.

Finally, the summary account of how CSPIDER rejects unsupported language constructs

offered a brief demonstration of how ANTLR’s ParseTreeWalker and BaseListener classes pro-

vide a powerful and decoupled alternative to embedded grammar actions. As a cursory ex-

7Pass00 does not yet implement rejection of ‘definition-by-cases’/‘pattern-matching’ pattern declarations,
or rejection of parameterised pattern declarations that the script author has omitted to type-annotate.

6 Parsing and validating CSPM scripts 90

amination of Appendix A will indicate, this means that the final CSPM grammar is entirely

free of embedded actions, making it a reusable component.

7 Interpreting CSPM and building the

intermediate representation

The CSPIDER tool1 parses CSPM implementation scripts with a lexer and parser generated

from a combined ANTLR grammar. Since ANTLR-generated parsers also by default pro-

vide an automatically-generated object framework each node of the resulting parse tree is

rendered as an instance of an automatically-generated ‘context object’. These objects im-

plement access methods for components of the grammar rule; alternatives of a grammar

rule are implemented as subclasses of the rule’s base class.

In combination with classes provided by the ANTLR runtime that implement tree traversal

and the Listener pattern, this family of ‘context objects’ allow the parse tree to be searched,

visited and/or walked over any number of passes, with analytic or generative actions de-

fined on a per-node, per-pass basis. Section 6.4 presented the simplest pass implemented

by the CSPIDER application, which traverses the entire parse tree, emits diagnostic mes-

sages on encountering unsupported CSPM declarations or expressions, and on completing

its traversal aborts the translation effort if any have been found.

This chapter presents a detailed discussion of the interpretive and analytic activities of

CSPIDER. However, this is prefaced by a discussion and justification of the CSPM style re-

quirements imposed by CSPIDER.

7.1 Defining implementable style conventions for CSPM

While it has been shown that the ANTLR-generated parser is a discriminating recogniser of

CSPM, the declarative nature of the language means that individual instances of patternDecl

and parametricPatternDecl (Section 6.3) have to be interpreted carefully.

The restrictions on CSPM usage detailed in this section serve the principal purpose of en-

abling concrete interpretation of CSPM expressions and declarations that would otherwise

1https://bitbucket.org/jdibley/cspider/

91

https://bitbucket.org/jdibley/cspider/

7 Interpreting CSPM and building the intermediate representation 92

remain unimplementably abstract, or force the CSPIDER tool to attempt the precarious em-

ulation of a verification tool’s interpretation.

7.1.1 Separating specification scenarios

Listing 7.1 shows CSPM code for the specification and verification of two deterministic and

non-deterministic vending machines (J. Davies 2006, p. 86). This example defines three

visible events (termed ‘channels’) and six processes, of which two (VM and NVM) are imple-

mentation processes and four (S1..S4) collectively form a single specification process that

asks ‘is the machine definitely capable of performing the trace 〈coin, coffee, coin, tea〉?’.

Finally, two assertion checks set up refinement checks in the failures-divergences semantic

model to establish whether VM and NVM satisfy the specification formed by S1..S4.

Listing 7.1: Specification and verification of two vending machines in CSPM, adapted from J.

Davies (2006, p.86)

1 channel coin, coffee, tea

2

3 VM =

4 coin -> (coffee -> VM [] tea -> VM)

5 NVM =

6 coin -> (coffee -> NVM |~| tea -> NVM)

7

8 S1 =

9 coin -> S2 [] (tea -> CHAOS(Events) |~| coffee -> CHAOS(Events) |~| STOP)

10 S2 =

11 coffee -> S3 [] (coin -> CHAOS(Events) |~| tea -> CHAOS(Events) |~| STOP)

12 S3 =

13 coin -> S4 [] (coffee -> CHAOS(Events) |~| tea -> CHAOS(Events) |~| STOP)

14 S4 =

15 tea -> CHAOS(Events)

16 [] (coffee -> CHAOS(Events) |~| coin -> CHAOS(Events) |~| STOP)

17

18 assert S1 [FD= VM

19 assert S1 [FD= NVM

This example highlights a number of issues for interpreting CSPM models outside of their

native (lazy functional) environment. Firstly, there is no obvious syntactic distinction be-

tween CSPM processes that define implementation components and CSPM processes that

define specifications scenarios. S1--4 can be interpreted as non-implementable processes

7 Interpreting CSPM and building the intermediate representation 93

based on the appearance of the non-implementable behaviour CHAOS2 within their ex-

pressions, but many specifications do not invoke CHAOS.

At first, refinement check assert statements seem as though they might offer a means of

identifying which are which; however, this is not the case, as implementation components

can appear on either (or indeed both) sides of a refinement check; for instance, the readi-

ness of VM to perform 〈coin, coffee, coin, tea〉 can also be checked by defining a process

Q = coin→ coffee→ coin→ tea→ STOP and performing the refinement check VM⊑T Q .

However, these issues may be mitigated by lifting the specification declarations and asser-

tion checks into a new CSPM script. The CSPIDER tool may then assume that any dec-

laration present in the file it loads is part of an implementation prototype. Meanwhile, a

convenient verification workflow may be preserved by using the CSPM include directive to

load the implementation prototype declarations into the new specification script. Model

checking in FDR may then take place through loading the specification script.

CSPM models can be defined across multiple input files, so it is not demanding to separate

the implementation declarations into CSPM file impl.csp and the specification declarations

and assertion checks into a ‘verification’ CSPM file spec.csp. This ‘verification’ file may then

import the implementation declarations by means of the CSPM include command.

7.1.2 Bounding recursive process definitions

Another challenge, more clearly visible in the S1..4 specification statements, is presented by

the common CSP idiom of defining a process across successive related declarations. This is

an attractive and readable way to define process behaviour—it is, for instance, the conven-

tion employed throughout Schneider (1999)—and CSPM supports this style of declaration,

including sophisticated pattern-matching capabilities that permit a ‘declaration-by-cases’

style. But for the purpose of translating CSP process behaviours to an imperative high-

level language, it presents the considerable challenge of tracking execution and control

flow across an arbitrary number of process labels.

In Listing 7.1, VM and NVM are defined recursively as looping processes, but S1--4demonstrate

that recursive definitions may invoke unbounded sequences of processes. In conventional

high-level languages, this would most clearly resemble a succession of function calls; but

control flow would return from each of these function calls, which does not accurately re-

flect the behaviour defined by CSPM: a process label always appears as the end of a process

2Understood to mean ‘anything can happen, and precisely what does happen is of no interest’.

7 Interpreting CSPM and building the intermediate representation 94

expression, and any state held by the terminating process ceases to exist (unless passed on

as a parameter to the called process).

104 J. Davies

Example 46 (Lift). We may use the following process to describe the behaviour
of a simple lift, moving up and down between three floors:

Lift = let
LiftAtFloor(0)=up → LiftAtFloor(1)
LiftAtFloor(1)=down → LiftAtFloor(0)

✷

up → LiftAtFloor(2)
LiftAtFloor(2)=down → LiftAtFloor(1)

within
LiftAtFloor(0)

This process can perform the event up at stages 0 and 1 , corresponding to the
lift being at Floors 0 or 1 , and down at stages 1 and 2 .

We may use a conditional syntax to represent several definitions, or stages,
within a single defining equation. If B is a Boolean-valued expression, then the
value of

if B then X else Y

is that of X if B is true, and Y otherwise.

Example 47 (Lift). A lift that can move between Floors 0 and 9 could be de-
scribed by the following process:

Lift = let
LiftAtFloor(n) =

if n = 0 then
up → LiftAtFloor(1)

else if n ∈ 1 . . 8 then
down → LiftAtFloor(n − 1)
✷

up → LiftAtFloor(n + 1)
else

down → LiftAtFloor(8)
within

LiftAtFloor(0)

Here, variable n is declared on the left of the equation, and corresponds to the
number of the current floor.

Figure 7.1: A bounded recursively-defined process

A strategy is provided by a CSP structuring technique demonstrated by J. Davies (2006,

p. 104), reproduced in Figure 7.1. Here, recursively-defined states of a globally-declared

process are declared within a local definition environment (coded in CSPM as let .. within).

This substantially assists the task of interpretation and software synthesis by expressing a

bounded structure to the definition of an entire process, without which evaluating the full

lifespan and substates of an implementation process would likely involve recursively col-

lecting and resolving the process labels and corresponding declarations that appear within

the initial process declaration and all subsequently-invoked processes.

7.1.3 Restricted syntax on channel operations

In order to enable model-driven translation, the interpretive passes of the CSPIDER tool fo-

cus close attention on channel operations that appear in process expressions. CSPM pro-

cesses make no explicit declaration of the set of channels they communicate over, while

communications channels need to be predeclared for use by a Go goroutine: in other

words, the structure of a Go program has to render explicit what remains implicit in a CSPM

model.

Furthermore, the predeclaration syntax differs for single Go channels and Go channel ar-

rays, and tracking the exact channels used by a process becomes critical to implementing

7 Interpreting CSPM and building the intermediate representation 95

and securely encapsulating process networks. Similarly, the channel operations that ap-

pear within process expressions provide the most reliable cues for interpreting the ambigu-

ous type specifications provided in CSPM channel declarations. Channel input operations

bind new identifiers, which are typically referenced later in the process expression.

Synthesising input/output operations from a CSPM channel operation can be a fraught

undertaking, since as Gardner (2005b, pp. 135–137) asserts and Roscoe (2010, pp. 18–19)

affirms, a channel operation in latter-day CSP does not strictly represent an input or out-

put operation. In particular, this means that the CSPM expression of a channel operation

can fail to indicate which fields of the operation, if any, denote channel indexes and which

denote data components.

CSPIDER thus adopts and modestly adapts Gardner (2005b)’s restrictions on channel oper-

ations, which restrict the allowed CSPM notation in a way that assigns definite meaning to

the fields supplied with any channel operation while remaining a valid subset of CSPM.

• Following Gardner’s restrictions, the so-called ‘mixed mode’ channel operations that

denote simultaneous ‘input’ and ‘output’ operations (e.g. chan!y?x) are disallowed.

• An additional restriction imposed in this work is the use of the identifier form chanIn

or chanOut to denote channel ‘synchronisation’ operations. This identifier form, which

embeds a mandatory In | Out direction label that is relevant only to the context of the

process expression in which it appears, is then renamed to a global channel name.

This global channel name may be a ‘simple’ channel or an indexed channel within a

channel array. The use of the CSPM renaming operator in this way does not obstruct

or prevent more ‘conventional’ applications of the operator.

• A further new restriction introduced in this work is that channel expressions of the

form chan[.s]+ (expressing a synchronisation operation on an index of a channel ar-

ray) may not appear in process expressions: they must be encoded and renamed as

described above. Expressions of this form may appear in renaming clauses (for ex-

ample, the channel closeOut might be renamed to close.id).

• Following Gardner’s restrictions, a channel ‘communication’ operation takes the

form chan[.s]*?d[.d]* (input) or chan[.s]*!d[.d]* (output), where s is an expression

denoting a channel array index and d is an expression denoting a data component.

Listing 7.2 demonstrates a process that inputs a value xon the id index of the digitChan

channel array (which in this case implements segments of a pipeline between an ar-

ray of replicated processes) and outputs either x or a stored value store on the id+1

7 Interpreting CSPM and building the intermediate representation 96

index of the same channel array. Thus, as imposed by Gardner, exactly one ! or ?

operator may appear in a communication operation.

Listing 7.2: Channel communications example from the linear sorting array case study

1 count == 0 &

2 digitChan.id?x -> CELL(id, x, count+1)

3 []

4 count > 0 and count < arraySize - id &

5 digitChan.id?x ->

6 (if x > store

7.1.4 Type annotation of parameterised expressions

As recognised by the ANTLR-generated parser, parameterised declarations that appear in

a CSPM file are exactly that: no attempt is made to discriminate between those parame-

terised declarations that define functions and those that define processes whose behaviour

is parameterised over state variables. But the more intractable problem is the difficulty of

assigning definitive types to the parameters present in the declaration.

Therefore, to facilitate type interpretation, CSPIDER implementation scripts require that

every parameterised declaration, regardless of return type or scope level, is prefixed with

a type annotation indicating its identifier, parameter types, and return type. These can

be dependably obtained by loading the script into FDR and using the read-eval-print-

loop. Executing the command :type IDENTIFIER (no arguments) will return an FDR- and

CSPIDER-compatible type annotation. For process declarations, the annotation format

is predictable; for functions, sometimes less so. Figure 7.2 illustrates this procedure for a

bounded recursively-defined process: note that each local process declaration must also

be type-annotated. The text must then be placed on the line directly preceding the corre-

sponding declaration3, as illustrated in Listing 7.3.

Figure 7.2: Retrieving a CSPIDER-compatible type annotation from FDR

3The CSPM implementation scripts featured throughout Appendices D–F demonstrate this technique
across a wide range of declarations.

7 Interpreting CSPM and building the intermediate representation 97

Listing 7.3: A type-annotated bounded recursively-defined process declaration

1 EMITTER:: (Int) -> Proc

2 EMITTER(x) =

3 let

4 EMIT0:: (Int) -> Proc

5 EMIT0(x) =

6 filterPipes.0!x -> EMIT1(x+1)

7 EMIT1 :: (Int) -> Proc

8 EMIT1(x) =

9 if x <= maxLimit

10 then

11 filterPipes.0!x -> EMIT1(x+2)

12 else

13 sdOut -> SKIP

14 within EMIT0(x) [[sdOut <- filterShutdown.0]]

7.1.5 Externally-assigned parameters

CSPIDER provides interpretive support for a style of CSPM modelling that allows declara-

tions within the implementation component to be defined in terms of a constant declared

by the specification script. This style may be used to model and verify an entire proto-

type in the context of some deployment scenario: for example, in the linear sorting array

case study, the identifier arraySize is assigned by the specification script to determine what

length of string the sorting array can sort.

For the purposes of model-checking, FDR handles this scenario seamlessly: as directed

by the separation of specification scenarios principle, the specification CSPM script uses a

CSPM include directive to reconcile the respective definitions. For the purposes of automat-

ically implementing the implementation script, however, it is necessary to provide a type

annotation for the ‘missing’ identifier. This is achieved by an ‘overloaded’ CSPM comment

of the form--# identifier :: type , as shown in Listing 7.4

Listing 7.4: A parameterised implementation script from the linear sorting array case study

1 {- !!! Do not delete the following line if you intend to translate this model using

CSPIDER !!! -}

2 --# arraySize :: Int

FDR accommodates this scenario seamlessly on the basis that it loads the specification

script directly and retrieves the implementation script by processing the obligatory include

directive.

7 Interpreting CSPM and building the intermediate representation 98

7.2 Implementing the intermediate representation

As outlined above, CSPIDER’s interpretation of a validated parse tree is executed systemat-

ically from the simplest CSPM declarations to the most complex, until the components of

the intermediate representation have been fully constructed and cross-referenced to the

parse tree and the scoped symbol table.

Secure cross-referencing between the intermediate representation and the parse tree is par-

ticularly critical since the final phase of the CSPIDER tool uses the parse tree extensively to

sequence its model-driven transformation and code generation activity. The primary pur-

pose of constructing many of the specialised definitions outlined in the previous section is

to coordinate synthesis and code generation where in-place transformation guided by the

parse tree cannot produce valid output.

The intermediate representation constructed by the interpretive passes is encapsulated by

the TranState class (Figure 7.3).

Figure 7.3: The TranState class

The symTablemember implements a standard scoped symbol table. CSPM function and pro-

cess declarations push new scopes to the symbol table to hold function parameters, process

state variables, and identifiers bound to channel input operations (as well as any declara-

tions within a local definition environment). References to these scopes are also tagged to

the function/process’s input model representation to enable convenient resolution later.

7 Interpreting CSPM and building the intermediate representation 99

The nodeContextMap member implements a map between nodes of the parse tree and com-

ponents of the input model, which are all subclassed from BaseDef (Figure 7.4). The

ParseTreeProperty class is part of the ANTLR runtime and implements a map using reference-

equality comparison (Parr 2012a, pp. 123–127).

The outputModel member encapsulates the output model, which is instantiated on success-

ful completion of the interpretive phase and is used to structure and accumulate the code

generated as the generative passes process and filter the accumulated intermediate repre-

sentation in conjunction with the annotated parse tree.

An interpretive pass (subclassed from BasePass, Figure 7.6) that encounters a serious error

can abort the interpretive phases (and the translation overall) by calling abortTranslation()

.

Figure 7.4: The BaseDef class

The BaseDef class implements a definition that can be bound to a symbol (Figure 7.5) and/or

a node of the parse tree. The excluded attribute is used to identify declarations that exist in

the CSPM implementation but have no correspondence in the output model and should be

excluded from code generation (e.g., a set declaration that describes a process alphabet).

7 Interpreting CSPM and building the intermediate representation 100

Figure 7.5: The Symbol class

The BasePass class implements common attributes and methods for performing an inter-

pretive pass over the parse tree, extending the ANTLR-generated BaseListener class. The def

and setDef methods retrieve and associate input model definitions with nodes of the parse

tree. Interpretive passes can skip previously-defined declarations by finding a matching

key in the TranState object’s nodeContextMap.

Figure 7.6: The BasePass class

7 Interpreting CSPM and building the intermediate representation 101

7.3 Interpreting and modelling simple declarations

This sequence of interpretive passes capture and model the simplest declarations in the

CSPM implementation file: static integer, bool, character and string declarations (includ-

ing external declarations, as described in Subsection 7.1.5), integer set and integer se-

quence declarations4, and simple and complex channel declarations.

7.3.1 Dependency ordering

Of these declarations, channel declarations are the most complex owing to the (optional)

presence of type specifications, which consist of tuples of set identifiers or literals. CSPM

includes three base type identifiers: Bool, Char, and Int, any of which may appear in type

specifications alongside user-declared set identifiers. Pass00 sets up definitions for these

base sets and assigns symbols to them.

While channel declarations may reference user-declared set identifiers, the corresponding

set declarations may reference user-declared integer identifiers. Thus CSPIDER’s Pass02

captures and annotates simple declarations in this order:

1. ‘external’ declarations for simple (char/bool/integer) values supplied by a CSPM

specification file

2. char and string declarations

3. integer declarations

The first category of declarations has its own grammar rule (extPatternDecl); the latter two

form part of the undifferentiated mass of patternDecl subtrees. A walk of the entire parse

tree can be avoided through use of the ANTLR XPath pattern-matching helper class (ANTLR

n.d.). The following regular expressions are used to retrieve collections of subtrees that are

processed as described:

/extPatternDecl All ‘external’ declarations (an overloaded CSPM line comment giving an

identifier and a type annotation).

/sourcefile/declaration/patternDecl/expression/primaryExpr/literal All global pattern dec-

4At the time of writing, CSPIDER only supports integer set and sequence expressions; the method described
here could in principle be extended to support other underlying types at the cost of requiring additional
interpretive passes.

7 Interpreting CSPM and building the intermediate representation 102

larations whose RHS expressions consist solely of a literal; the resulting set of subtrees

are then filtered to yield only declarations whose expressions match the ‘string literal’

and ‘char literal’ alternatives.

/sourcefile/declaration/patternDeclAll global pattern declarations; the resulting set of sub-

trees are then walked, retaining only those pattern declarations with RHS expressions

that consist solely of identifiers, numeric literals, and arithmetic operators.

An input model definition is synthesised for each filtered subtree returned from these

searches, and the identifier used in its declaration is written to the global scope of the sym-

bol table. The latter two searches are then repeated against string, character and integer

declarations in local definition environments, although in this case the identifiers are not

written to the symbol table because the owner scopes have not yet been established5. Local

definition environment blocks, and the declarations they contain, are reconciled to their

parent processes or functions in Pass11, and symbol table entries are written here.

Pass03 captures and synthesises input model definitions for event channels (e.g., channels

declared without type specifications). These declarations may only be made at a global

level within a CSPM file. As might be anticipated, the input model representation of a CSPM

channel is highly detailed (Figure 7.7), although most of the attributes and methods shown

are concerned with issues relating to channels that declare type specifications6.

Channel type specifications are tuples formed from built-in or pre-defined set identifiers or

set literal expressions (e.g., Listing 7.5). Consequently, Pass04 synthesises input model def-

initions from set declarations found at the global level, in local definition environments7,

and (in the case of set literal expressions like {0..arraySize}) in type specifications them-

selves.

Listing 7.5: Channel declarations containing type specifications

1 channel digitChan : {2..arraySize}.Vals

2 channel input, output : Vals

User-declared sets in CSPIDER-compatible CSPM files may be declared by an integer range

expression (e.g., Set0 = {0..5}) or an enumeration (e.g., Set1 = {x, y, p, q, r}). While CSPI-

5In order to register symbols for these declarations, it is necessary to synthesize input model definitions for
processes and functions to build up the scope stack/list; however, the most systematic way to identify a
pattern declaration that does define a process is to first capture all the pattern declarations that do not
define processes.

6In the majority of cases, a channel declaration’s type specification has to be treated as a provisional de-
scription of the channel, and the synthesised definition is revised as channel operations are encountered
during the process interpretation passes.

7Again, these are not written to the symbol table until later, but such declarations are out-of-scope for the
purpose of channel declarations, so this is not an issue.

7 Interpreting CSPM and building the intermediate representation 103

Figure 7.7: The ChannelDef class

DER’s present limitation on the underlying type of set and sequence declarations would

enable the assumption that each of the terms appearing in a set enumeration represent in-

teger values, CSPIDER tries to resolve each member term in turn until it manages to assign

a type to the set. In rare instances, the enumeration of a set defined in a local definition en-

vironment (LDE) may depend entirely on terms also defined in the LDE (and consequently,

not yet in the symbol table), and the set type will remain unknown; this edge case is ad-

dressed by a ‘consolidation’ operation in Pass11, where LDE declarations are formally asso-

ciated with their parent functions or processes. In the interest of brevity, the SetDef class

is not diagrammed here; its principal features of interest are a set of map members that

enable each SetDef object to track the function, process, and channel definitions that refer-

ence it.

Having synthesised the set declarations and literal expressions, Pass05 may proceed to syn-

7 Interpreting CSPM and building the intermediate representation 104

thesise channels with type specifications. Subsection 7.1.3 presented the interpretive chal-

lenges associated with CSPM channel type specifications and operations. As a starting

point, CSPIDER interprets type specifications literally: each field of the type specification

is taken to represent a data component. The markAsIndex method implements logic to re-

vise a ChannelDef object’s record of its type specification, but this is presented during the

discussion of process analysis (Section 7.5).

Pass06 synthesises input model definitions that correspond to CSPM sequence declarations.

The ListDef class largely follows the organisation of the SetDef class, except that sequence

declarations do not appear in channel type specifications.

7.4 Interpreting CSPM processes and user-defined functions

By this point, the only unsynthesised declarations remaining in the parse tree are pattern

declarations that define processes and parametric pattern declarations that may define ei-

ther processes defined over state variables or functions.

CSPIDER requires CSPM scripts to model recursively-defined processes using bounded

declarations, as described in Subsection 7.1.2. As a result of this, process declarations may

appear at the global level or within an LDE attached to a global process; while function dec-

larations may appear at the global level or within an LDE attached to a process or function

declaration. Consequently, the work of analysing and interpreting these related declara-

tions is organised through ProcFuncCommon (Figure 7.88), a subclass of BasePass, which itself is

subclassed to implement four closely-related passes:

Pass07: Global non-parameterised pattern declarations are synthesised to input model

process definitions and registered in the symbol table’s global scope.

Pass08: Global parameterised pattern declarations are synthesised to input model process

or function definitions, after interpretation of the RHS expression, and registered in

the symbol table’s global scope.

Pass09: LDE non-parameterised pattern declarations are synthesised to input model pro-

cess definitions.

Pass10: LDE parameterised pattern declarations are synthesised to input model process

or function defininitions, after interpretation of the RHS expression.

8In this diagram, overridden ParserRuleContext methods are omitted for reasons of space.

7 Interpreting CSPM and building the intermediate representation 105

Figure 7.8: The ProcFuncCommon class used by Pass07-Pass10 (excerpt)

7 Interpreting CSPM and building the intermediate representation 106

7.4.1 Distinguishing between functions and parameterised processes

The syntax of CSPM does not clearly discriminate between declarations that represent func-

tions and declarations that represent processes parameterised over state variables. The set

of operators that may appear in a user-defined CSPM function is a subset of those that may

appear in a CSPM process expression, so Pass08 and Pass10 (which process global and LDE

parameterised pattern declarations, respectively) are designed to construct either type of

definition based on walking the RHS of the parameterised pattern declaration.

While it is nominally possible to classify a declaration as a process or a function based

on the presence (or absence) of certain CSPM operators within its RHS expression, the

related—and more difficult—challenge of assigning types to parameters finally led to the

mandatory annotation of all parameterised declarations, which simplifies this task. In List-

ing 7.6, the type annotation declares receiveSet to be a function that takes an integer param-

eter and returns a set of events (i.e., whole or part of a process alphabet), and in Listing 7.7

the type annotation of ARRAYCELL declares it to be a process parameterised over an integer

state variable.

Listing 7.6: Type-annotated parameterised declaration of the receiveSet function

1 receiveSet :: (Int) -> {Event}

2 receiveSet(id) =

3 {digitChan.id.a | a <- {0,1}}

Listing 7.7: Type-annotated parameterised declaration of the ARRAYCELL process

1 ARRAYCELL :: (Int) -> Proc

2 ARRAYCELL(id) =

7.4.2 Channel (re-)classification

CSPIDER performs reference tracking throughout its interpretive operations to concretise

abstract expressions in ways appropriate to the implementation environment. For exam-

ple, CSP scripts do not typically declare the set of events that a particular process may par-

ticipate in; for the abstract execution environment of a CSP script, this is perfectly fine, but

in a corresponding Go implementation, channels essentially exist as variables, and declar-

ing all channels as package-level globals would be an insecure and inadequate approach.

In order to structure a derived Go implementation in a satisfactory way, CSPIDER takes re-

sponsibility for tracking references to channels throughout the original CSP script’s process

7 Interpreting CSPM and building the intermediate representation 107

expressions so that channel identifiers are only available to the (translated) processes that

actually perform input/output over them.

Whereas the typical procedure in CSP scripts is to compose a concurrent process through

successive applications of parallel operators, the CSPIDER tool maps such constructions

into a single common ‘process network’ (Section 8.2) wherein all the discrete processes

within the original process are instantiated at the same level. By doing so, CSPIDER makes

explicit the channel interconnections between processes and allows all processes within

the network to be initialised and configured in a single runtime pass with equivalent access

to the globally-declared channels, constants, and parameters they require.

The resulting system is securely encapsulated within a single variable that may be declared

in a developer’s program, communicated with via its exported channel interface, and sig-

nal its own termination via a sync.WaitGroup or otherwise be garbage-collected once it has

served its purpose.

To make this possible, the interpretive phases of the CSPIDER tool engage two significant

interpretive issues around CSP channels: encapsulation and type specifications.

7.4.3 Implementing channel encapsulation

The desired end goal is to implement a network of communicating processes as an encapsu-

lated Go type that offers a minimal interface to programs that instantiate it as an object.

In CSP the notion of encapsulation is expressed through the event hiding operator, which

renders a process’s participations over a set of channels invisible to its environment.

Mapping the semantics of this expression onto the Go environment, we can take this to

mean that ‘hidden’ channels should be invisible in the sense that they are not available

in the scope of a client program that instantiates an object of the generated type. In the

simplest case, this means that channels that interconnect component processes of the Go

type need to be declared and allocated within the type as unexported attributes.

Only channels that model the implementation prototype’s interface with its environment

should be exposed to a client program. Likewise, within the Go type, the process objects

that correspond to individual CSP implementation components need to have scoped ac-

cess to each Go channel that represents an event the original CSP process participated in.

CSPIDER addresses this issue by systematically tracking channel references through the

7 Interpreting CSPM and building the intermediate representation 108

process expressions that appear within a CSP script, applying two interpretive rules to map

every channel declaration to one of three degrees of visibility: CLIENT, denoting a channel

that forms part of the client interface of the concurrent system as a whole; NETWORK, denot-

ing a channel that provides an interconnect between component processes of the system;

and lastly OBJECT, denoting a channel that appears within a specific CSP process (object) to

represent an internal ‘channel end’ for performing input/output over a NETWORK channel9.

7.4.4 Type specification re-interpretation

A similar set of interpretive actions, implemented separately, resolves the ambiguity of pa-

rameterised event declarations by determining which fields of a type specification, if any,

represent addressing indexes (e.g., an index that identifies individual instances of a repli-

cated process) and which fields represent the composition of a data component. As CSPI-

DER catalogues and analyses process declarations within the CSP script, each reference to

a channel within an input/output operation or renaming clause can provide interpretive

cues.

As such, all channel declarations may be classified into one of six categories: EVENT, denot-

ing a simple synchronisation; DATA, denoting a channel that conveys a single data value;

MULTI_DATA, denoting a channel that conveys a data tuple; or INDEXED_EVENT, INDEXED_DATA and

INDEXED_MULTI_DATA, which denote that the first field or fields of a channel correspond to in-

dexing addresses.

CSPIDER adapts its intermediate representation of a CSP channel in two ways in response

to this categorisation: firstly, for a channel to be INDEXED denotes that its base instance

should be declared and allocated a slice (dynamic array) of channels10.

Secondly, since an individual channel input/output operation in Go may only com-

municate a single item of data, CSPIDER responds to the presence of a MULTI_DATA or

INDEXED_MULTI_DATA array by declaring (in Pass12a) a dedicated struct type that encapsulates

the data components of the channel type specification, declaring and allocating the corre-

sponding Go channel as of that type, and translating any channel input/output operation

over the channel to include marshalling/unmarshalling of the struct instance from the ex-

pressions/to the identifiers stated in the original CSP script.

9This last category relates to the CSPIDER requirement that ‘raw’ synchronisation events are coded with
identifiers to express their directionality (Subsection 7.1.3).

10At the time of writing, CSPIDER only supports the creation of one-dimensional channel and process arrays.

7 Interpreting CSPM and building the intermediate representation 109

7.4.5 Renaming

CSPIDER-compatible CSPM scripts make heavy use of renaming to support directionally-

embedded channel operations, which ‘overload’ the CSPM notation for non-parameterised

synchronisations to express data-free channel operations in a way that maintains compat-

ibility with model-checking in general and FDR in particular.

The process collection and construction phase of CSPIDER’s interpretive activity inspects

renaming clauses as a priority component of a process expression. Listing 7.8 depicts a

typical application of renaming from the prime generator case study (Appendix E).

Listing 7.8: The EMITTER process

1 EMITTER:: (Int) -> Proc

2 EMITTER(x) =

3 let

4 EMIT0:: (Int) -> Proc

5 EMIT0(x) =

6 filterPipes.0!x -> EMIT1(x+1)

7 EMIT1 :: (Int) -> Proc

8 EMIT1(x) =

9 if x <= maxLimit

10 then

11 filterPipes.0!x -> EMIT1(x+2)

12 else

13 sdOut -> SKIP

14 within EMIT0(x) [[sdOut <- filterShutdown.0]]

Renaming expressions of the form shown on line 14 are interpreted by CSPIDER as amend-

ments to the type classification and/or type specification of the channels concerned. In this

example, prior to the interpretation of the renaming expression the constructed definition

for the sdOut channel declaration will register its ChannelType attribute as EVENT on the basis of

its suffixed identifier. Meanwhile, the corresponding definition for the filterShutdown chan-

nel declaration will have registered a ChannelType classification of DATA, the default initial

interpretation of any parameterised event.

The interpretation of this expression proceeds on the assumption that the CSPM file has

been verified by FDR; in other words, that the mapping of a specific instance of the

filterShutdown channel set to sdOut has been satisfactorily type-checked. Consequently,

CSPIDER interprets the specific renaming expression shown on line 14 by calling the

markAsIndex() method (Listing 7.9) on the constructed definition of the filterShutdown chan-

nel, which forces a reclassification of its ChannelType attribute to INDEXED_EVENT. CSPIDER

7 Interpreting CSPM and building the intermediate representation 110

performs similar reclassifications on the basis of Gardner’s adapted syntax restrictions for

channel input/output operations, as presented in Section 7.5.

Listing 7.9: Automated reclassification of channels based on visible operations

1 public void markAsIndex(int fieldNum) {

2 if (spec == null || spec.isEmpty()) { return; }

3

4 // First we replace the field with an "Index" set

5 // (index fields must be of underlying type INT)

6 SetDef sd = spec.get(fieldNum);

7 if (fieldNum >= indexes.size()) {

8 indexes.add(sd);

9 }

10

11 // Type updating is based on how many fields remain from the

12 // original channel specification which have not yet been

13 // marked as indexes.

14 // We are assuming - reasonably enough - that indexing

15 // fields always prefix the data fields.

16 if (fieldNum < spec.size()) {

17 dataStartIdx = fieldNum + 1;

18 } else {

19 dataStartIdx = -1;

20 }

21 int numRemainingDataFields = spec.size() - dataStartIdx;

22 switch (type) {

23 case DATA:

24 if (numRemainingDataFields == 0) {

25 type = ChannelType.INDEXED_EVENT;

26 } else {

27 type = ChannelType.INDEXED_DATA;

28 }

29 break;

30 case MULTI_DATA:

31 if (numRemainingDataFields == 1) {

32 type = ChannelType.INDEXED_DATA;

33 } else {

34 type = ChannelType.INDEXED_MULTI_DATA;

35 }

36 break;

37 }

38 }

7 Interpreting CSPM and building the intermediate representation 111

7.4.6 Process and function synthesis

A parse-tree subtree that has been recognised as declaring a process or function may then

be assigned a constructed definition. Alongside parameters, the large number of implicitly-

expressed dependencies that apply to either entity mean that the complexity of the corre-

sponding objects is high. In particular, ProcessDef objects maintain a secondary set of at-

tributes specific to any declarations made within the (optional) local definition environ-

ment block. Figures 7.9 and 7.10 depict the attributes of the ProcessDef and FunctionDef

classes, respectively.

Figure 7.9: The ProcessDef class

7.4.7 Cataloguing data references

Simple CSPM types—integer, Boolean, character and string declarations—may be mapped

to global constant declarations in most implementation languages. As such, referencing

these types in functions or processes is not challenging.

However—in Go, at least—this is not true of set or sequence types, which have no built-in

implementation and cannot be declared as global constants. CSPIDER implements a Go

7 Interpreting CSPM and building the intermediate representation 112

Figure 7.10: The FunctionDef class

support package11 that implements integer set and sequence types, but instances of these

types cannot be declared as global constants. Instead, CSPIDER tracks the CSPM sets and

sequences referenced from each process and function. Local instances of these objects are

declared in the corresponding output model objects.

7.5 Directed subtree exploration

The XPath-based approach enables convenient analysis of otherwise complex subtrees.

This is often extremely useful: several classes of CSPM expressions resist straightforward

synthesis, either because their interpretation requires the lookup and retrieval of additional

context, or because they require substantial transformation to be rephrased as legal Go.

Other expressions, such as process invocations, convey significant information pertaining

to other constructed definitions.

As an example, CSPM event/channel operations represent some of the most syntactically-

complex expressions that can appear within a CSPM process declaration: a channel name

may be qualified with an ‘In’ or ‘Out’ suffix if the CSPIDER guidelines have been followed.

Alternately a channel input/output operation may consist of a channel name suffixed by

a dotted tuple of index expressions, an input/output operator, and a dotted tuple of input

identifiers or output expressions (Subsection 7.1.3).

Capturing these expressions accurately in the course of walking a process declaration

subtree would necessitate interleaving the necessary logic with that required for other in-

stances of name symbols (e.g., variable identifiers, process labels), as well as discriminating

between name symbols that represent channel operations (as in the case of simple ‘event’

11https://bitbucket.com/jdibley/cspider/src

7 Interpreting CSPM and building the intermediate representation 113

channel operations) and name symbols that appear within channel operations (as in in-

put/output expressions).

Querying every CSPM expression that appears within a process declaration using XPath,

however, yields a set of instances of ExpressionContext as a result. This may then be filtered

for instances of specific channel operation expressions and allows for these operations to

be registered and recorded, complete with channel indexes and input/output expressions

(Listing 7.10).

This directed traversal tactic enables the reliable interpretation of channel operations. This

interpretation is implemented by recursive exploration of the channel operation subtrees.

The ChanInputDef / ChanOutputDef accumulates a list of the ExpressionContext objects (e.g.,

parse tree nodes) corresponding to the dotted fields that express the channel operation’s in-

dices and/or data expressions. Each of these component expressions may then be retrieved

during the generative phase and translated, most commonly to reformat an (channel) in-

dex in Go’s array-subscript notation.

This close analysis also enables the orderly revision of the type specification attributes of

ChannelDef objects: markAsIndex is called for each index field found on a ‘communication’

channel operation, which automatically reclassifies the ChannelDef object’s channel type

(Listing 7.9).

Under the rules presented above, all channel operations may be recognised as either

input or output operations from the perspective of the process that performs them.

Consequently, CSPIDER synthesises each of these operations in either a ChanInputDef or

ChanOutputDef object (Figures 7.11 and 7.12, respectively), which significantly simplifies the

task of generating the corresponding Go channel operations compared to re-walking the

relevant parse tree subtrees.

‘Data expressions’ associated with channel input operations are synthesised as new vari-

ables with identifiers drawn from the data expression and types drawn from the channel’s

type specification.

ProcFuncCommon::processSimpleChan(), which synthesises channel input and output opera-

tions from synchronisation channel events, also automatically reconciles ‘chanIn’ and

‘chanOut’ expressions to the corresponding global channel identifiers supplied in the pro-

cess expression’s renaming clause (Listing 7.11).

7 Interpreting CSPM and building the intermediate representation 114

Listing 7.10: Scanning process expressions for channel I/O operations

1 protected void scanIOOperations(ExpressionContext subtree, ProcessDef pd) {

2 classifying = false;

3 String path = "//expression";

4 tmpFields = new ArrayList<String>();

5 tmpChanExprs = new ArrayList<PrimaryExprContext>();

6 for (ParseTree t : XPath.findAll(subtree, path, parser)) {

7 if (t.getParent() instanceof RenamingContext) {

8 // skip entries in renaming clauses

9 // (handle these in later pass)

10 continue;

11 }

12 if (t instanceof ExprInputContext) {

13 processChanInput(t, pd);

14 } else if (t instanceof ExprOutputContext) {

15 processChanOutput(t, pd);

16 } else if (t instanceof ExprDottedContext) {

17 // Ensure this isn’t nested inside an expression

18 // we’ve already examined

19 if (t.getParent() instanceof ExprDottedContext

20 || t.getParent() instanceof ExprInputContext

21 || t.getParent() instanceof ExprOutputContext

22 || t.getParent().getParent() instanceof

SetExprContext

23 || t.getParent().getParent() instanceof

SeqExprContext) {

24 continue;

25 }

26 processDottedChan(t, pd);

27 //logger.trace("scanIOOperations: " + pd);

28 } else if (t instanceof ExprPrimaryContext) {

29 if (t.getParent() instanceof ExprDottedContext

30 || t.getParent() instanceof ExprInputContext

31 || t.getParent() instanceof ExprOutputContext

32 || t.getParent().getParent() instanceof

SetExprContext

33 || t.getParent().getParent() instanceof

SeqExprContext) {

34 continue;

35 }

36 processSimpleChan(t, pd);

37 }

38 }

7 Interpreting CSPM and building the intermediate representation 115

Figure 7.11: The ChanInputDef class

Figure 7.12: The ChanOutputDef class

Listing 7.11: Synthesis and renaming reconciliation for ‘simple’ channel operations

1 protected void processSimpleChan(ParseTree t, ProcessDef pd) {

2 ExprPrimaryContext epc = (ExprPrimaryContext) t;

3 if (!(epc.primaryExpr() instanceof PExprNameContext)) {

4 return;

5 }

6 String chanOp = epc.getText();

7 ChannelDef cd = getChannel(chanOp);

8 // Many things with names aren’t channels...

9 if (cd == null) { return; }

10

11 // ...but this one -is-

12 if (chanOp.matches("(.*)In")) {

7 Interpreting CSPM and building the intermediate representation 116

13 ChanInputDef cid =

14 new ChanInputDef((ParserRuleContext) t,

15 pd.name() + "-" + cd.name() + "-In" +

16 tmpChanOpCtr++, cd);

17 setDef(t, cid);

18 } else if (chanOp.matches("(.*)Out")) {

19 ChanOutputDef cod =

20 new ChanOutputDef((ParserRuleContext) t,

21 pd.name() + "-" + cd.name() + "-Out" +

22 tmpChanOpCtr++, cd);

23 setDef(t, cod);

24 } else {

25 logger.error("Channel with weird name? " + epc.getText());

26 }

27

28 if (pd.chanRenaming(cd.name()) != null) {

29 String expr = pd.chanRenaming(cd.name());

30 List<String> exprList =

31 new ArrayList<String>(Arrays.asList(expr.split("\\.")));

32 String otherChan = exprList.remove(0);

33 Symbol ocSym =

34 tState.symTable.currentScope().resolve(otherChan);

35 ChannelDef ocDef = (ChannelDef) ocSym.def();

36 switch (ocDef.chanType()) {

37 case EVENT:

38 pd.addChanRef(ocDef);

39 case INDEXED_EVENT:

40 pd.addIndexedChanRef(ocDef);

41 default:

42 logger.error("Unexpected chan type in renamed event chanop

!");

43 }

44 } else {

45 pd.addChanRef(cd);

46 }

47 }

7.5.1 Local definition environment declarations

Pass09 and Pass10 largely follow the outlines established by Pass07 and Pass08. The chief dis-

tinctions are that:

• event renamings in the parent process declaration also apply to its local process dec-

7 Interpreting CSPM and building the intermediate representation 117

larations, so these renamings are copied in order to faithfully process the channel

operations;

• processes declared in local definition environments may themselves have local defi-

nition environments, but these may not include further process declarations.

These process declarations, along with any other local definition environment declarations

such as sets, lists or simple data values, are consolidated into their parent process declara-

tions in subsequent interpretive passes.

7.6 Consolidating the intermediate representation

The definitions of processes constructed by Pass07–Pass10 are consolidated by Pass11, which

reconciles all local-definition-environment declarations with their parent processes. This

includes registering the channel references associated with locally-defined processes upon

the parent process.

When a global process declaration is reconciled with a local definition environment that

contains subsidiary process declarations—in other words, when it is interpreted as a

bounded recursively-defined process—its corresponding ProcessDef object is tagged as ‘re-

quiring a (Go) process object’ as a preliminary model transformation. Since the output

model for these processes is elaborate, consisting of a Go struct type and an arbitrary num-

ber of methods, the generative phase of the CSPIDER tool creates and populates a large-

scale ‘process object’ template for each process so classified.

7.6.1 Constructing complex communication channels

By completing the analysis of all process declarations within the CSPM script, Pass11 per-

mits the concluding analysis of constructed definitions representing parameterised CSP

events. When channel definitions are initially constructed from parameterised event dec-

larations in Pass05, the working assumption is that every field of the type specification rep-

resents a data component.

The execution of scanIOOperations over each process declaration within the CSPM script

implements the staged revision of constructed channel definitions based on the discovery

of indexing fields in scanned channel operations. The principle guiding this interpretation

7 Interpreting CSPM and building the intermediate representation 118

is due to the detailed presentation of performing software synthesis from CSPM channel

operations given by Gardner (2005b), as indicated at the outset of this chapter.

Go requires that channels that communicate data tuples are declared and allocated as of

a struct type that provides fields for each element of the tuple. The purpose of Pass12 is to

construct a definition of this struct and its typed fields to expedite output model transfor-

mation.

As an illustration, a CSPM channel declaration may provide a type specification consist-

ing of two fields: this then forms the basis for a constructed ChannelDef object. Subsequent

examination of operations on the channel through Pass07–Pass10 may determine the first

field of the type specification is an indexing field, and the ChannelDef object will be updated

automatically through calls to markAsIndex. In this example, it becomes unnecessary to syn-

thesise a message structure: the revised ChannelDef object will represent the channel as of

the simple type declared by the second type field.

The generated message structure fields are named procedurally (f00, f01, etc.) so that chan-

nel operations on such channels—which will require additional code to serialise/deseri-

alise data either side of the actual input/output operations—can be generated systemati-

cally.

Any Go input operation on the channel must consequently short-declare (Go Project n.d.[i])

a named instance of its associated message structure to receive the communication, while

channel output operations may assemble an anonymous struct literal; the ChanInputDef gen-

erates a unique name for each operation.

Instances of the message structure associated with a channel must also be used by locally-

renamed instances of that channel. In the case of such channels that retain CLIENT visibility,

the associated type name must also be rendered with an initial capital letter to render it

as an exportable type. (The Ricart-Agrawala case study provides an example of this in the

Request message struct.)

7.6.2 Supporting process composition: synthesising process alphabets

CSPM composition processes declare how the components of a system interact. All forms

of CSPM composition processes (barring interleaving) express this in terms of process or

interface alphabets (e.g., sets of channel names or channel array indexes).

Conventionally, these process or interface alphabets are built up from several successive

7 Interpreting CSPM and building the intermediate representation 119

‘sync set’ declarations (Listing 7.12), since embedding set literal enumerations in composi-

tion processes would unnecessarily clutter the declaration syntax (Listing 7.13).

Listing 7.12: Building up a ‘sync set’ as an alphabet for a composition process declaration

1 receiveSet :: (Int) -> {Event}

2 receiveSet(id) =

3 {digitChan.id.a | a <- {0,1}}

4

5 sendSet :: (Int) -> {Event}

6 sendSet(id) =

7 {digitChan.to.a | a <- {0,1},

8 to <- {id + 1},

9 id != arraySize}

10

11 synchroSet :: (Int) -> {Event}

12 synchroSet(id) =

13 union(receiveSet(id), sendSet(id))

Listing 7.13: The ‘sync set’ used to define a replicated process composition

1 ARRAY =

2 (|| id:{0..arraySize-1} @ [synchroSet(id)] ARRAYCELL(id))

3 [[digitChan.0 <- input, digitChan.arraySize <- output]]

Although the output model of CSPIDER reconciles process interactions on a per-channel

basis and does not compute process or composition alphabets as a basis for determining

how channels interconnect processes, Pass12a makes a best-effort attempt to interpret set

declarations of underlying CSPM type Event and function declarations that return CSPM

type {Event} to assist in the final revision of constructed channel definitions and the inter-

pretation of event-hiding expressions as performed by Pass14.

As with CSPIDER’s processing of many other declarations, the success of this attempt relies

on the ordering of dependent set declarations within the CSPM implementation file, which

should appear in fewest-dependencies-first order, and that expressions appearing in the

relevant definitions are restricted to enumerated set and set literal syntax.

7.6.3 Consolidation of the constructed definitions

The final interpretive pass, Pass14, performs three related tasks that complete the construc-

tion of the assembled internal representation:

7 Interpreting CSPM and building the intermediate representation 120

• the final reclassification of constructed channel definitions, based on the representa-

tions of process alphabets constructed by Pass12a;

• the constructed definition of all process invocations appearing within the CSPM

script;

• the scanning of all pattern declarations for integer declarations to register dependen-

cies upon the return value of user-defined functions.

Pass14 implements the final revisions to the constructed definitions of CSPM channels,

which concern visibility: in other words, the implemented channel’s level of encapsulation

within the translated type.

By default, each channel definition constructed by Pass03 or Pass05 is registered at CLIENT

visibility level unless the declared identifier matches the expression (.*)In or (.*)Out. One

further level of revision is implemented by Pass14, which reclassifies any channel names

found in:

• the union of the two process alphabets provided in alphabetised parallel composition

expressions;

• the interface set of an interface parallel composition expression;

• the process alphabet provided in a replicated alphabetised process expression.

‘Non-declarative definitions’ for process invocations at any level within the CSPM script

are then constructed by a similar procedure to that previously described for registering

and interpreting channel operations. The constructed definition of a process invocation

captures the invoked process, the process in whose expression the invocation occurs, a list

of PrimaryExprContext parse-tree nodes that provide the initialisation values, if any, and sim-

ilar attributes capturing the contents of renaming or hiding clauses, if present. (Channels

appearing directly or indirectly within event-hiding expressions are similarly reclassified

in terms of their visibility.)

Finally, integer declarations are occasionally defined by the application of user-defined

functions. The prime generator development gives one example of this, where the num-

ber of filters within the model is calculated by an approximation by trial multiplication of

the maximum value parameter. These cases were necessarily overlooked in Pass02, which

had no access to a symbol table or constructed definitions for user-defined functions, but

Pass14’s final interpretive act is to re-walk the parse-tree subtrees and collect any references

to script-defined functions. Once this task has been completed for each composition pro-

7 Interpreting CSPM and building the intermediate representation 121

cess declared within the parse tree, the interpretive work of the CSPIDER tool is complete

and the generative phase, consisting of model-driven transformation and code generation,

can begin.

7.7 Summary

This chapter presented the primary challenges of interpreting CSPM and demonstrated

how the CSPIDER tool meets these challenges through a combination of enforced style re-

quirements and ‘progressive annotation’, entailing the piecewise assembly of constructed

definitions. Each of the imposed style requirements is shown to preserve compatibility

between the implementation script and FDR, and is further justified in terms of its inter-

pretive challenges, where the alternative would be to implement an interpretation scheme

that precariously emulated that of one of the CSP verification tools.

The constructed definitions that constitute CSPIDER’s intermediate representaiton of the

CSPM implementation script are multiply indexed by a scoped symbol table implementa-

tion and the structure of the parse-tree itself, enabling reliable lookup both by symbol ref-

erence (e.g., where encountered in the process expression or function body of some other

declaration) or on subsequent walks of the parse-tree. Chapter 8, which is the final chapter

concerning the internals of the CSPIDER tool, details how this intermediate representation

is transformed and processed to generate the CSPM model-derived Go code.

8 Model-driven translation and code

generation

The preceding two chapters have presented the design principles and implementation

techniques that enable the CSPIDER tool1 to parse and interpret CSPM implementation

scripts. This chapter concludes the presentation of the CSPIDER tool by discussing the

guiding principles and implementation of the CSPIDER tool’s translation and code gener-

ation capabilities.

The chapter begins by presenting the strategy CSPIDER adopts to implement and encapsu-

late CSP processes in an imperative programming environment; in other words, it outlines

the structuring principles that apply to the Go code CSPIDER derives from CSP implemen-

tation models. This is followed by a discussion of how CSPIDER uses the StringTemplate

template engine to model this strategy, enabling a systematic and cumulative approach to

code generation.

The main part of the chapter then presents the generative phase of a CSPIDER translation,

which collates the intermediate representation (the establishment of which is discussed

throughout Chapter 7) and proceeds by selectively injecting attributes gathered from the in-

termediate representation and the original parse-tree into the aforementioned StringTem-

plate templates to produce the final implementation code. This part highlights some novel

and/or demanding aspects of software synthesis from CSP models, with illustrations drawn

chiefly from the linear sorting array case study.

8.1 Overview

By the time it reaches this point in the translation, the CSPIDER tool has constructed an

intermediate representation of the CSPM implementation script that is comprehensively

indexed by parse-tree nodes and, in all applicable cases, by symbols2.

1https://bitbucket.org/jdibley/cspider/
2The non-applicable cases are constructed definitions for data points that are not associated with symbols

in the text of the script, such as anonymous set expressions, external choice decision points, process in-
vocations and so on.

122

https://bitbucket.org/jdibley/cspider/

8 Model-driven translation and code generation 123

The persistent translation state holds a constructed definition, symbol table entry and an

associative reference to a parse-tree node for every declaration contained within the CSPM

script.

The interpretive passes have performed comprehensive reference collection between con-

structed definitions: for example, integer constant definitions that are initialised by the

return values of functions; functions that reference integer constant definitions; process

expressions that reference set declarations or integer constant declarations, or that contain

function calls; process objects (and their substates) that perform input/output on channels

or channel arrays; and so on.

Some constructed definitions also collect references to nodes of the parse-tree: for ex-

ample, the constructed definitions of process invocations collect references to the parse-

tree nodes for each expression provided as arguments, which—as is documented in this

chapter—can make extracting translated values very convenient.

The guiding principle is that by this point in the translation, all the necessary analysis has to

be complete. Transforming the intermediate representation and parse-tree into the target

language and programming paradigm presents enough challenges without freely interleav-

ing ad hoc construction and analysis. As a further matter, the generative phase effectively

begins by collating all the constructed definitions into categorised maps, after which the

annotated parse-tree is barely consulted again.

8.2 The CSPIDER output model

The CSPIDER tool bases its transformation and code generation activities on an approach

to implementing CSP prototypes that the author believes to be novel to this work: process

objects and process networks. This approach is illustrated by example before a summary

account of its development and design philosophy is presented.

8.2.1 Process objects

Process objects provide a concise and traceable strategy for implementing recursively-

defined CSPM processes in an imperative programming paradigm. Specimens provided

by the evaluation case studies of this research include Listings D.5, F.6, and F.9.

A skeletal process object consists of a minimal Go object that implements a jump register,

8 Model-driven translation and code generation 124

jump table, and an eponymous method. This method spawns a goroutine (as a member

of an externally-declared sync.WaitGroup) that executes methods from the process object’s

jump table—each of which assigns a new value to the jump register on returning—until

the jump register is assigned the SKIP state, at which point the process object terminates

responsibly by signalling the external sync.WaitGroup before finally terminating.

8.2.1.1 Process object implementation

The CSPIDER tool is capable of generating a process object from any non-composition

process declared using the style described and demonstrated in Section 5.3. Compliant

process declarations are detected by Pass11, which performs collation of globally-declared

processes and their local declarations. Listing 7.8 shows one such process declaration, the

EMITTER from the prime generator case study. Listing 8.1 displays a process object derived

from the EMITTER process.

Listing 8.1: The process object for the EMITTER CSPM process

1 package pg

2

3 import "sync"

4

5 const (

6 EMITTER_SKIP = iota

7 EMITTER_EMIT0

8 EMITTER_EMIT1

9)

10

11 type emitter struct {

12 // admin

13 wg *sync.WaitGroup

14 jumpTable map[int]func() int

15 jump int

16 // state variables

17 maxLimit int

18 x int

19 // channels

20 sdOut chan struct{}

21 filterPipes []chan int

22 }

23

24 func (e *emitter) emitter() {

25 e.jumpTable = map[int]func() int{

26 EMITTER_EMIT0: e.emit0,

27 EMITTER_EMIT1: e.emit1,

8 Model-driven translation and code generation 125

28 }

29 e.wg.Add(1)

30 e.jump = EMITTER_EMIT0

31 go func() {

32 for {

33 e.jump = e.jumpTable[e.jump]()

34 if e.jump == EMITTER_SKIP {

35 break

36 }

37 }

38 e.wg.Done()

39 }()

40 }

41

42 // Implemented process states

43 func (e *emitter) emit0() int {

44 e.filterPipes[0] <- e.x

45 e.x = e.x + 1 // EMIT1(x := x+1)

46 return EMITTER_EMIT1

47 }

48

49 func (e *emitter) emit1() int {

50 if e.x <= e.maxLimit {

51 e.filterPipes[0] <- e.x

52 e.x = e.x + 2 // EMIT1(x := x+2)

53 return EMITTER_EMIT1

54 } else {

55 e.sdOut <- struct{}{}

56 return EMITTER_SKIP

57 }

58 }

The example shown in Listing 8.1 demonstrates how a process object capably implements

a CSPM process that performs different channel operations and is parameterised over dif-

ferent state variables (x) and external references (maxLimit) from its various substates (emit0

and emit1). The CSPIDER tool uses the reference collection results assembled in Pass09 and

Pass10 to inject referenced channels and other global declarations, including external pa-

rameters (maxLimit) of the original model, as member attributes of the process object struct3.

Establishing this allows the process expressions to be generated totally procedurally, since

any identifiers in the process expression can be generated in-scope by simply prefixing the

process object’s receiver abbreviation4.

3Functions referenced from the original CSPM script are implemented as additional methods.
4The exception to this rule concerns new identifiers introduced by channel input operations, but since

8 Model-driven translation and code generation 126

The intermediate representation definitions of process invocations constructed by Pass14

are used to generate value assignments ahead of substate transitions (e.g., line 51—the

comment is also automatically generated), and also to null-out state variables whose values

should not persist to the following substate. The main process invocation (i.e., that which

appears after the within keyword in the original process declaration) is used to initialise the

state variables5 and to set the initial value of the jump register (Listing 8.1, line 28).

This implementation approach has scaled, as far as the trial case studies have required:

the process objects NODESTATE and PROTO from the Ricart-Agrawala development represent

the largest instances prepared in this study. It implements a recursively-defined CSPM pro-

cess in a readable, reliable and traceable fashion, and also supports termination. The CSPI-

DER tool renders each process object to its own source file within the generated package

directory. The textual structure of the process object, in addition to making it traceable,

also makes it templatable (Section 8.3).

8.2.1.2 Coordinating concurrent execution of process objects

The Go programming environment provides the sync package for coordinating the con-

current execution of goroutines. In particular, the sync.WaitGroup type implements a

concurrency-safe counter and methods that increment (Add()), decrement (Done()), and

wait (Wait()) for the counter to reach zero.

Ideally, a reusable type implementing some sort of concurrent computation should encap-

sulate its inner workings so that the user is not responsible for providing counters to help

coordinate them. The user should only be required to provide one such counter, in order

to coordinate the execution of the type with respect to the rest of the user’s program.

This still leaves the question of how best to coordinate the execution of the concurrent com-

ponents of the type itself. A naive approach would be to count how many concurrent com-

ponents exist, set the counter appropriately, and then launch the goroutines6. However,

this is prone to error, difficult to definitively synthesise from the intermediate representa-

tion, and does not readily adapt to the possibility of a dynamic process network.

Another approach, and the one adopted by CSPIDER, is to render each concurrent compo-

nent responsible for updating the type’s sync.WaitGroup counter itself, along with any other

Pass07–Pass10 construct and annotate the parse-tree node with a definition for any such identifier, these
are subsequently trivial to test for.

5Initialisation is performed in the process network’s constructor function; see Subsection 8.2.2.
6To avoid the possibility of a race condition, async.WaitGroup counter should always be incremented before

launching a corresponding goroutine.

8 Model-driven translation and code generation 127

initialisation, before launching an anonymous goroutine to perform its primary (CSPM-

derived) function. This neatly encapsulates the ‘bookkeeping’ and significantly simplifies

process object invocation, at the negligible cost of adding a non-CSPM derived parameter

to the process object’s state.

8.2.2 Process networks

Process networks provide a complementary implementation strategy for composing sys-

tems made up of process objects.

The central proposition of this strategy is that the pairwise compositional approach com-

monly seen in CSP models is an artefact of how CSPM and FDR implement events, which

in turn reflects their deliberate treatment as abstract transactions.

The CSPIDER tool, however, imposes restrictions on the expression of CSPM events in pro-

cess expressions in order for CSP event operations to be securely mapped onto Go channel

operations—in other words, so that they model concrete input/output operations. If these

impositions achieve the desired result in the first place, it should be possible and defensible

to assemble systems of goroutines derived from CSP in a more direct fashion than a literal

translation of the CSPM implementation script would provide.

Furthermore, assembling the system as a ‘flatpacked’ collection of process objects ap-

peared to offer the potential for enhanced traceability, simplified configuration of the com-

ponent process objects, and templating.

8.2.2.1 Implementation of process networks

A process network is implemented by the CSPIDER tool as a Go object which manages and

encapsulates a system of concurrently executing goroutines, providing a channel-based

interface to client programs. Listing 8.2 displays the type declaration for Pg, the CSPIDER-

derived object that implements the prime generator case study. (The line comments are

inserted automatically by CSPIDER.)

8 Model-driven translation and code generation 128

Listing 8.2: The process network Pg struct from the prime generator case study

1 type Pg struct {

2 wg *sync.WaitGroup

3 // process network parameters

4 maxLimit int

5 // process network state variables

6 numFilterIDs int

7 // client channels

8 Done chan struct{}

9 Primes chan int

10 // processes

11 emitter *emitter

12 collector *collector

13 filters []*filter

14 }

Listing 8.2 demonstrates a broad range of the attributes that a process network may pos-

sess. The notion of a CSPM implementation script parameterised over a value supplied by

the specification script is here implemented as the ‘process network parameter’ maxLimit.

The ‘process network state variable’ numFilterIDs is a per-instance static value computed in

terms of maxLimit. Done and Primes are channels with CLIENT visibility.

8.2.2.2 Channel visibility in process networks

The successful implementation of the process network is dependent on retaining the pro-

cess alphabet and event hiding information expressed in the process compositions that

CSPIDER does not literally translate. As described in Chapter 7, CSPIDER achieves this by

initially assuming that every channel declaration7 has CLIENT visibility.

To recap, the notion of CLIENT visibility is analogous to a CSP ‘environmental event’: it is

an event that is not performed by any synchronisation between processes defined within

the CSPM script. Any channel that appears in a synchronisation between processes—

which for the limited syntax CSPIDER presently supports denotes either the interface set of

an interface parallel composition, the alphabet of a replicated alphabetised parallel com-

position, or the intersection of the alphabets of a (non-replicated) alphabetised parallel

composition—has to be systematically downgraded from CLIENT to NETWORK to ensure that

the process network effectively encapsulates the system.

7Except for channels declared against identifiers (.*)In or (.*)Out, which are evidently intended to be
internal to a particular process object.

8 Model-driven translation and code generation 129

Channels with CLIENT visibility are defined as formal parameters by the Pg process network’s

constructor function (Listing 8.3).

Listing 8.3: The Pg constructor’s function signature

1 func NewPg(maxLimit int, Done chan struct{}, Primes chan int) *Pg

Once the constructor has declared and initialised any constant definitions, all channels

with NETWORK visibility are declared, allocated (Listing 8.4) and assigned to instances of the

process network’s component process objects (Listing 8.5).

Listing 8.4: NETWORK visibility channel declarations in the Pg constructor

1 var filterPipes []chan int

2 for i := 0; i <= numFilterIDs; i++ {

3 filterPipes = append(filterPipes, make(chan int))

4 }

5

6 var filterShutdown []chan struct{}

7 for i := 0; i <= numFilterIDs; i++ {

8 filterShutdown = append(filterShutdown, make(chan struct{}))

9 }

Once all network channels have been declared and allocated, the constructor may declare

and allocate its component processes.

Incidentally, it is critical in the case of arrays of network channels and arrays of (associ-

ated) process objects that the array of network channels has been fully assembled before

its identifier is passed as an argument to a process object declaration. The filterShutdown

array depicted in Listing 8.4 is in fact a slice, and each successive member of the process

object array will receive a partial section of the complete slice, which is likely to result in

out-of-bounds runtime panics when its substate methods attempt to write to non-existent

indices of the slice.

8.2.2.3 Process object initialisation in process networks

In Listing 8.5, the initialisation of the emitter object’s members is derived from a combina-

tion of its process declaration (Listing 7.8, line 14), its process invocation (Listing E.1, line

96), and the assumption that the identifiers wg, maxLimit, filterShutdown and filterPipes will

all be in scope.

As a consequence of the fact that the process network either instantiates or parameterises

8 Model-driven translation and code generation 130

every non-process declaration from the original CSPM script before it declares any process

objects, this assumption will always be safe.

Listing 8.5: Initialising an EMITTER process object in the Pg constructor

1 // allocate processes

2 emitter := &emitter{wg: &wg,

3 x: 2,

4 maxLimit: maxLimit,

5 sdOut: filterShutdown[0],

6 filterPipes: filterPipes,

7 }

8.2.3 Design philosophy

The introduction of an output model based around process networks took place quite far

into the lifespan of the project, after successful translations had already been accomplished

for the first two case studies, the linear sorting array and the prime number generator.

These translations were broadly accomplished by the same means described later in this

chapter, although aspects of the translation strategy differed.

8.2.3.1 Motivation for code generation strategy

Process objects formed the central part of the CSPIDER tool’s code generation strategy from

its inception. As an early exploration of how to emulate the patterns of execution described

by recursively-defined CSP processes in an imperative language, preliminary implementa-

tions of the process object model were prototyped following the author’s discovery of the

style of CSPM process definition demonstrated by J. Davies (2006) (Figure 7.1).

Refinements to the process object model were easily found: in its original form the jump

table was indexed by string constants pulled directly from the parse-tree, while spawning

the process object in a goroutine and updating the necessary sync.WaitGroup semaphore

were originally the responsibility of the invoker. In spite of the fact that the implementa-

tion of transitions between parameterised substates was crude at best—a consequence of

shortfalls in interpretive strategy—it functioned dependably.

Up to this point, however, the CSPIDER tool’s strategy for translating and generating code

for process compositions had been approximately literal: if CSPM processes that feature

8 Model-driven translation and code generation 131

recursive definitions could be rendered as methods of objects that held their state and co-

ordinated their substate transitions, CSPM process compositions—which do not feature

recursive definitions—could be rendered as Go functions.

To the extent that the initial case studies tested it, this strategy worked passably well for

replicated alphabetised parallel process compositions, which were rendered to the tail of

the source file for the process object they replicated. Listing 8.6 shows a predecessor of the

prime generator development’s FILTERS process as rendered by the ‘old’ CSPIDER transla-

tion strategy:

Listing 8.6: Rendering of replicated alphabetised parallel process by an obsolete CSPIDER trans-

lation strategy

1 func Sieves(wg *sync.WaitGroup, close []chan struct{}, numbers []chan int, out []chan int,

termOut chan struct{}, numSieves int) {

2 var sieves []Sieve

3 for id := 0; id < numSieves; id++ {

4 sieves = append(sieves, Sieve{Wg: wg, CloseIn: close[id], CloseOut: close[

id+1], TermOut: termOut, Numbers: numbers, Out: out})

5 sieves[id].Sieve(id, numSieves)

6 }

7 }

This proceeds in familiar fashion, building up an array of process objects and executing

them incrementally. But the signature of this function indicates problems to come: under

this somewhat ‘in-place’ translation strategy, the only opportunity for the referencing re-

quirements of process objects to be satisfied is for the translated composition process to

drag in each of them as formal parameters.

In terms of code generation, injecting these formal parameters into composition

arguments—a veneer of structure was achieved by doing so in order of type—while adapt-

ing the corresponding process invocations was straightforward enough to achieve. But

even in a simple development, the burden of satisfying these buried dependencies began

to obfuscate the derived code, particularly in the (ubiquitous) context of successive applica-

tions of parallel composition. As an example, Listing 8.7 shows the top-level composition

process of an early version of the CSPM prime generator development, and Listing 8.8

shows how this process was rendered by the original CSPIDER translation strategy.

Listing 8.7: Top-level composition of an early version of the prime number generator

1 PRIMESIEVE =

2 GENERATOR [|{|numbers.0, close.0|}|] SIEVES \ {| close, numbers |}

8 Model-driven translation and code generation 132

Listing 8.8: Original implementation

1 func Primesieve(clientWg *sync.WaitGroup, out []chan int, termOut chan struct{}, numSieves

int) {

2 clientWg.Add(1)

3 go func() {

4 var wg sync.WaitGroup

5 var numbers []chan int

6 for i := 0; i < numSieves+1; i++ {

7 numbers = append(numbers, make(chan int))

8 }

9 var close []chan struct{}

10 for i := 0; i < numSieves+1; i++ {

11 close = append(close, make(chan struct{}))

12 }

13 generator := Generator{Wg: &wg, CloseOut: close[0], Numbers: numbers}

14 generator.Generator(numSieves)

15 Sieves(&wg, close, numbers, out, termOut, numSieves)

16 wg.Wait()

17 clientWg.Done()

18 }()

19 }

In Listing 8.8, the interface parallel composition has been translated as an exportable

method of the Go package, with the result that it spawns a goroutine and initialises its own

sync.WaitGroup in order to coordinate the execution of the composition’s component pro-

cess objects. This translation has been made on the basis of performing two traversals of

the parsed input to compare process declarations and process invocations: PRIMESIEVE is

declared within the script but not invoked, and as such has been calculated to define the

highest level of process composition. Meanwhile, the event hiding expression has been

translated as an in-place declaration and allocation of the identified channels, thus hiding

them from the parent scope. The channels that are presented to a client program as formal

parameters are the difference of the accumulated channel dependencies of each invoked

process and the contents of a hiding expression, introducing computation dependencies

between successive applications of the parallel operator.

Remarkably enough, this approach produced functioning translations for the first two de-

velopments presented in this study, but its application to the Ricart-Agrawala development

produced very poor results. This was chiefly as a consequence of the significantly higher

number of channel identifiers present at each composition stage in the Ricart-Agrawala

model, which in turn generated immense, illegible function signatures. However, the gen-

erated code failed simple legibility tests, to say nothing of traceability tests, purely on the

basis of its desperate attempts to express the accumulating channel dependencies. Given

8 Model-driven translation and code generation 133

that the component processes of the Ricart-Agrawala implementation prototype also de-

pend upon global sets, functions and integer constants, this approach was clearly inade-

quate.

8.2.3.2 Proposition of new code generation strategy

The difficulties described above were the result of a simple flawed design decision: trans-

lation based on a superficial adherence to the structure of the input text. The approach

illustrated above fails at scale because a function with formal parameters is inadequate to

the expressive demands of assembling and resolving the dependencies of anything other

than very small concurrent systems.

In Listing 8.8 the textual juxtaposition of the declaration and allocation of interconnecting

Go channels (lines 4–12) with the initialisation and invocation of process objects (lines 13–

15) is confusing to read, and in systems that involve serial applications of interface parallel,

produces even more confusing effects.

Assembling process networks through serial composition is a ubiquitous idiom in CSPM

as a result of the syntax of the parallel operators, but no aspect of the runtime environment

of Go imposes any comparable restrictions.

Consequently if the collection and analysis of channel declarations, renaming clauses,

event hiding expressions and process’ channel dependencies is sufficiently systematic, it

becomes possible to synthesise a non-hierarchical network of goroutines that faithfully

implements the design expressed by the CSPM implementation prototype in significantly

clearer terms than the preceding translation strategy.

To accomplish this, the interpretive phase still needs to capture information from CSPM

composition processes: the contents of event hiding expressions, renaming clauses and

process invocation arguments in the case of non-replicated compositions, and all of the

above in addition to the indexing identifier and replication value expression of replicated

compositions. But where a replicated alphabetised parallel composition will be a trace-

able (slice of) goroutine(s) in a process network, the named declaration of a binary parallel

composition will not; the traceable processes in a synthesised process network will all be

instances of process objects (Listing 8.9).

8 Model-driven translation and code generation 134

Listing 8.9: The process network’s eponymous method launches its component goroutines

1 pn.emitter.emitter()

2 pn.collector.collector()

3 for _, p := range pn.filters {

4 p.filter()

5 }

6 }

While the author cannot offer a comprehensive defense or proof of the correctness of this

approach at the time of writing, the evaluations conducted in this study appear (on the

basis of the proposed development method’s use of CSPM events to exclusively represent

point-to-point input/output channels) to demonstrate that it is a viable approach. The

CSPM scripts, which explore several applications of CSPM parallel operators, all translate

to implementations that have functioned under test without entering deadlock, runtime

errors, or delivering obviously defective computational results.

This is accomplished in generated code that is traceable, well-encapsulated, and templat-

able, realising the stated objective of seamlessly generating reusable concurrent compo-

nents that reward visual inspection by clearly and idiomatically expressing their internal

organisation.

An additional benefit of this strategy is that the resulting Go package is structured in such a

way that each of the generated components of the type is cleanly encapsulated. This would

be particularly important for practical experiments with Gardner (2005a)’s proposal of ‘se-

lective formalism’. In this design concept, CSP models can abstract out complex computa-

tions as ‘black boxes’ that receive arguments and return results over channels. By cleanly

separating the components of a CSP-derived implementation, the process object/network

structure implemented here represents a practical basis for future work to experiment with

this concept.

8.3 Templating

The generative phase of the CSPIDER tool makes use of the StringTemplate library (Parr

n.d.[b]) to template, collate and render the source code for Go programs that CSPIDER syn-

thesises from the CSPM implementation script. The StringTemplate library is distributed

with the ANTLR framework, as it is used internally by ANTLR to generate lexer, parser and

support classes from valid grammars.

8 Model-driven translation and code generation 135

The design of the StringTemplate templates implemented for the CSPIDER tool carries a

significant part of the work of systematically generating Go source code during the gener-

ative phase. Since the attributes of StringTemplate templates may be ‘injected’ with other

StringTemplate templates, and the evaluation of the resulting construction may be deferred

for as long as convenient, this enables a natural way to assemble documents (such as the

body of a function or process substate) from a traversal of a template-annotated parse

tree.

Additionally, a StringTemplate template can easily define the structure of a large document

over arbitrarily large numbers of attributes, setting out how they are arranged, concate-

nated and/or recursively templated within that structure. The process object and pro-

cess network presented earlier in this chapter are each structured in skeletal form by a

StringTemplate template.

Instances of these two templates—one of the first kind for every distinct process object, and

one of the second variety for the single process network that contains them—are injected

with attributes by a generative pass that filters data from the parse tree and constructed def-

initions within the intermediate representation templates. Between the implementation of

the StringTemplate library and carefully designed templates, this enables the convenient,

systematic and incremental assembly of documents that would otherwise have to be con-

structed in a tedious and error-prone fashion.

8.3.1 StringTemplate principles and applications

StringTemplate implements a lazily-evaluated domain-specific language for generating

structured text. A StringTemplate template is defined by its identifier, a list of zero or more

attributes—labelled placeholders for any object or list of objects that can be evaluated as

a string, including other template instances—and a template expression that defines how

those attributes are positioned in order to form a particular type of document. Template

expressions may reference attributes, conditionally include sub-expressions based on the

presence or absence of an attribute, reference other template rules, or apply a template

rule to a multi-valued attribute.

Listing 8.10 shows five rules that define generic templates for unary operations, binary op-

erations, function calls, accessing object method calls and accessing member attributes,

respectively. The template expressions are terminated by " characters. Within these expres-

sions, <identifier> references an attribute named identifier, <comment(c)> invokes a template

named comment referencing the attribute c, and <if(c)> <comment(c)><endif> only allows the

8 Model-driven translation and code generation 136

previous invocation to happen if the attribute c has been injected with an object reference.

If a template attribute is injected repeatedly, the template will store the object references

in order, resulting (when the template is rendered) in a concatenation of each reference;

while the invocation <args; separator=\", \"> specifies a separator string to be applied in

rendering the concatenation.

Listing 8.10: Five fundamental rules from the CSPIDER tool’s Go templates

1 // Operations

2

3 uOp(op, e, c) ::=

4 "<op><e><if(c)> <comment(c)><endif>"

5

6 bOp(e0, e1, op, c) ::=

7 "<e0> <op> <e1><if(c)> <comment(c)><endif>"

8

9 fCall(n, args, c) ::=

10 "<n>(<args; separator=\", \">)<if(c)> <comment(c)><endif>"

11

12 mCall(o, m, args, c) ::=

13 "<o>.<m>(<args; separator=\", \">)<if(c)> <comment(c)><endif>"

14

15 mAttrib(o, a, c) ::=

16 "<o>.<a> <if(c)> <comment(c)><endif>"

Having acquired an instance of the template uOp and assigned it to a variable x, a program

may then inject x’s op attribute with any reference that evaluates to a string through the call

x.add("op", chanDef.name()). Attributes injected with several successive values maintain an

in-order list of the values, and template rules can reference these in order, as occurs with the

args attribute of the fCall and mCall rules: the invocation <args; separator=\", \"> produces

a comma-separated list of the values that have been injected into the args attribute.

Templates may invoke other templates in order to factor out generic, redundant, or un-

wieldy productions. For example, the func rule defined in Listing 8.11 (lines 3–9) templates

a Go function. The most syntactically complex part of the template, the function signa-

ture, is delegated to an adjacent rule, funcSig (lines 11–4), which dutifully captures the Go

receiver syntax and the fact that Go functions may take multiple parameters and return

multiple values. By referencing the funcSig rule (on line 6) and injecting some or all of its

required attributes, the func rule becomes versatile enough to generate simple functions or

object methods depending on which attributes the owner chooses to inject, while remain-

ing relatively readable.

8 Model-driven translation and code generation 137

Listing 8.11: Function/method, struct declaration/literal and if/then/else templates

1 // Function and function signature templates

2

3 func(n, t, args, line, rxAbbr, rxName, c) ::=

4 <<

5 <if(c)><comment(c)><endif>

6 <fSig(rxAbbr, rxName, n, t, args)> {

7 <line; separator="\n">

8 }

9 >>

10

11 fSig(rxAbbr, rx, n, t, args) ::=

12 <<

13 func <if(rx)>(<rxAbbr> *<rx>) <endif><n>(<args; separator=", ">)<if(t)> <t; separator=",

"><endif>

14 >>

15

16

17 // Struct/Object declarations and literals

18

19 strDecl(n, f, t) ::= "type <n> struct { <f, t:{f, t|<f> <t>}; separator=\"\n\"> }"

20

21 strLit(n, k, v) ::= "<n> { <k, v:{k, v|<k>: <v>}; separator=\",\n\"> }"

22

23 strLitPtr(n, k, v) ::= "<n:addr()> { <k, v:{k, v|<k>: <v>}; separator=\",\n\"> }"

24

25 // Control flow

26

27 ifStmt(cond, thenLine, elseLine) ::= <<

28 if (<cond>) {

29 <thenLine>

30 } <if(elseLine)>else {

31 <elseLine>

32 } <endif>

33 >>

The ability to template the concatenation of multiply injected values is very convenient

for templating constructs where arbitrary numbers of related elements may appear, but a

rather more exciting technique is demonstrated in the strDecl, strLit and strLitPtr rules,

which template arbitrary-size Go struct declarations, struct literals, and dereferenced struct

literals respectively.

The <f, t:{f, t|<f> <t>}; separator=\"\n\"> invocation is computed as the result of apply-

ing a pattern or template invocation (in this case, <f> <t>) to successive individual values

drawn from each member of any tuple of attributes. Sophisticated text structures may be

8 Model-driven translation and code generation 138

built up within a template by iterating over lists and issuing calls to add some attribute or

other, and as we shall see, this technique is the basis for systematically generating code for

process objects and process networks. As a further example, Listing 8.5 has been produced

by a single invocation of the strLitPtr rule which has received repeated injections to "k"

and "v".

Lazy evaluation means that template instances may be created and their attributes injected

at the convenience of the program that is extracting the values. In other words, a partially-

populated template a may be injected into an attribute of template b and subsequently re-

ceive further injections to its own attributes. When the template b is eventually rendered to

a text document, its reference to the template a will incorporate the changes a received af-

ter its injection into b. This capability is thoroughly exploited by the CSPIDER tool’s staged

synthesis of the process network and process objects.

During its generative phase the CSPIDER tool implements this technique on a fairly ad-

vanced scale as it traverses process and function expression subtrees, instantiating tem-

plates and annotating parse tree nodes with them on entry, and retrieving templates from

leaf nodes and injecting them as attributes into the root node’s template on exit. With the

exception of some subtrees corresponding to problematic CSPM expressions (such as ex-

ternal choice), this is how the majority of Go code corresponding to process or function

bodies is generated.

8.3.2 Templating the target language

A set of StringTemplate templates was developed for Go to expedite the synthesis of major

parts of the language. Template development and attention was directed by prior experi-

ence templating and prototyping CSPM-based designs, so these templates do not aim to

provide comprehensive coverage of the language. They do, however, implement the neces-

sary and sufficient coverage for the CSPIDER tool to implement CSPM process expressions,

functions, and the declarations and expressions involved in rendering process networks

and process objects, many of which are visible in Listings 8.11 and 8.12:

Declaration and allocation syntax. Regular (var <name> <type>) and short (name := <expr>)

variable declarations. Struct declarations and literals. Slice declarations. Channel

declarations. make and append. Pointer and address-of operators.

Input/output syntax. Channel input from empty struct channel. Channel input to ‘dis-

card’ identifier. Channel input to identifier. Channel input to new identifier (short

8 Model-driven translation and code generation 139

declaration, for multi-value data channel). Channel output on empty struct chan-

nel. Channel output from identifier. Channel output from struct literal declaration

(multi-value data channel).

All of these possibilities are implemented by the two rules shown in Listing 8.12: omit-

ting to inject e on chOut will generate the struct{}{} ‘empty struct signal’ instead; in-

jecting v on chIn with the CSPM ‘wildcard pattern’ _ (University of Oxford n.d.[k]) will

assign the channel input to a Go ‘discard’ expression (Go Project n.d.[g]); injecting

the nop attribute on either rule will generate a truncated channel signature suitable

for inclusion in a Boolean-guarded channel operation, and so on.

Functions and support libraries. Functions, methods, and function signatures. (List-

ing 8.11, lines 1–14). Support methods for cspider integer set and sequence objects:

Union, Diff, Head, Tail, Seq, Set, Empty, Card, (etc.)

Control flow. If .. then .. else (Listing 8.11, lines 27–33). Channel input/output in the

context of Boolean conditional guards (after Cox (2012)).

Other CSPIDER-specific template groups were also developed, excerpts of which are pre-

sented later in this chapter.

Listing 8.12: Channel operation templates

1 chIn(ch, i, v, c, nop) ::=

2 "<if(v)><v> <if(!nop)>:=<endif> <endif><if(!nop)>\<-<endif> <ch><if(i)>[<i;

separator=\"][\">]<endif><if(c)> <comment(c)><endif>"

3

4 chOut(ch, i, e, c, nop) ::=

5 "<ch><if(i)>[<i; separator=\"][\">]<endif> <if(!nop)>\<-<endif> <if(e)><e><else><

emptyStructSignal()><endif><if(c)> <comment(c)><endif>"

8.4 Model-driven translation

As stated at the outset of this chapter, by this point in the translation all analysis of the

parsed input has been completed. From this point forward, the intermediate representa-

tion constructed over the interpretive phases of the tool effectively becomes a read-only

resource. The bulk of generative activity is coordinated via maps collated by the outputModel

member of the CSPIDER tool’s TranState object, which enables the final generative pass to

drive the iterative injection of StringTemplate attributes in a systematic fashion.

8 Model-driven translation and code generation 140

8.4.1 Overview of generative phase

Having completed the construction and cross-referencing of the intermediate represen-

tation in the preceding phase of the translator, the generative phase begins by gathering

and collating globally-scoped constructed definitions by type. These are cross-linked into

classified maps maintained as part of the OutputModel, providing a more convenient basis

for lookup and dependency resolution as the CSPIDER tool generates StringTemplate in-

stances for process objects and a process network.

8.4.2 Implementation of generative phase

The OutputModel class (Figure 8.1) encapsulates the maps, members and methods required

to synthesise Go source code from the TranState object’s accumulated interpreted data,

along with convenience methods to acquire new StringTemplate instances.

Figure 8.1: The OutputModel class

The output model also holds an instance of a new ParseTreeProperty map, which associates

StringTemplate instances with parse tree nodes. This supports the cumulative translation

8 Model-driven translation and code generation 141

of process expressions and function bodies, which at this point may be implemented as

simple tree traversal interspersed with more sophisticated transformations over context

objects.

8.4.2.1 Gathering constructed definitions

The Gen00 pass executes a series of XPath-targeted walks over the annotated parse tree, gath-

ering constructed definitions by type:

ExtBaseDef: These definitions record CSPM implementation script type annotations (of

the form--#<identifier> :: <type>) for identifiers that parameterise one or more dec-

larations within the script. These will eventually be translated as formal parameters

of the process network, which makes the assigned identifier(s) available to any trans-

lated objects that require it within the process network constructor.

ChannelDef: These definitions record the final interpreted state of each parameterised/non-

parameterised event defined within the implementation script. Over the course of

analysing the script’s process declarations and process invocations, the interpretive

phase may have reclassified a parameterised channel’s type specification (marking

one or more fields as ‘address’ indexes) and/or its visibility.

Channels that still retain a type specification containing more than one data field

have been assigned an associated object representing a corresponding struct type.

Since these definitions also have to be synthesised, they are also collated in this pass.

ConstCharDef /ConstIntDef /ConstStringDef: These definitions record global pattern dec-

larations from the original script. Most typical are global integer declarations that in

some way parameterise subsequent declarations, so const definitions of any type will

be translated into the process network constructor.

SetDef: These definitions record globally declared and anonymous sets. Sets that are only

referenced by event parameterisation or process alphabets, neither of which are gen-

erated by the output model, are discarded from this collection.

Only sets that have been reference-collected in process expressions or function bod-

ies will be translated to the process network constructor.

ListDef: Global ‘list’ (sequence) definitions are treated as Const definitions.

8 Model-driven translation and code generation 142

ProcessDef: These definitions record global process definitions, including the definitions

of parameterised processes. They denote either processes that require a process ob-

ject or processes that are compositions; however, they are stored in the same way.

FunctionDef: These definitions record globally declared functions.

ProcInvocationDef: Process invocation definitions are detected by performing an XPath

query for every instance of an expression context in the parse-tree, and each is

checked to see if it has a ProcInvocationDef definition bound to it. We filter out in-

vocations that invoke process substates.

Finally, Gen00 uses the accumulated ProcessDef and ProcInvocationDef definitions to detect

global processes that are not invoked within the implementation script, a reliable indica-

tor that they define the highest-level composition of the implementation prototype (NODE

from the Ricart-Agrawala case study is one such example). If a qualifying process is pa-

rameterised, Gen00 captures the parameter definitions in order to promote them as formal

parameters of the process network.

8.5 Synthesising process networks

The second generative pass, Gen01, is dedicated to the critical issue of populating the tem-

plated constructor function of the process network (Listing B.1, lines 82–115). To all intents

and purposes, at this point in the generative phase the process network constructor has to

be populated in such a way that every registered dependency that appears in a CSPM global

declaration of any kind has to be satisfied (within the generated Go code).

This takes place either through the promotion of exported parameters—as described in

the previous section—and specification-supplied global constants (collected instances of

ExtBaseDef) to formal parameters of the constructor, or through in-place declarations that

match the identifier, type and value assignment of the original declarations, essentially em-

ulating the global namespace of the original CSPM script.

This allows the struct-literal initialisations of process objects—templated at the base of the

process network constructor—to declare the initialisation of their struct field dependen-

cies (‘const’ integer references, set identifiers, channel names and indexing expressions)

by name, secure in the knowledge that corresponding identifiers will be in scope.

8 Model-driven translation and code generation 143

This pass proceeds in an orderly fashion from the maps established by the Gen00 pass, as

seen in Listing 8.13.

Listing 8.13: Population of the process network constructor by Gen01

1 public void process(SourcefileContext tree) {

2 for (ExtBaseDef ebd : o.extBaseDefMap.values()) {

3 addExtParam(ebd);

4 }

5 for (ParamDef prd : o.exportedParamMap.values()) {

6 addExportedParam(prd);

7 }

8 for (ConstCharDef ccd : o.constCharDefMap.values()) {

9 addConstChar(ccd);

10 }

11 for (ConstIntDef cid : o.constIntDefMap.values()) {

12 //logger.trace("addConstInt: " + cid.name());

13 addConstInt(cid);

14 }

15 for (ConstStringDef csd : o.constStringDefMap.values()) {

16 addConstString(csd);

17 }

18 for (SetDef sd : o.setDefMap.values()) {

19 addSet(sd);

20 }

21 for (ChannelDef cd : o.chanDefMap.values()) {

22 addChannel(cd);

23 }

24 }

Registered dependencies are read off the constructed definitions and satisfied in-flight

(Listing 8.14).

Listing 8.14: Satisfaction of integer declaration dependencies happens in-flight

1 private void addConstInt(ConstIntDef c) {

2 ProcessNetwork n = o.procNet;

3 n.addStVar(c.name(), o.getGoType(c.type()), c.value);

4 scanningFunction();

5 for (FunctionDef fd : c.funcRefs()) {

6 logger.trace("addConstInt: " + c.name() + " is setting up function

: " + fd.name());

7 setupFunction(fd, null);

8 }

9 resetScanningFunction();

10 }

8 Model-driven translation and code generation 144

In the case of constructed channel definitions, the status of the visibility attribute deter-

mines how and if attributes are injected (Listing 8.15).

Listing 8.15: Channel visibility and renaming determining attribute injection in Gen01

1 private void addChannel(ChannelDef cd) {

2 //logger.trace(cd.name() + " has visibility: " + cd.visibility());

3 switch (cd.visibility()) {

4 case CLIENT:

5 addClientChannel(cd);

6 break;

7 case NETWORK:

8 addNetworkChannel(cd);

9 break;

10 case OBJECT:

11 // Those only appear in process objects and

12 // the corresponding process literals

13 break;

14 }

15 }

16

17 private void addClientChannel(ChannelDef cd) {

18 String exportName =

19 cd.name().substring(0,1).toUpperCase()

20 + cd.name().substring(1);

21 String renamedChanInit = null;

22 // We have to do an odd little check to see if our client channel

23 // represents a renaming to a -network- channel. We do this over the

24 // set of process invocations.

25 boolean addRenamedClientChannel = false;

26 for (ProcInvocationDef pid : o.procInvocationDefMap.values()) {

27 for (String s : pid.renamings().keySet()) {

28 String str = pid.renaming(s);

29 //logger.trace(str + " " + cd.name());

30 if (str.contains(cd.name())) {

31 addRenamedClientChannel = true;

32 renamedChanInit = s;

33 }

34

35 }

36 }

37 if (addRenamedClientChannel) {

38 addRenamedClientChannel(cd, exportName, renamedChanInit);

39 } else {

40 addRegularClientChannel(cd, exportName);

41 }

42 }

8 Model-driven translation and code generation 145

Within these methods, channel identifiers are cross-referenced against the renaming ex-

pressions catalogued by Pass07–Pass10 and Pass14 to resolve mappings like that expressed

in Listing 8.16.

Listing 8.16: This renaming expression maps client-visibility channels Input, Output to indices of

the digitChan channel array

1 ARRAY =

2 (|| id:{0..arraySize-1} @ [synchroSet(id)] ARRAYCELL(id))

3 [[digitChan.0 <- input, digitChan.arraySize <- output]]

The OutputModel’s instance of the ProcessNetwork class factors template-completion into a

range of helper methods (Figure 8.2).

As implied by the structure of Listing 8.13, the objective is to ensure that every identifier

that might feasibly provide a dependency for a process definition is included in the process

network template. The final generative pass, Gen02, implements the creation of process

objects and the completion of the process network constructor and ‘run’ function.

Figure 8.2: The ProcessNetwork class

8 Model-driven translation and code generation 146

8.5.1 Synthesising process objects

Gen02 proceeds on the basis of the OutputModel’s map of process invocations (Listing 8.17),

generating instances of the ProcessObject class (Figure 8.3) and embedding their corre-

sponding declarations into the process network template in-flight.

The structuring of the process network and process object templates is such that the gener-

ative pass can essentially inject relevant attributes into both simultaneously, which enables

convenient and systematic code generation.

Gen02 silently disregards invocations of any composition process. This may at first seem

perverse, given that the production of replicated process objects has already been demon-

strated, but CSPIDER implements a more systematic approach.

A single ProcessObject instance is created for every non-composition process invoked

within the original CSPM script. This includes the process that is replicated, and as a con-

sequence of the design of the process network template, the Gen02 pass may render it as

replicated by injecting it into a different set of attributes.

Listing 8.17: Process object generation based on catalogued process invocations

1 public void process(SourcefileContext tree) {

2 for (ProcInvocationDef pid : o.procInvocationDefMap.values()) {

3 switch(pid.proc().compType()) {

4 case NOT_COMP:

5 setupProcObject(o.procNet, pid);

6 }

7 }

8 o.procNet.genGuardedChanFuncs();

9 }

10

11 private void setupProcObject(ProcessNetwork n, ProcInvocationDef pid) {

12 ProcessDef pd = pid.proc();

13 ProcessObject po = genProcObject(pd, pid);

14 configProcessObjectLiteral(po, pid);

15 addProcObjectToNet(pd, po);

16 gatherProcObjectSubstates(pd, po);

17 addSubstateParameters(po);

18 addReferencedFunctions(pd, po);

19 processObjectStateVars.clear();

20 }

This approach also makes it straightforward to preserve the original indexing identifier and

expressions for injection into the replication sub-templates, which use them to render the

8 Model-driven translation and code generation 147

creation loop in a way that ensures the process object’s initialisation literal can find an in-

scope value for the field name that expresses its position within the array. For an example

of this in action, compare the indexing expression in Listing 8.16’s definition of ARRAY with

the for loop that generates the corresponding replication in Listing 8.18.

Listing 8.18: Preserving indexing expressions to satisfy process object attribute initialisation

1 // allocate replicated processes

2 var arraycells []*arraycell

3 for id := 0; id <= arraySize-1; id++ {

4 arraycells = append(arraycells, &arraycell{wg: &wg,

5 id: id,

6 arraySize: arraySize,

7 digitChan: digitChan,

8 })

9 }

Listing 8.17 outlines the setup sequence for a process object: the class constructor ini-

tialises a template to contain the process object’s definition—in other words, an instance

of the full process object string template as reproduced in Appendix C—and a second tem-

plate to contain a corresponding struct literal ‘declarative’, which is immediately injected

into the process network’s process-declaration attribute along with any replication expres-

sions. Since the templates are lazy-evaluated, subsequent additions to the ‘declarative’ lit-

eral’s fields will all be represented when the process network template is finally rendered.

Figure 8.3: The ProcessObject class

8 Model-driven translation and code generation 148

Listing 8.19: The ProcessObject constructor

1 public ProcessObject(ProcessDef pd, ProcessNetwork pn,

2 ProcInvocationDef pid) {

3 name = pd.name().toLowerCase();

4 this.pd = pd;

5 this.pid = pid;

6 procNet = pn;

7 o = pn.om;

8 literal = o.templates.getInstanceOf("procObjectLiteral");

9 literal.add("n", name);

10 st = o.templates.getInstanceOf("processObject");

11 st.add("pkn", pn.pkn);

12 st.add("procPfx", name.toUpperCase());

13 st.add("n", name);

14 st.add("nI", getPOInitial());

15 //setupParams(pd, pid);

16 setupChannels(pd, pid);

17 }

The constructor also partially populates these templates on the basis of preliminary infor-

mation, setting the (Go) object name.

For example, if the process invocation includes concrete values passed in as arguments,

these are injected directly into the process object’s struct literal (configProcObjectLiteral,

Listing 8.17, line 14). The initial substate of the process object can be determined by re-

trieving the process invocation from the parent process’s process expression: in the case of

Listing 7.8, this is the EMIT0(x) that appears following the within on line 14.

Population of the process object instance proceeds primarily on the basis of the con-

structed definitions for the original CSPM process and its substates: as each substate

(gatherProcSubstates, Listing 8.17, line 16) is injected into the process object definition tem-

plate, the corresponding subtree may be walked to build up a template of the process ex-

pression, with occasional reference to constructed non-declarative definitions to guide the

rendering of expressions such as channel operations and external choice.

8.5.2 The StringTemplate-annotated parse tree

Space does not permit a full account of the coding of StringTemplate annotation over the

parse tree, since this entails assigning and populating instances of one template or another

for every form of expression that can appear within a CSPM process expression, typically

8 Model-driven translation and code generation 149

with read-only reference to elements of the intermediate representation, but this subsec-

tion provides a representative sample.

The basic implementation pattern is to code an override for each context object that can

appear within a process expression subtree. For each class or subclass of context object, the

override must acquire a new StringTemplate instance, inject its attributes with templates

retrieved from child nodes and/or elements of a bound constructed definition, and then

bind the injected template to the parse tree node. Listing 8.20 demonstrates this over the

context object for integer division.

Listing 8.20: Annotating an ‘integer division’ parse tree node with a populated StringTemplate

instance

1 @Override

2 public void exitExprDiv(ExprDivContext ctx) {

3 ST st = getTemplate("div");

4 st.add("e0", getST(ctx.expression(0)));

5 st.add("e1", getST(ctx.expression(1)));

6 setST(ctx, st);

7 if (getST(ctx) != null && debug) {

8 logger.trace("exitExprDiv: " + getST(ctx).render());

9 }

10 }

For expressions whose transformations are more demanding, overrides may invoke helpers.

In Listing 8.21, the override for channel input expressions—that is, for one of the four

ways in which a process expression may denote some operation over a channel—invokes

genChanInput (Listing 8.22) to produce the appropriate mutation of Go channel operation

based on the retrieval of a ChanInputDef non-declarative definition.

Listing 8.21: Annotating a ‘channel input’ parse tree node with a populated StringTemplate in-

stance

1 @Override

2 public void exitExprInput(ExprInputContext ctx) {

3 BaseDef bd = def(ctx);

4 if (bd == null || !(bd instanceof ChanInputDef)) {

5 logger.error("Unexpected or missing chanInput def in: " + ctx.

getText());

6 }

7 ChanInputDef cid = (ChanInputDef) bd;

8 setST(ctx, genChanInput(cid, false));

9 if (getST(ctx) != null && debug) {

10 logger.trace("exitExprInput: " + getST(ctx).render());

11 }

12 }

8 Model-driven translation and code generation 150

These methods do not process Boolean guarded channel operations, which are imple-

mented as a special case as they entail creating new templates for their associated ‘guarded

channel’ functions.

Listing 8.22: Mutating the generated Go expression on the basis of prior constructed non-

declarative definitions

1 private ST genChanInput(ChanInputDef cid, boolean guarded) {

2 ST st = null;

3 if (cid.requiresMsgStruct()) {

4 st = getTemplate("block");

5 ST chIn = getTemplate("chIn");

6 if (!(guarded)) {

7 chIn.add("ch", rxAbbr + "." + cid.src().name());

8 for (ExpressionContext ec : cid.indexExprs()) {

9 chIn.add("i", getST(ec));

10 }

11 chIn.add("v", cid.name());

12 }

13 //chIn.add("t", cid.valueType());

14 st.add("line", chIn);

15 for (String s : cid.identifiers()) {

16 ST stAssign = getTemplate("sVarDecl");

17 stAssign.add("v", s);

18 stAssign.add("e", cid.name() + ".f0" + cid.identifiers().

indexOf(s));

19 st.add("line", stAssign);

20 }

21 return st;

22 }

23 // simple ones here

24 st = getTemplate("chIn");

25 if (!(guarded)) {

26 st.add("ch", rxAbbr + "." + cid.src().name());

27 for (ExpressionContext ec : cid.indexExprs()) {

28 st.add("i", getST(ec));

29 }

30 } else {

31 st.add("nop", "nop");

32 }

33 for (String s : cid.identifiers()) {

34 st.add("v", s);

35 }

36 return st;

37 }

8 Model-driven translation and code generation 151

8.5.3 Mapping Boolean-guarded alternatives in CSPM external choice

The implementation of CSPM external choice (Listing 8.23) in Go is sufficiently difficult to

have warranted a class of non-declarative definition to assist in the interpretation of the re-

sulting arbitrarily-large (Figure 8.4) subtrees, complicated further by the fact that Go chan-

nel input/output operation syntax effectively mutates based on the underlying type of the

channel.

The first of these issues is addressed as a matter of course through the interpretation of

process expressions in Pass07–Pass10, while the second is accommodated through a combi-

nation of the conditional design of the channel input/output template (Subsection 8.3.2)

and the revisions made to the constructed channel definition by Pass12.

Listing 8.23: An external choice expression with three alternatives

1 count < arraySize &

2 digitChan.id+1!store -> digitChan.id?x -> OUTPUT(id, x, count+1)

3 []

4 count == arraySize &

5 digitChan.id+1!store -> OUTPUT(id, 0, count+1)

6 []

7 count == arraySize+1 &

8 CELL(id, 0, 0)

Figure 8.4: The parse-tree generated for Listing 8.23, with the subtrees corresponding to each al-
ternative highlighted

An outstanding issue, however, is that the Go select statement does not permit its cases to

be enabled/disabled by Boolean conditions in precisely the way that CSPM external choice

does: the case statements of a Go select statement may only consist of channel send or

receive operations.

However, a solution offered by Cox (2012) exploits the fact that a case which sends or re-

ceives on a nil channel will never be selected, allowing the behaviour of Boolean-guarded

alternatives to be elegantly emulated for both send and receive channel operations.

8 Model-driven translation and code generation 152

Listing 8.24: Implementation of CSP external choice in a Go select statement, including the im-

plementation of Boolean-guarded alternatives

1 // Implemented process states

2 func (a *arraycell) cell() int {

3 select {

4 case x := <-guardedIntChan(a.count == 0, a.digitChan[a.id]):

5 a.store = x // CELL(store := x)

6 a.count = a.count + 1 // CELL(count := count+1)

7 return ARRAYCELL_CELL

8 case x := <-guardedIntChan(a.count > 0 && a.count < a.arraySize-a.id, a.digitChan[

a.id]):

9 if x > a.store {

10 a.digitChan[a.id+1] <- x

11 a.count = a.count + 1 // CELL(count := count+1)

12 return ARRAYCELL_CELL

13 } else {

14 a.digitChan[a.id+1] <- a.store

15 a.store = x // CELL(store := x)

16 a.count = a.count + 1 // CELL(count := count+1)

17 return ARRAYCELL_CELL

18 }

19 case <-guardedSignalChan(a.count == a.arraySize-a.id, a.proxy):

20 a.proxy <- struct{}{}

21 return ARRAYCELL_OUTPUT

22 }

23 }

The cell() method of the arraycell process object (Listing 8.24) demonstrates the Go im-

plementation of CSPM external choice through the select statement8, as well as the Go

implementation of Boolean-guarded alternatives in external choice. The statement

case x := <-guardedIntChan(a.count > 0, a.Input):

is conditionally available as an alternative on the basis of the first argument passed to

guardedIntChan() (Listing 8.25), which returns the a.Input channel to the <- input operator if

the condition is true, and a nil channel, disabling the case, if not.

8The case on line 64 is a specialised variant on this technique; see Subsection 9.1.2.1.

8 Model-driven translation and code generation 153

Listing 8.25: The Go implementation of guardedIntChan

1 func guardedIntChan(b bool, c chan int) chan int {

2 if !b {

3 return nil

4 }

5 return c

6 }

Two issues slightly complicate this approach: firstly, a version of this function has to be

generated for each channel of a different type that appears as the first action in a Boolean-

guarded alternative of an external choice expression, which represents a further justifica-

tion for constructing non-declarative definitions of external choice decision points; and

secondly, when more than one alternative of all the external choice expressions in the im-

plementation component has a first action involving a channel of the same type, the corre-

sponding guarded<type>Chan functions need to be automatically de-duplicated so that only

one instance appears in the final package. Both of these issues are dealt with through the

process object generation pass.

8.5.4 Synthesising functions

The intermediate representation FunctionDef defines everything necessary—name, param-

eter identifiers and types, return type—to generate a Go function signature, but obtaining

the body of a function presents a little more difficulty. The syntax of CSPM functions is

at odds with the syntax of Go functions, and an in-place translation will not suffice: as

per the Go Project (2017), a function that declares a return type must terminate each of its

branches with a return statement9. However, CSPM functions are declared such that the

returned value is whatever a given branch of the function evaluates to (Listing 8.26).

Listing 8.26: The strictLessThanUnderModulo function in CSPM

1 strictLessThanUnderModulo :: (Int, Int) -> Bool

2 strictLessThanUnderModulo(num1, num2) =

3 if num1 < M and num2 < M

4 then

5 (num1 != num2) and (maxNumUnderModulo(num1, num2)==num2)

6 else

7 error("strictLessThanUnderModulo called with invalid inputs")

9The Go Project (2017) actually specifies ‘a terminating statement’ (Go Project n.d.[h]; Go Project n.d.[j]),
but for the purposes of this discussion, the two senses are equivalent.

8 Model-driven translation and code generation 154

This is achieved by treating function expressions as a special case of gathering template

annotations from the parse tree. Walking the function expression builds up a template us-

ing the same methods that are used to build up process and other declaration expressions,

with minor special cases added in two instances.

Consequently, all forms of expression except the if..then..else conditional and the CSPM

error keyword (which is rendered into Go as a call to the analogous panic built-in function)

are prefixed by the return keyword in the generated string template. The expressions that

appear as either branch of an if..then..else conditional are also prefixed by the return key-

word, unless they are instances of the conditional or the error function. This approach has

been shown capable of rendering moderately complex function declarations in a straight-

forward way (Listing 8.27).

Listing 8.27: The strictLessThanUnderModulo function, as rendered by CSPIDER

1 func (e *extreq) strictLessThanUnderModulo(num1 int, num2 int) bool {

2 if num1 < e.M && num2 < e.M {

3 return (num1 != num2) && (e.maxNumUnderModulo(num1, num2) == num2)

4 } else {

5 panic("strictLessThanUnderModulo called with invalid inputs")

6 }

7 }

8.6 Rendering output

The completion of the Gen02 pass effectively concludes the code generation activities of the

CSPIDER tool. At this point the tool’s TranState object’s OutputModel instance contains a sin-

gle ProcessNetwork object and typically several instances of the ProcessObject class, each of

which contain their fully-populated StringTemplate templates as attributes.

A final generative pass iterates over these objects and writes them to their respective files

within the user-configured target directory.

8.7 Summary

This chapter presented the design of an output model for reusable and encapsulated CSP-

derived Go implementations based on ‘process networks’ and ‘process objects’. It dis-

cussed the practical implementation of that output model as a set of templates for use

8 Model-driven translation and code generation 155

with the StringTemplate template engine, and how the CSPIDER tool collates and system-

atically injects attributes of the annotated parse tree and the intermediate representation

into these templates to perform code generation of reusable concurrent Go program com-

ponents.

This chapter concludes the discussion of the CSPIDER tool and how it performs automatic

translation of CSPM models. The following chapter presents an evaluation of the method

overall on the basis of three graduated case studies.

9 Evaluation: Three case studies

This chapter presents an account of applying the proposed development method to three

case studies—the linear sorting array, the concurrent prime number generator, and the

Ricart-Agrawala distributed mutual exclusion protocol node—each of which demonstrates

distinct behavioural and organisational characteristics.

Each development is introduced by an informal discussion of its context and requirements.

The formalisation of these requirements in a CSP specification is presented and accom-

panied by a brief account of developing a CSP implementation prototype and applicable

verification strategies. The verification results are then presented.

Once verification of the formal model has been completed, automatic translation of the

CSPM implementation component may take place. As a result of deliberate design deci-

sions presented in previous chapters, no changes need to be made to the CSPM file that

defines the implementation component between its verification in FDR before CSPIDER

translates it1.

For each development, excerpts of the translated Go code are presented and demonstrated

to satisfy the functional requirements (and, where possible, the safety requirements). The

straightforward incorporation of the generated Go code within a demonstration program

is shown in each case, and the principles and procedures by which the CSPIDER tool struc-

tures its generated code are illustrated by the divergent structural and language features

present in each case study’s CSP model. This part of the evaluation focuses on novel or in-

teresting CSP features present in each model, and discusses how CSPIDER maps these in

the resulting Go implementation code.

The chapter concludes with a summary of the evaluation of the method’s capabilities, ad-

vantages and limitations.

1The CSPIDER CSPM style requirements and annotations have been presented in Chapters 6 and 7 and are
not dealt with here.

156

9 Evaluation: Three case studies 157

9.1 Linear sorting array

T. Davies’ critical analysis of CSP implementation techniques (2012) provides a case study

of the verification and implementation of a CSP model of a linear sorting algorithm at-

tributed to Akl (1985). The modeling and verification of this model was discussed in Chap-

ter 3; likewise, its implementation was surveyed in Chapter 5.

While Davies provides additional proofs to support his verification results, these details

are not of major relevance to the evaluation of the proposed method or of the CSPIDER

software tool. Rather, the key relevance of Davies’ work to this study is that it provides thor-

ough documentation of the modelling and verification of a CSP prototype and a detailed

account of the adaptations necessary in order to apply three different CSP implementation

techniques to the model.

For the purposes of this evaluation, Davies’ documented CSPM model was minimally

adapted to conform with CSPIDER’s style requirements before the documented model-

checking verification was re-run on the adapted prototype. Once it was established that

the adapted prototype still passed verification, an attempt was made to generate a Go im-

plementation using the CSPIDER tool.

9.1.1 Adaptations

T. Davies (2012) reports preparing a ‘primitive’ version of the verified CSP script to resolve

incompatibilities with the JCSP (Welch n.d.) and CSP++ (Gardner 2015) implementation

techniques that his study evaluated. In contrast to this, only minimal adaptations were re-

quired to render Davies’ original formulation of his CSP model implementable by CSPIDER.

In large part, this is because CSPIDER provides a direct implementation of the replicated

alphabetised parallel operator. CSP++ is the only implementation technique investigated

by Davies’ study that provides automatic translation from CSPM, and at the time of writing

its translator only implements interface parallel composition (Gardner 2008).

A comparison of the original and adapted CSPM scripts has already been presented in

Chapter 5, but they will be briefly surveyed here.

First, the implementation and specification components of the original model (T. Davies

2012, pp. 114–7) are separated (Section D.1). The specification scenarios require no modi-

fication from the original model. For example, the ok and notSorted events may be declared

within the specification component and do not need to be renamed to express their direc-

9 Evaluation: Three case studies 158

tionality within the specification processes that perform them as with similar channels in

the implementation component.

The required adaptations to the implementation component are not extensive. The pa-

rameterised declarations defining event sets and processes in the original file are type-

annotated as per the output of FDR’s type-checker, and the Cell and Output processes are

subsumed into substates of a bounded process named ARRAYCELL (Listing 9.1). The chan-

nel, event set and process definitions are parameterised over a constant, arraySize, which

is assigned a value by the specification script. An ‘external’ type annotation (of the form --#

arraySize :: Int) is added to direct CSPIDER to map this identifier, which in the original

CSPM model is assigned a value by the specification script, onto a formal parameter of the

translated Go type’s constructor function.

Listing 9.1: The ARRAYCELL process definition

1 ARRAYCELL :: (Int) -> Proc

2 ARRAYCELL(id) =

3 let

4 CELL :: (Int, Int, Int) -> Proc

5 CELL(id, store, count) =

6 count == 0 &

7 digitChan.id?x -> CELL(id, x, count+1)

8 []

9 count > 0 and count < arraySize - id &

10 digitChan.id?x ->

11 (if x > store

12 then

13 digitChan.id+1!x -> CELL(id, store, count+1)

14 else

15 digitChan.id+1!store -> CELL(id, x, count+1))

16 []

17 count == arraySize - id &

18 OUTPUT(id, store, count)

19 OUTPUT :: (Int, Int, Int) -> Proc

20 OUTPUT(id, store, count) =

21 count < arraySize &

22 digitChan.id+1!store -> digitChan.id?x -> OUTPUT(id, x, count+1)

23 []

24 count == arraySize &

25 digitChan.id+1!store -> OUTPUT(id, 0, count+1)

26 []

27 count == arraySize+1 &

28 CELL(id, 0, 0)

29 within CELL(id, 1, 0)

9 Evaluation: Three case studies 159

T. Davies (2012)’s original model featured a multi-way synchronisation event done that pro-

vides a barrier between the array of cells jointly behaving as defined by Cell and Output. This

is not straightforwardly implementable, but it is also not essential to the operation of the al-

gorithm; for example, it was removed from Davies’ own adaptation of the algorithm model

for use with other CSP implementation techniques (T. Davies 2012, pp. 80–81).

As in Davies’ original model, the linear sorting array prototype is formed from a repli-

cated alphabetised parallel composition of the ARRAYCELL process (Listing 9.2). However,

the adapted model formalises the input and output channels of the linear sorting array as

input and output, as referenced by the renaming clause appended to the declaration of the

ARRAYCELL process.

Consequently CSPIDER classifies input and output as client-visibility channels—more pre-

cisely, it fails to ‘downgrade’ them to ‘network’- or ‘object’-visibility channels—and conse-

quently implements them as exportable members of the Lsa process network.

Listing 9.2: Composing the linear sorting array in the adapted model

1 ARRAY =

2 (|| id:{0..arraySize-1} @ [synchroSet(id)] ARRAYCELL(id))

3 [[digitChan.0 <- input, digitChan.arraySize <- output]]

9.1.2 Translation

CSPIDER translates the CSPM model shown in Section D.1 to a reusable type that encapsu-

lates a process network Lsa and an array of instances of the process object arraycell (Sec-

tion D.2).

The process object arraycell provides a modest illustration of how CSPIDER implements

sequential CSP processes. Each process substate defined by the original CSPM script is

implemented as a method of the process object (methods cell and output, Listing D.5).

Calls to substate methods are sequenced by the process object’s eponymous ‘driver’

method (Listing 9.3): this is the method that is invoked from the process network’s own

‘run’ method to spawn an instance of the process object.

9 Evaluation: Three case studies 160

Listing 9.3: The eponymous ‘driver’ method of the arraycell process object

1 func (a *arraycell) arraycell() {

2 a.jumpTable = map[int]func() int{

3 ARRAYCELL_CELL: a.cell,

4 ARRAYCELL_OUTPUT: a.output,

5 }

6 a.wg.Add(1)

7 a.jump = ARRAYCELL_CELL

8 a.proxy = make(chan struct{}, 1)

9 a.proxy <- struct{}{}

10 go func() {

11 for {

12 a.jump = a.jumpTable[a.jump]()

13 if a.jump == ARRAYCELL_SKIP {

14 break

15 }

16 }

17 a.wg.Done()

18 }()

19 }

In the process object’s initialisation (Listing D.4, lines 26–33), it receives a pointer to the

process network’s sync.WaitGroup counting semaphore; the arraycell method increments

this before spawning a goroutine to cycle through the derived substates. On termination

(that is, reaching a SKIP state), the spawned goroutine will decrement the process network’s

semaphore before terminating; although not demonstrated in this model, this provides a

reasonable basis for implementing termination in process networks.

9.1.2.1 Implementing unprefixed alternatives: the proxy channel

The declaration, allocation and ‘priming’ of a buffered ‘empty struct’ channel named proxy

on lines 7–8 of Listing 9.3 concerns a mechanism that CSPIDER implements when one or

more substates of a process object define an external choice alternative consisting solely of

a process label, as in T. Davies (2012)’s original model (Listing 3.10, lines 43–44, 55–56) and

the adapted version (Listing 9.1, lines 17–18, 27–28).

The behaviour of the Go select statement emulates CSP external choice, except for the con-

dition that every case must perform a (Go) channel input or output operation. As the al-

ternatives in the original CSP model do not perform events, CSPIDER implements each

alternative as the process object performing an input from the proxy channel, which is allo-

cated as a buffered channel so that it may be ‘primed’ by a write operation, without which

9 Evaluation: Three case studies 161

it would never become selectable. When the proxy channel is selected by a substate, it is

immediately replenished, without which it would only ever be selectable once. Usage of

the proxy channel mechanism can be shown to preserve the semantics of the original CSP

process:

• Instances of a proxy channel are always local to a process object; no process object

can commit a read or write to another process object’s instance.

• In the (implausible) situation that more than one alternative in an external choice

consists of an unguarded process label, the CSPIDER tool will generate two select

cases that will always evaluate to true. The Go specification states that under these

circumstances the choice of which case to execute is non-deterministic, which re-

flects the semantics of CSP external choice under an equivalent condition.

• All code operations on the buffered proxy channel—its declaration and initial prim-

ing, and its replenishment after it is selected—are templated by the CSPIDER tool’s

generative phase, so its behaviour is consistent across every instance. A select case

based on a proxy channel will always be selectable unless a guard condition is present

and evaluates to false.

Listing 9.4: The ‘cell’ substate method of the arraycell process object

1 func (a *arraycell) cell() int {

2 select {

3 case x := <-guardedIntChan(a.count == 0, a.digitChan[a.id]):

4 a.store = x // CELL(store := x)

5 a.count = a.count + 1 // CELL(count := count+1)

6 return ARRAYCELL_CELL

7 case x := <-guardedIntChan(a.count > 0 && a.count < a.arraySize-a.id, a.digitChan[

a.id]):

8 if x > a.store {

9 a.digitChan[a.id+1] <- x

10 a.count = a.count + 1 // CELL(count := count+1)

11 return ARRAYCELL_CELL

12 } else {

13 a.digitChan[a.id+1] <- a.store

14 a.store = x // CELL(store := x)

15 a.count = a.count + 1 // CELL(count := count+1)

16 return ARRAYCELL_CELL

17 }

18 case <-guardedSignalChan(a.count == a.arraySize-a.id, a.proxy):

19 a.proxy <- struct{}{}

20 return ARRAYCELL_OUTPUT

21 }

22 }

9 Evaluation: Three case studies 162

Once each substate method reaches the conclusion of its process expression (or a branch

thereof), it returns an integer constant, which either maps to a substate method defined on

the process object or evaluates to SKIP, triggering the termination of the process object.

9.1.3 Testing

T. Davies (2012, p. 78) demonstrates the efficacy of the implementations of the linear sort-

ing array model by incorporating them into interactive applications and recording their

results over several 0/1 sequences.

In this evaluation testing is motivated by two concerns:

1. Firstly and most importantly, does the generated component bear out the verification

results of the model it is derived from? Does it deadlock? Does it sort?

2. How straightforward is it to use an instance of the generated type within a simple

demonstration program?

The Lsa type was evaluated with a simple demonstration program reproduced in Sec-

tion D.3. This program generates sequences of random integers in the range 0–512 to sim-

ulate an input stream, and feeds each sequence in turn to the linear sorting array com-

ponent before retrieving the corresponding output. The bulk of the program listing is

concerned with generating the simulated input streams; the entire usage of the CSPIDER-

generated component is shown in Listing 9.5. Example output for arraySize = 6 is given in

Section D.4.

Listing 9.5: Usage of the Lsa component in a demonstration program

1 lsa := lsa.NewLsa(arraySize)

2 lsa.Lsa()

3

4 fmt.Println("Sorted rows: ")

5 for i := 0; i < arraySize; i++ {

6 for j := 0; j < arraySize; j++ {

7 lsa.Input <- rows[i][j]

8 }

9 for k := 0; k < arraySize; k++ {

10 fmt.Printf("%d\t", <-lsa.Output)

11 }

12 fmt.Printf("\n")

13 }

9 Evaluation: Three case studies 163

It was empirically established that the generated Go type does not deadlock and does sort

for a wide variety of values of arraySize (note this variable is passed as an argument to lsa.

NewLsa in Listing 9.5).

9.1.4 Evaluation

Evaluating the proposed development method as a whole on the basis of the linear sorting

array example would clearly be unfair, since the problem, a CSPM model of the problem,

and the verification strategy for that model have all been drawn from the existing literature.

Reflecting this, the two remaining case studies presented in this chapter address familiar

problems drawn from the literature, but for each the CSP model, verification strategy and

results are original.

However, as a demonstration exercise for the capabilities of the CSPIDER tool, the linear

sorting array provides a useful test case. It demonstrates CSPIDER’s ability to implement

replicated alphabetised parallel composition, external choice alternatives that do not ex-

pose ‘first events’, and external choice alternatives guarded by Boolean conditions. No CSP

implementation technique known to the author is capable of implementing any of these

features of the language; although only one CSP implementation technique known to the

author is capable of directly generating implementation code in the first instance.

T. Davies (2012, pp. 143–149) reproduces a CSP++-generated implementation of a linear

sorting array which derives from what Davies calls a ‘primitive’ version of his original model

and is approximately twice the length of the code generated by CSPIDER. However, given

that CSPIDER and CSP++ target significantly different runtime environments, and CSPI-

DER has the considerable advantage of targeting an environment designed to provide con-

cise language-level support for concurrency, comparing the code generated by each of

these methods by this metric is unlikely to be instructive. It is clear from (Gardner 2005b,

pp. 131–132) that implementing external choice in the runtime environment CSP++ tar-

gets poses significant technical challenges.

A better basis for comparison might be the extent to which each technique can interpret

and implement a model without requiring significant adaptations be made to it. Here,

CSPIDER comes out ahead. In order to obtain a CSP++ implementation of the linear sort-

ing array model, Davies was obliged to recast the replicated alphabetised parallel composi-

tion that defines the sorting array as serial applications of interface parallel, which has the

undesirable side-effect of replacing the ‘array size’ parameterisation present in the original

model with a constant value.

9 Evaluation: Three case studies 164

The design of CSPIDER’s output model readily permits the translated ‘process network’ to

spawn and initialise ‘process objects’ in replication arrays defined in terms of expressions

captured from the original CSPM declaration, meaning that no such rewriting is neces-

sary.

9.2 Prime number generator

A concurrent prime number generator may be implemented as a pipeline of processes in

which each process initially inputs a prime number x from its predecessor, outputs it, and

thereafter receives further ascending numbers from its predecessor and passes them on to

its successor, culling numbers that are multiples of the original prime x.

A version of this algorithm is presented in Hoare (1978, p. 281), credited to McIlroy, who

provides a discussion in McIlroy (2016).

A simple, non-parameterised version of this program that spawns and connects filter gor-

outines dynamically is reproduced in Listing 9.6.

Listing 9.6: A concurrent prime ‘sieve’, reproduced from Go Project (n.d.)

1 // A concurrent prime sieve

2

3 package main

4

5 import "fmt"

6

7 // Send the sequence 2, 3, 4, ... to channel ’ch’.

8 func Generate(ch chan<- int) {

9 for i := 2; ; i++ {

10 ch <- i // Send ’i’ to channel ’ch’.

11 }

12 }

13

14 // Copy the values from channel ’in’ to channel ’out’,

15 // removing those divisible by ’prime’.

16 func Filter(in <-chan int, out chan<- int, prime int) {

17 for {

18 i := <-in // Receive value from ’in’.

19 if i%prime != 0 {

20 out <- i // Send ’i’ to ’out’.

21 }

22 }

23 }

9 Evaluation: Three case studies 165

24

25 // The prime sieve: Daisy-chain Filter processes.

26 func main() {

27 ch := make(chan int) // Create a new channel.

28 go Generate(ch) // Launch Generate goroutine.

29 for i := 0; i < 10; i++ {

30 prime := <-ch

31 fmt.Println(prime)

32 ch1 := make(chan int)

33 go Filter(ch, ch1, prime)

34 ch = ch1

35 }

36 }

The following model seeks to adapt this basic outline in two ways: firstly, to parameterise

the program in terms of a ceiling limit (‘generate all primes up to x ’) and secondly, to encap-

sulate all of its internal events so that the process composition participates in two commu-

nications with its environment once it has been supplied with its governing parameter: a

stream of messages containing prime numbers and a signal ‘done’ indicating that the limit

has been reached.

Unlike the linear sorting array, this program is intended to terminate; this has minor impli-

cations for its verification through model-checking.

9.2.1 Verification

Verification that the generator actually outputs primes can be most straightforwardly per-

formed through animation. However, model-checking can show two important properties

of the concurrent design: firstly, that the hiding of events within the design does not intro-

duce divergence, and secondly, that the generator does not deadlock before it reaches a

successful termination.

Listing 9.7 shows the CSPM specification script for the prime generator. Line 3 assigns a

value to the maxLimit constant, over which the FILTERARRAY component of the implementa-

tion script is parameterised.

9 Evaluation: Three case studies 166

Listing 9.7: Verification checks for the prime generator model

1 include "pgImpl.csp"

2

3 maxLimit = 8

4

5 assert PRIMEGENERATOR :[divergence free]

6

7 -- The following check is a ’termination-friendly’ equivalent of

8 -- assert PRIMEGENERATOR :[deadlock free]

9 assert SKIP [F= PRIMEGENERATOR \Events

10

11 -- Remaining verification can be accomplished by animation

Verifying that a process with hidden events is free from divergence, as previously shown in

Section 3.4, may be performed by a built-in FDR check (line 5).

However, since this program terminates by design once it reaches the maxLimit parameter,

the built-in FDR deadlock-freedom check is unsatisfactory for the purposes of verifying

the design. This check is based on finding any state that can refuse all (named) events, and

the SKIP state—which can refuse all events except for the special, unnamed ‘tick’ event that

indicates successful termination—matches this definition.

Consequently, verifying the deadlock-freedom of a design that can also terminate success-

fully requires a subtler check (lines 7–9). This is acquired from Roscoe (2010, p. 240):

The process P is deadlock free if and only if P \ Σ ⊒F SKIP (usually SKIP is re-

placed by DIV when P cannot terminate).

where Σ denotes the set of all named events, coded in CSPM as Events. Line 9 gives the

equivalent CSPM expression.

The successful results of these refinement checks are reproduced in Appendix E.

9.2.2 Implementation prototype

The PRIMEGENERATOR is modelled as the composition of the following processes:

EMITTER, a process parameterised by a ceiling value that outputs a stream of integers to the

nearest FILTER, beginning with ‘2’ and continuing with successive odd numbers, until

it reaches the ceiling value at which point it explicitly signals its termination.

9 Evaluation: Three case studies 167

FILTER, a process composed by replicated alphabetised parallel into the composition

FILTERS, where the size of FILTERS is parameterised by the integer-rounded square root

of the ceiling value. Each FILTER implements the basic algorithm outlined in the in-

troduction: the first integer it receives is both output to COLLECTOR as ‘a result’ and

stored as ‘its’ prime, and this is used to perform the modulo operation on every inte-

ger it receives subsequently. Integers that do not divide evenly are passed to the next

FILTER. When the first FILTER process receives notification of the EMITTER’s termination,

it relays this to the next FILTER before terminating.

The last FILTER passes every integer it receives directly to the COLLECTOR; as a result of

the parameterisation of the FILTERS array, any integer beneath the ceiling value that is

passed all the way to the final FILTER will be a prime. It relays the termination signal

to the COLLECTOR before terminating.

COLLECTOR implements an interface between the FILTERS array and the environment of the

PRIMEGENERATOR: it relays a single prime from each FILTER process to the environment

in turn until it reaches the final FILTER in the array. It relays further primes from this

process until it receives the relayed termination signal.

This implementation prototype (Appendix E) is a slightly more complex model than the

linear sorting array example, demonstrating for the first time the application of interface

parallel composition, as well as the CSPIDER renaming strategy for embedding direction-

ality in non-parameterised events (e.g., the use and renaming of cDoneIn and cDoneOut in the

definition of COLLECTOR, Listing 9.8).

Listing 9.8: The COLLECTOR process

1 COLLECTOR :: (Int, Int) -> Proc

2 COLLECTOR(fID, lastFilter) =

3 let

4 COLLECT :: (Int, Int) -> Proc

5 COLLECT(fID, lastFilter) =

6 if fID < lastFilter

7 then

8 out.fID?y -> primes!y -> COLLECT(fID+1, lastFilter)

9 else

10 out.fID?y -> primes!y -> COLLECT(fID, lastFilter)

11 []

12 cDoneIn -> cDoneOut -> SKIP

13 within COLLECT(fID, lastFilter) [[cDoneIn <- pipesDone.numFilterIDs-1,

14 cDoneOut <- done]]

9 Evaluation: Three case studies 168

While serving its purpose, the implementation of COLLECTOR is unfortunately somewhat awk-

ward. This process, which in any event exists to ‘merge’ the individual primes output by the

members of FILTERARRAY, could be expressed more naturally in CSPM than it is here through

applying the replicated external choice operator or an equivalent channel operation. How-

ever, this alternative does not lend itself to implementation: CSPIDER maps CSPM external

choice expressions onto the Go select statement, but every case in a select statement must

be explicitly enumerated.

In an ‘idiomatic’ Go development, it would of course be natural to share an output chan-

nel between the goroutines implementing each filter—this is, in fact, precisely what is done

with the prime channel in Listing 9.6. A direct representation of this scenario in CSPM would

be hard to achieve, however, as the semantics of the replicated alphabetised parallel opera-

tor would consider each individual FILTER’s participation in a ‘prime’ event to be a synchro-

nisation between all of the FILTER processes.

A further dissatisfying aspect of the CSPM prototype is its failure to express or verify prop-

erties over the dynamic process creation implemented by the Go sketch (Listing 9.6) or

outlined by McIlroy (2016). The compromise applied here—parameterising the size of the

FILTERS array—is effective but fulfils the brief in letter rather than spirit.

Modelling dynamic process creation in algebra CSP is described by Schneider (1999, p. 46),

but the timescale of the broader project has not permitted investigation as to whether these

techniques can be applied in CSPM models. It is clearly not beyond the capabilities of the

implementation environment.

9.2.3 Translation

The CSPIDER tool maps the (marginally more complex) process composition of

PRIMEGENERATOR to a package, pg, that implements a reusable type Pg which encapsulates

a process network comprising single instances of the collector and emitter process objects

as well as a replicated array of the filter process object. Listing 9.9 shows the configuration

and initialisation of the parameterised process network.

9 Evaluation: Three case studies 169

Listing 9.9: The configuration and initialisation of the Pg process network

1 func NewPg(maxLimit int, Done chan struct{}, Primes chan int) *Pg {

2 var wg sync.WaitGroup

3

4 // init state variables

5 numFilterIDs := estSqRt(2, maxLimit)

6

7 // allocate internal channels

8 var out []chan int

9 for i := 0; i <= numFilterIDs; i++ {

10 out = append(out, make(chan int))

11 }

12

13 var pipesDone []chan struct{}

14 for i := 0; i <= numFilterIDs; i++ {

15 pipesDone = append(pipesDone, make(chan struct{}))

16 }

17

18 var filterPipes []chan int

19 for i := 0; i <= numFilterIDs; i++ {

20 filterPipes = append(filterPipes, make(chan int))

21 }

22

23 var filterShutdown []chan struct{}

24 for i := 0; i <= numFilterIDs; i++ {

25 filterShutdown = append(filterShutdown, make(chan struct{}))

26 }

27

28 // allocate processes

29 emitter := &emitter{wg: &wg,

30 x: 2,

31 maxLimit: maxLimit,

32 sdOut: filterShutdown[0],

33 filterPipes: filterPipes,

34 }

35 collector := &collector{wg: &wg,

36 fID: 0,

37 lastFilter: numFilterIDs - 1,

38 numFilterIDs: numFilterIDs,

39 maxLimit: maxLimit,

40 primes: Primes,

41 cDoneIn: pipesDone[numFilterIDs-1],

42 cDoneOut: Done,

43 out: out,

44 }

45

46 // allocate replicated processes

9 Evaluation: Three case studies 170

47 var filters []*filter

48 for id := 0; id <= numFilterIDs-1; id++ {

49 filters = append(filters, &filter{wg: &wg,

50 id: id,

51 numFilterIDs: numFilterIDs,

52 maxLimit: maxLimit,

53 sdIn: filterShutdown[id],

54 pDoneOut: pipesDone[id],

55 sdOut: filterShutdown[id+1],

56 filterPipes: filterPipes,

57 out: out,

58 })

59 }

60

61 pn := &Pg{wg: &wg,

62 maxLimit: maxLimit,

63 numFilterIDs: numFilterIDs,

64 emitter: emitter,

65 collector: collector,

66 filters: filters,

67 Done: Done,

68 Primes: Primes,

69 }

70 return pn

71 }

This translation demonstrates CSPIDER’s treatment of directionally-embedded local event

names in single and replicated processes. Directionally-embedded event names are of the

most significance during the interpretive phase of CSPIDER’s activity, where they provide

a basis for recognising what kind of channel operation is denoted by the appearance of

a non-parameterised channel identifier in a process expression. To assist in traceability

between the CSPM implementation prototype and the derived Go type, the event names

are preserved as field names in the derived process objects. Their initialisation expressions

in the process network constructor are drawn (and translated) from the renaming clauses

attached to global process definitions and/or invocations.

Similarly, the loop that assembles the array of FILTER process objects (Listing 9.9, lines 48–

59) initialises each object using expressions that are lifted almost unchanged2 from the

original CSPM process definitions and composition expressions. For this to be valid, the

identifier of the loop iterator has to be collected from the indexing expression of the CSPM

declaration of FILTERS (Listing E.1, lines 92–3), which takes place in Pass14 of the interpretive

phase.

2‘Almost’ unchanged because dotted event expressions are rewritten using Go subscript syntax.

9 Evaluation: Three case studies 171

9.2.4 Testing

The derived Go type encapsulates its small process network. As with other CSPIDER-

derived types, the function signature of the type constructor explicitly expresses the pa-

rameters of the type and the client channels that have to be declared and allocated before

use. Having constructed the type, a client program may then call its eponymous method,

which ‘spins up’ the driver methods of the process objects contained therein.

Thereafter the client program executes in a loop, selecting on the type’s output stream and

its eventual termination signal. The demonstration program code and sample output are

provided in Appendix E. The program’s behaviour is consistent with animation of the CSPM

implementation prototype, and the program has not been observed to fail to terminate in

numerous executions thereof.

9.2.5 Evaluation

Although this certainly does not represent an efficient way to generate primes, the oppor-

tunity to design, verify and implement a CSPM model that actually terminates by design

felt like a valuable exercise. In terms of practical demonstration of the method, it presents

a slightly more challenging exercise in CSPM modelling than the linear sorting array and

provides a thorough test of CSPIDER’s implementation of embedded directionality, as well

as appropriate handling3 of two relatively simple applications of interface parallel.

The construction of a CSPM implementation prototype presented some difficulty in find-

ing an appropriate way to merge a series of output events from the individual instances of

a replicated alphabetised parallel composition. In a classical Go implementation the corre-

sponding goroutines could straightforwardly share a common channel, but the semantics

of CSPM provide no known way to model this. Meanwhile, the design of COLLECTOR is a viable

construction in terms of CSPM but on the terms of the Go derived type, dedicating a process

object and a (admittedly lightweight) goroutine to relaying digits is of dubious merit. More-

over, neither the CSPM model nor the Go implementation of COLLECTOR represent a general

solution to merging channels in CSPIDER-generated process networks: COLLECTOR works in

this instance because each cell except the last one only produces a single output.

3‘Appropriate handling’ denotes ‘capturing hiding and process invocation expressions, but otherwise disre-
garding’; the process network/process object output model quietly dismantles non-replicated forms of
process composition into their component parts, as presented in Chapter 8.

9 Evaluation: Three case studies 172

9.3 Ricart-Agrawala distributed mutual exclusion node

The Ricart-Agrawala algorithm for distributed mutual exclusion (Ricart and Agrawala 1981)

defines a permission-based algorithm for achieving mutual exclusion between a set of

nodes that each need, at one time or another, to gain exclusive access to a shared re-

source. The algorithm is proved to provide mutual exclusion, to be deadlock-free and to

be starvation-free (Ricart and Agrawala 1981, pp. 12–3). A complementary presentation of

the algorithm is provided by Ben-Ari (2005, pp. 216–227).

The algorithm is fully distributed: each node requests permission for accessing the shared

resource based on submitting a REQUEST containing a sequence number to every other node

in the network. Permission is established once every other node in the network has issued

a RESPONSE to the request, but any one of the other nodes may elect to defer doing so if it is

already engaged in its own attempt to gain access to the shared resource and has done so

with a lower sequence number. In the event that two nodes happen to issue REQUESTs using

the same sequence number, the tie is broken by comparing the unique IDs of the nodes.

The algorithm is symmetric: each node participates in the algorithm in the same way. Ri-

cart and Agrawala (1981) outline the structure of a node that participates in the algorithm

as a concurrent system comprising three processes: one process is responsible for partici-

pating in the protocol (that is, in terms of enabling the node in question to access the shared

resource), while the remaining two processes receive and process REQUEST and RESPONSE mes-

sages from other nodes. (Ben-Ari (2005) presents a model of the implementation of a Ricart-

Agrawala node based on two concurrent processes, whereas the CSP model presented in

this work structured a node based on five.)

9.3.1 Motivation as a case study

For the purposes of evaluating the proposed development method, the Ricart-Agrawala

algorithm presents a broad and instructive exercise. Since the high-level execution of the

algorithm can be observed in terms of the exchange of visible messages between nodes, it is

very suitable to CSP modelling and verification. The desired property of deadlock-freedom

can be established through the FDR built-in check; we model the interactions of an algo-

rithm node and the application it acts on behalf of, giving environmental events that rep-

resent:

• the application requesting that the node obtain exclusive access,

9 Evaluation: Three case studies 173

• the node advising the application that exclusive access has been granted,

• the application advising the node that it may relinquish exclusive access,

• the node advising the application that it has sent all the responses it deferred during

the period of acquiring and maintaining exclusive access4.

Consequently, a specification scenario that expresses mutual exclusion as a safety condi-

tion under the traces model is easily formulated.

Modelling starvation-freedom—i.e., the property that a node which requests exclusive ac-

cess to the shared resource will sooner-or-later receive it—is slightly more demanding.

Since this property is proven by the guarantee that something will eventually happen, the

specification scenario needs to be expressed in a semantic model of CSP that supports such

claims. The failures-divergences semantic model, which reasons over CSP processes in the

most resource-intensive fashion, enables us to do so, and while the specification scenario

is satisfyingly straightforward, verifying it through exhaustive model-checking turns out to

be computationally demanding.

The internal implementation of the node itself, which Ricart and Agrawala (1981) clearly

define as a concurrent system, may also be modelled in message-passing terms and sub-

sequently verified in useful ways: for example, in terms of divergence- and deadlock-

freedom.

Most importantly for the purposes of modelling and verifying the Ricart-Agrawala algo-

rithm in CSP, the state space of a model of the algorithm can be made finite. Ricart and

Agrawala (1981) suggest placing a finite bound on the (theoretically unbounded) range of

sequence numbers used in the algorithm in the interest of ‘limiting the amount of storage

necessary to hold’ them: under this approach, selecting and comparing sequence num-

bers then takes place under modulo arithmetic. Implementing this strategy within the CSP

model allows the parameterised events that represent REQUEST and RESPONSE messages, as

well as the internal parameterised events relating to the comparison and selection of se-

quence numbers, to be defined over restricted integer ranges that may be parameterised

by the size of the network, which usefully limits the state space of the processes defined by

the model.
4Which responsibility is a precondition for the application making another request.

9 Evaluation: Three case studies 174

9.3.2 Verification

If the algorithm is symmetric, a network of its nodes participating in the algorithm may be

modelled as a simple composition of the node over replicated alphabetised parallel. But

there is no need for this ‘network’ process to be defined within the implementation script.

The network is only of relevance to the specification, where we use it to verify whether sys-

tems assembled from the prototype node can satisfy the correctness properties of the algo-

rithm.

Consequently, the medium that the derived nodes communicate across remains abstract,

and it is appropriate that it should be so: in the demonstration program used in this study,

the nodes perform the distributed algorithm over a network of Go channels within a single

Go binary, but the developer should be at liberty to interface the Request and Response chan-

nels, through which the derived type communicates, to IP sockets or some other medium

if desired.

Consequently the process that defines a network of Ricart-Agrawala nodes may be declared

in the specification script, and the declarations that appear in the implementation script

then purely serve to express the design of the desired program.

In the context of realising code generation from verified CSP models, this demonstrates

the realisation of one of the fundamental aims of the proposed development method:

that it is possible to prototype the implementation of a concurrent system, use exhaustive

model-checking to obtain definitive results that could not be reached via testing a coded

implementation—not only about its internal functionality, but also about how it partici-

pates as part of a larger system—and then automatically derive an implementation of the

system that may be instanced in ‘real’ programs in much the same way as its equivalent

model.

In the discussion that follows, the specification scenarios for verifying the modelled algo-

rithm are presented first at an appropriately abstract level. This is followed by a discussion

of the modelling of the implementation prototype and its verification in its own right.

9.3.2.1 Verification of the algorithm

In this discussion an individual Ricart-Agrawala node is represented by the CSP process

NODE, parameterised by a unique numeric ID, and a composed network of such nodes is

9 Evaluation: Three case studies 175

represented by the CSP process NETWORK, which assembles instances of the NODE process over

replicated alphabetised parallel.

The visible events that can be performed by NETWORK are the request and response messages

exchanged between each node and the events that each node can participate in defining its

interactions with a client application: these are hostRequestingCS, hostEnterCS, hostLeavingCS,

and hostRequestComplete, and are parameterised by the node’s unique ID.

Deadlock-freedom of the algorithm may be established by applying the built-in check to

the NETWORK process. FDR performs this check by default in the failures-divergences seman-

tic model; however, if the NETWORK process can be successfully verified as divergence-free

(line 4), this allows a result for deadlock-freedom to be obtained in the more resource-

efficient stable failures model (Listing 9.10, line 7).

Listing 9.10: Verification checks for the Ricart-Agrawala algorithm encoded in CSPM

1 -- NETWORK CHECKS

2 NETWORK =

3 || i:AllNodes @ [aNODE(i)] NODE(i)

4 assert NETWORK :[divergence free]

5 -- result of the following check is only valid if NETWORK

6 -- is found to be divergence-free

7 assert NETWORK :[deadlock free [F]]

8

9 -- 1. Safety condition: Is mutual exclusion upheld by the network?

10 CRITICALSEC(i) =

11 hostEnterCS.i -> hostLeavingCS.i -> MUTEX_HOLDS’

12 MUTEX_HOLDS’ =

13 [] i:AllNodes @ CRITICALSEC(i)

14 MUTEX_HOLDS =

15 MUTEX_HOLDS’ ||| RUN(diff(Events, {|hostEnterCS, hostLeavingCS|}))

16 assert MUTEX_HOLDS [T= NETWORK

17

18 -- 2. Liveness condition: If a node requests access to the network, will it

19 -- (a) for an arbitrary sequence number, (S_1)

20 -- (b) send exactly one request to every other

21 -- node on the network (S_2)

22 -- (c) receive exactly one response from each other

23 -- node on the network (S_3)

24 S_0(i) =

25 hostRequestingCS.i -> S_1(i)

26 []

27 (CHAOS(Events) |~| STOP)

28

29 S_1(i) =

30 ([] y : SeqNumbers @ S_2(i, y, seq(diff(AllNodes, {i}))))

9 Evaluation: Three case studies 176

31 []

32 (CHAOS(Events) |~| STOP)

33

34 S_2(i, y, requestsToSend) =

35 if length(requestsToSend) > 0

36 then

37 (request.head(requestsToSend).i.y -> S_2(i, y, tail(requestsToSend))

38 []

39 (CHAOS(Events) |~| STOP))

40 else

41 S_3(i, diff(AllNodes,{i}))

42

43 S_3(i, responsesExpected) =

44 if card(responsesExpected) > 0

45 then

46 (([] x : responsesExpected @ response.i.x -> S_3(i, diff(responsesExpected,{x})))

47 []

48 (CHAOS(Events) |~| STOP))

49 else

50 CHAOS(Events) |~| STOP

51

52 FINITE_BYPASS(i) = S_0(i)

53

54 -- We run this check over the most algorithmically disadvantaged node in the

55 -- network (e.g., the node that will always lose a same-sequence-ID

56 -- tie-breaker).

57 assert FINITE_BYPASS(netSize-1) [F= NETWORK

Mutual exclusion can be defined as the safety property that for any node ID i , NETWORK’s per-

formance of hostEnterCS.i is strictly succeeded by hostLeavingCS.i before NETWORK can per-

form hostEnterCS for any other node ID. In CSPM this can be expressed incrementally as:

CRITICALSEC(i) expresses the strict-succession scenario as hostEnterCS.i -> hostLeavingCS.

i.

MUTEX_HOLDS’ expresses that the succession scenario strictly alternates (by replicated exter-

nal choice) between the available node IDs.

MUTEX_HOLDS then defines a process that behaves exactly as MUTEX_HOLDS’ interleaved with ar-

bitrary behaviour of the other events defined in the model; in colloquial terms, if this

process is observed to participate in the hostEnteror hostLeaving events at all, it should

do so as defined by MUTEX_HOLDS’, but may interleave this behaviour with performance

of any other events at any time.

9 Evaluation: Three case studies 177

Since mutual exclusion is a safety property (we are verifying that ‘something bad cannot

happen’), we may then verify this property is preserved by model-checking that NETWORK

trace-refines MUTEX_HOLDS (Listing 9.10, line 16). The use of RUN here indicates that the speci-

fication ‘doesn’t care’ about observations of any events other than hostEnter and hostLeaving

.

If the algorithm as modelled does not preserve mutual exclusion, the refinement check

will fail and FDR will provide a counter-example demonstrating where the implementation

prototype fails to behave as specified.

The final correctness property of starvation-freedom is modelled here as the process

FINITE_BYPASS, which expresses the idea that a node that requests permission to access the

shared resource will eventually be granted it. Following the CSP modelling heuristic of

expressing a specification scenario over as few events as possible, this specification is de-

fined over the event hostRequestingCS.i for some node ID i , the set of request messages it

can send for some sequence number y , and the set of response messages it must receive in

order to obtain permission to access the shared resource. From the definition of the algo-

rithm, a node that issues a request for permission to a network of size N has been granted

permission once it has received N − 1 responses; it is therefore unnecessary to model the

hostEnter event. Having established that the network—and therefore each of its compo-

nent nodes—is deadlock-free, and that any message-buffering processes within the node

behave as buffers (see below), we can deduce that any node that receives the entire set of

anticipated responses will directly proceed to accessing the shared resource.

This specification is articulated by the scenario processes S_0, S_1, S_2 and S_3. As this spec-

ification seeks to establish a guarantee, it has to be checked in the failures-divergences

model, and as such the formulation for ‘behaviour we don’t care about’ is slightly differ-

ent.

Since the goal is to establish that a specific sequence of events is guaranteed to be avail-

able, this means the specification needs to be structured so that the refinement check will

only fail if FDR finds a situation where the full sequence cannot be performed. In other

words, the specification needs to tolerate observations where the prototype performs a sub-

sequence of the interesting sequence of events before deviating from it by doing something

else or by doing nothing further. In the failures-divergences model this is formulated as

action1 -> action2 -> INTERESTING [] (Chaos(Events)|~| STOP).

Consequently, the S_0 to S_3 scenarios may be read aloud as:

if hostRequestingCS is performed by a node on the network (S_0), then that node

9 Evaluation: Three case studies 178

must subsequently be able to select an arbitrary sequence number (S_1) and

send an ordered sequence of requests supplying that sequence number to every

other node on the network (S_2); having done so, that node must eventually

receive one response from every other node on the network (S_3).

It was observed that FINITE_BYPASS is a resource-intensive verification. The original in-

tention of developing a STARVATION_FREEDOM scenario as a replicated external choice of the

FINITE_BYPASS scenario was abandoned after repeated attempts exhausted the memory re-

sources of the author’s system5.

By appeal to the symmetry of the model, this work claims that checking the FINITE_BYPASS

scenario for one node is sufficient to check it for every node. The scenario is checked

against the node with the highest node ID in the network, as this is the node that will always

lose same-sequence-number tie-breakers.

The implementation prototype of the Ricart-Agrawala algorithm node passes all of these re-

finement checks. The output of the FDR command-line tool is reproduced in Appendix F.

9.3.2.2 Verification of the node

It may be anticipated from the outline provided in Ricart and Agrawala (1981) that the NODE

shall be modelled as the composition of several CSP processes, and that the events by which

these processes communicate with one another will be hidden. Consequently there are two

correctness properties that need to be verified of NODE: that it is deadlock-free, and that the

hidden events cannot introduce divergences (recalling that a divergence can be understood

as a process that becomes effectively deadlocked as a result of reaching a state from which

it may perform an infinite sequence of internal events). Following Roscoe (2010, pp. 163–4),

successfully establishing divergence-freedom of the node first will enable the subsequent

deadlock-freedom check to be made in the (less resource-intensive) stable failures seman-

tic model.

However, establishing the divergence-freedom of NODE in isolation from the NETWORK it par-

ticipates in is not an efficient approach, and it transpires that we can establish this result

more efficiently by performing the same check over NETWORK.

When NODE is considered as part of the NETWORK composition, the availability and sequencing

of the events that represent REQUEST and RESPONSE messages are constrained, which (usefully)

5It has not been possible to investigate CSPM model optimisation or compression strategies during the
timescale of the study, and this has been held over for further work.

9 Evaluation: Three case studies 179

limits the state space of NODE. When FDR model-checks NODE in isolation, the request and

response events are considered as environmental events whose occurrence and sequencing

is no longer defined by the terms of the Ricart-Agrawala algorithm—in essence, they be-

come available on a pseudorandom basis—which massively enlarges the state space that

FDR is obliged to explore to no useful end.

As a practical illustration of this, the author’s system is capable of verifying the divergence-

freedom of the NETWORK process as defined over a network size of three nodes in a little over

2.5 minutes; attempting to verify the divergence-freedom of an isolated instance of NODE

consumed over 5 minutes before the refinement-check was cancelled.

The NODE is assembled from its component processes by repeated applications of the inter-

face parallel operator with event hiding (Listing 9.11). Since event hiding introduces the

possibility of divergence, it is useful to check each composition interface for divergence-

freedom and deadlock while developing the processes (Listing 9.12): at these levels, the

state space is small enough to render such checks tractable.

Listing 9.11: Assembly of the NODE process

1 -- Composition

2 RECEIVE_REQ :: (Int) -> Proc

3 RECEIVE_REQ(id) =

4 RXREQ(id)

5 [| aRXREQifEXTREQ |]

6 EXTREQ(id)

7 \ aRXREQifEXTREQ

8

9 RECEIVE_NODE :: (Int) -> Proc

10 RECEIVE_NODE(id) =

11 RECEIVE_REQ(id)

12 [| aEXTREQifNODESTATE |]

13 NODESTATE(id)

14 \ aEXTREQifNODESTATE

15

16 RA_NODE :: (Int) -> Proc

17 RA_NODE(id) =

18 RECEIVE_NODE(id)

19 [| aPROTOifNODESTATE |]

20 PROTO(id)

21 \ aPROTOifNODESTATE

22

23 NODE :: (Int) -> Proc

24 NODE(id) =

25 RA_NODE(id)

26 [| aRXRSPifPROTO |]

9 Evaluation: Three case studies 180

27 RXRSP(id)

28 \ aRXRSPifPROTO

Correctness properties of the behaviour of or interactions between components of the

node may also be established by refinement checks. For example, the NODE process imple-

ments two processes, RXRSP and RXREQ, to directly participate in message exchange across

the network of nodes. Each of these processes implements an N-1-place buffer, but we can

verify this claim by refinement against minimally-adapted versions of a specification pro-

vided in Roscoe (2010, p. 12): ‘the most nondeterministic process that can unequivocally

be called a buffer, and in general Buff<> ⊑ P if and only if P is a buffer’.

Listing 9.12: Checking NODE component interfaces for divergence- and deadlock-freedom

1 -- double-check component processes assemble correctly

2 assert RXREQ(0) [| aRXREQifEXTREQ |] EXTREQ(0)

3 \ aRXREQifEXTREQ :[divergence free]

4 assert RXREQ(0) [| aRXREQifEXTREQ |] EXTREQ(0)

5 \ aRXREQifEXTREQ :[deadlock free [F]]

6 assert EXTREQ(0) [| aEXTREQifNODESTATE |] NODESTATE(0)

7 \ aEXTREQifNODESTATE :[divergence free]

8 assert EXTREQ(0) [| aEXTREQifNODESTATE |] NODESTATE(0)

9 \ aEXTREQifNODESTATE :[deadlock free [F]]

10 assert NODESTATE(0) [| aPROTOifNODESTATE |] PROTO(0)

11 \ aPROTOifNODESTATE :[divergence free]

12 assert NODESTATE(0) [| aPROTOifNODESTATE |] PROTO(0)

13 \ aPROTOifNODESTATE :[deadlock free [F]]

14 assert PROTO(0) [| aRXRSPifPROTO |] RXRSP(0)

15 \ aRXRSPifPROTO :[divergence free]

16 assert PROTO(0) [| aRXRSPifPROTO |] RXRSP(0)

Likewise, it may be verified that the observable traces of NODESTATE accurately emulate the

atomic locking/unlocking of the crucial ‘local sequence number’ state variable suggested

in the original Ricart and Agrawala (1981) paper and explicitly modelled in Ben-Ari (2005)’s

presentation. This verification result thereby confirms the accuracy of EXTREQ’s compar-

isons under all circumstances.

The traces specification NODESTATE_ATOMICITY confirms that NODESTATE is not capable of inter-

leaving the sequence of events that represent EXTREQ’s comparison operation against the

local sequence number and the sequence of events by which PROTO is able to increment

it.

All of these refinement checks are passed by the implementation prototype of the Ricart-

Agrawala node.

9 Evaluation: Three case studies 181

Listing 9.13: Correctness checks over component processes of NODE

1 -- 1. does RXREQ implement a buffer?

2 channel leftReq, rightReq : AllNodes.SeqNumbers

3 BUFF_REQ(<>) =

4 leftReq?x -> BUFF_REQ(<x>)

5 BUFF_REQ(s^<y>) =

6 #s < netSize - 1 &

7 (STOP |~| leftReq?x -> BUFF_REQ(<x>^s^<y>))

8 []

9 rightReq!y -> BUFF_REQ(s)

10 assert BUFF_REQ(<>) [FD= RXREQ(0) [[request.0 <- leftReq, getNextExtReq <- rightReq]]

11

12 -- 2. does RXRSP implement a buffer?

13 channel leftRsp, rightRsp : AllNodes

14 BUFF_RSP(<>) =

15 leftRsp?x -> BUFF_RSP(<x>)

16 BUFF_RSP(s^<y>) =

17 #s < netSize - 1 &

18 (STOP |~| leftRsp?x -> BUFF_RSP(<x>^s^<y>))

19 []

20 rightRsp!y -> BUFF_RSP(s)

21 assert BUFF_RSP(<>) [FD= RXRSP(0) [[response.0 <- leftRsp, getNextExtRsp <- rightRsp]]

22

23 -- 3. Does NODESTATE maintain atomicity between external request comparisons

24 -- and protocol updates to the local sequence number?

25 SPEC_SAFETY_NS1’ =

26 beginExtReqComparison -> endExtReqComparison -> SPEC_SAFETY_NS1’

27 []

28 setRequestCS.True -> setLocalSeqNum -> SPEC_SAFETY_NS1’

29 NODESTATE_ATOMICITY =

30 SPEC_SAFETY_NS1’ ||| RUN(diff(aNODESTATE,

31 {beginExtReqComparison, endExtReqComparison,

32 setRequestCS.True, setLocalSeqNum}))

33 assert NODESTATE_ATOMICITY [T= NODESTATE(0)

9.3.3 Implementation prototype

The implementation prototype for NODE is formed from repeated applications of interface

parallel over five component processes:

RXREQ receives and buffers request messages, and is drained by EXTREQ.

RXRSP receives and buffers response messages, and is drained by PROTO.

9 Evaluation: Three case studies 182

NODESTATE maintains the node’s state variables, which include its record of the highest (un-

der modulo arithmetic) sequence it has received from any other node, a Boolean pa-

rameter recording whether the node is presently requesting permission to access the

shared resource, and a set parameter that records node IDs for which the node has

deferred a response.

PROTO is woken when the client application wishes to access the shared resource and per-

forms the larger part of the network protocol defined by the algorithm on behalf of the

node. It transmits a sequence of requests for permission, collates responses received

by RXRSP, signals the client application that it may commence once all the anticipated

responses have been received, and performs the post-protocol (that is, transmitting

deferred responses) once the client application signals that it has completed its work

with the shared resource.

EXTREQ processes requests received from other nodes by RXREQ and queries NODESTATE to per-

form the sequence number comparison (under modulo arithmetic) that determines

whether the node responds immediately to an external node’s request for permission

or defers making a response until it has obtained and concluded its own access to the

shared resource.

The parameterisation of these processes demonstrates a broad range of the CSPM lan-

guage: RXRSP and RXREQ are both parameterised over integer sequences, as presented in the

discussion of their verification, while NODESTATE is parameterised over five state variables:

three integers, a Boolean value and an integer set. The event that represents a request mes-

sage is parameterised over three integer fields representing the destination node ID, the

source node ID, and the sequence number, with the result that the RXREQ process is obliged

to buffer a tuple of integers for each request message it receives from the network and to

convey each tuple to the EXTREQ process when it becomes available.

Every component of the NODE process except NODESTATE participates in network messaging at

one point or another. It is intuitive that PROTOCOL sends messages and that RXRSP and RXREQ

receive them—in fact, as a consequence of the fact that all CSP events are synchronous, if

RXRSP and RXREQ were ever unable to participate in receiving a message, the network would

deadlock—but EXTREQ is also responsible for issuing responses to external nodes that ‘win’

the sequence number comparison.

The fact that EXTREQ and PROTOCOL can each issue response messages on behalf of the node—

but in mutually-exclusive contexts—is why the NODE is assembled by application of inter-

face parallel rather than alphabetised parallel. If EXTREQ and PROTOCOL were composed over

9 Evaluation: Three case studies 183

alphabetised parallel they would deadlock attempting to synchronise on their respective

participation in the response event.

The process alphabet definitions that express these patterns of interaction are fairly elab-

orate (Listing 9.14), but since the CSPIDER tool does not make use of these definitions, it

does not have to interpret them.

Listing 9.14: Assembling process alphabets for the component processes of NODE

1 -- Environmental interactions

2 aRequestOut :: (Int) -> {Event}

3 aRequestOut(id) = -- outbound requests (PROTOCOL)

4 {request.x.id.z | x <- diff(AllNodes,{id}), z <- SeqNumbers}

5 aResponseOut :: (Int) -> {Event}

6 aResponseOut(id) = -- outbound responses (EXTREQ / PROTOCOL)

7 {response.x.id | x <- diff(AllNodes,{id})}

8 aRequestIn :: (Int) -> {Event}

9 aRequestIn(id) = -- inbound requests (RXREQ)

10 {request.id.y.z | y <- diff(AllNodes,{id}), z <- SeqNumbers}

11 aResponseIn :: (Int) -> {Event}

12 aResponseIn(id) = -- inbound responses (RXRSP)

13 {response.id.y | y <- diff(AllNodes,{id})}

14 aClient :: (Int) -> {Event}

15 aClient(id) = -- client application comms

16 {hostRequestingCS.id, hostEnterCS.id, hostLeavingCS.id, hostRequestComplete.id}

17

18 -- Intra-node composition interfaces

19 aRXREQifEXTREQ =

20 {| getNextExtReq |}

21 aEXTREQifNODESTATE =

22 {| beginExtReqComparison, getHighestNum, setHighestNum,

23 getRequestCS, getLocalSeqNumExtReq, deferResponse, endExtReqComparison |}

24 aPROTOifNODESTATE =

25 {| setRequestCS, setLocalSeqNum, getLocalSeqNumProtocol,

26 getDeferredCount, getDeferred |}

27 aRXRSPifPROTO =

28 {| getNextExtRsp |}

29

30 -- Process alphabets

31 aRXREQ :: (Int) -> {Event}

32 aRXREQ(id) =

33 union(aRequestIn(id), aRXREQifEXTREQ)

34 aEXTREQ :: (Int) -> {Event}

35 aEXTREQ(id) =

36 union(aResponseOut(id),

37 union(aRXREQifEXTREQ, aEXTREQifNODESTATE))

38 aNODESTATE =

9 Evaluation: Three case studies 184

39 union(aPROTOifNODESTATE, aEXTREQifNODESTATE)

40 aPROTO :: (Int) -> {Event}

41 aPROTO(id) =

42 union(aResponseOut(id),

43 union(aRequestOut(id),

44 union(aClient(id),

45 union(aPROTOifNODESTATE, aRXRSPifPROTO))))

46 aRXRSP :: (Int) -> {Event}

47 aRXRSP(id) =

48 union(aResponseIn(id), aRXRSPifPROTO)

This sequence number comparison is implemented by a function, maxNumUnderModulo, which

in turn references a function that performs a less-than comparison under modulo arith-

metic (Listing 9.15). Both of these functions also reference the value of a global integer

constant, M, derived from the external parameter netSize.

Listing 9.15: Functions that implement sequence number comparison under modulo arithmetic

1 -- Functions

2 maxNumUnderModulo :: (Int, Int) -> Int

3 maxNumUnderModulo(num1, num2) =

4 if num1 < M and num2 < M

5 then

6 if num1 > num2

7 then if ((num1 - num2) >= netSize) then num2 else num1

8 else if ((num2 - num1) >= netSize) then num1 else num2

9 else

10 error("maxNumUnderModulo called with invalid inputs")

11

12 strictLessThanUnderModulo :: (Int, Int) -> Bool

13 strictLessThanUnderModulo(num1, num2) =

14 if num1 < M and num2 < M

15 then

16 (num1 != num2) and (maxNumUnderModulo(num1, num2)==num2)

17 else

18 error("strictLessThanUnderModulo called with invalid inputs")

19

20 incr :: (Int) -> Int

21 incr(sn) = (sn + 1) % M

NODE is finally formed through successive applications of interface parallel, where the en-

tirety of the interface between each process is hidden at the point of composition (List-

ing 9.11). This accomplished, NODE may then be invoked within the process composition

NETWORK.

9 Evaluation: Three case studies 185

9.3.4 Translation

The CSPIDER tool generates the CSPM script shown in Section F.1 to a package, ra, that

implements a reusable type Ra, which encapsulates a process network combining single

instances of the process objects rxrsp, proto, nodestate, extreq and rxreq.

Since this generated code makes use of the cspider support package6 that implements inte-

ger set and sequence types with CSPM-equivalent methods, the ra package needs the de-

veloper to run goimports -w * to import this dependency. Following this, the package may

be built and incorporated into a new development.

Listing 9.16 shows the function signature of the NewRa constructor function. Go channels

and channel arrays corresponding to the request, response, and client application events are

passed in from a client application. When CSPIDER encounters an event parameterised by

a data tuple that also has client visibility, as in the case of Request, it automatically capitalises

the identifier assigned to the data tuple to render it as an exportable declaration, without

which the client application would be unable to declare or allocate the channel.

Listing 9.16: The function signature of the Ra constructor

1 func NewRa(netSize int, id int, Request []chan RequestMsg,

2 Response []chan int, HostRequestingCS []chan struct{},

3 HostEnterCS []chan struct{}, HostLeavingCS []chan struct{},

4 HostRequestComplete []chan struct{}) *Ra

The CSPIDER-generated implementation demonstrates how two common kinds of global

declaration in CSPM scripts are mapped onto the process network/object output model,

and how this is achieved while maintaining their dependencies on other declarations. The

CSPM script defines two parameterised values that are referenced by several processes and

functions: the integer constant M, which is parameterised by the external netSize parame-

ter, and the set AllNodes, which is parameterised by netSize and the unique id of the node in

question. These values are declared and assigned values in the Ra constructor, prior to the

declaration and allocation of network channels or process objects. This permits the pro-

cess objects that reference either of these identifiers to be declared as struct literals later in

the Ra constructor with corresponding member field assignments. In particular, these field

assignments are easy to generate: the original identifier string can be injected into both

the field name and value attributes, secure in the knowledge that a variable with a match-

ing identifier will be in scope when the struct literal itself appears in the process network

constructor.
6https://bitbucket.org/jdibley/cspider_go/

9 Evaluation: Three case studies 186

The original CSPM script defines three user-defined functions, maxNumUnderModulo,

strictLessThanUnderModulo and incr. These functions cannot be defined at a package level,

as with the functions that CSPIDER generates to implement Boolean-guarded channel op-

erations. As they may reference identifiers that were declared globally in the original CSPM

script, they must be implemented in a way that places the equivalent translated values in

scope (necessarily without altering the function signature from that of the original CSPM

declaration).

The approach taken by CSPIDER is to collect references to functions from CSPM declara-

tions of all kinds, including processes. This allows references to global identifiers to be

mapped to the corresponding struct members of process objects; if such a struct member

does not already exist in the process object, a declaration (and corresponding initialisa-

tion) is added through the process object and process network templates. The incr func-

tion is thus rendered as a method of the proto process object, while maxNumUnderModulo and

strictLessThanUnderModulo are both rendered as methods of the extreq process object.

9.3.5 Testing

Preliminary testing of the generated type against a demonstration program (presented be-

low) led almost immediately to runtime panic. The source of this defect was found to be

in the implementation of string templating for process object attributes of the intSeq type:

in each case, the struct member declaration for the ‘s’ state variable, implementing buffer

storage, had been injected into the process object correctly, but the corresponding initial-

isation had not been injected into the process literal that appears in the process network

constructor, meaning that process object member fields of intSeq type had been left unas-

signed.

This issue resolved, the demonstration program was tested successfully for extended pe-

riods. The demonstration program consists of a single clock goroutine and several worker

goroutines.

Each worker goroutine has unique ownership of an Ra object, and participates in phases of

the Ricart-Agrawala negotiation by performing writes and reads from the ‘client’ channels

of this object (lines 8–9, 15–16). In effect, each goroutine performs the following sequence

of actions for a fixed number of cycles before terminating:

1. The worker goroutine instructs its Ra object to begin negotiating for exclusive access

9 Evaluation: Three case studies 187

to the clock, and then blocks until the Ra object notifies that exclusive access has been

obtained.

2. The worker goroutine obtains one timestamp from the clock, and proceeds to simu-

late some unpredictably complex task by sleeping for a random interval bounded by

the ‘critical section sleep’ (‘CS sleep’) constant.

3. The worker goroutine wakes up, obtains a second timestamp from the clock, and

instructs its Ra object that it is leaving its critical section.

4. The worker goroutine blocks until the Ra object notifies that all deferred responses

to other nodes have now been sent. The worker goroutine then sleeps for a random

interval bounded by the ‘cycle sleep’ constant.

Empirical testing ranged over different ‘cycle sleep’ and ‘CS sleep’ upper bounds, greater

numbers of workers (N), and greater numbers of requests, with the Go runtime configured

to use at most one operating system (OS) thread. Table 9.1 displays some of the variables.

No deadlocks or failures were observed during any of these runs.

Table 9.1: Testing parameters for the Ricart-Agrawala demonstration program running as N + 2
goroutines multiplexed onto a single OS thread

N Requests Cycle sleep (ms) CS sleep (ms) Clock (s) User (s) Sys (s) Terminated
3 5000 33 45 354.4 3.054 1.966 OK
6 2500 33 45 352.3 4.928 2.540 OK

12 1250 33 45 345.5 8.909 3.193 OK
3 5000 78 45 350.5 2.985 1.908 OK
6 2500 78 45 344.9 5.468 2.735 OK

12 1250 78 45 351.7 9.165 3.339 OK

The program simulates a shared resource as a goroutine that receives requests and serves

timestamps across two Go channels that are shared by every worker goroutine instanced in

the demonstration program (Listing 9.17). Since both the request and timestamp channels

are shared by every worker goroutine, access control is entirely enforced by the Ra nodes

associated with each worker goroutine.

Listing 9.17: The simulated shared resource

1 func clock(wg *sync.WaitGroup, req chan struct{}, tC chan time.Time, done chan struct{}) {

2 wg.Add(1)

3 go func() {

4 LOOP:

5 for {

6 select {

7 case <-req:

8 tC <- time.Now()

9 Evaluation: Three case studies 188

9 case <-done:

10 break LOOP

11 }

12 }

13 wg.Done()

14 }()

15 }

This follows the by-now-familiar structure of spawning an anonymous goroutine that ex-

ecutes in a loop, issuing a timestamp in response to an explicit request. (The timestamp

retrieval is deliberately implemented as a two-step transaction, so that time.Now() is evalu-

ated when the worker synchronises on the req channel, rather than when the clock gorou-

tine re-enters the select statement.)

Listing 9.18: The worker goroutine

1 func worker(wg *sync.WaitGroup, id int, req chan struct{}, tC chan time.Time, node *ra.Ra,

2 r *rand.Rand, waiting chan struct{}, finish chan struct{}) {

3 wg.Add(1)

4 go func() {

5 node.Ra()

6 time.Sleep(randomDuration(r, hesitation))

7 for i := 0; i < numReqs; i++ {

8 node.HostRequestingCS[id] <- struct{}{}

9 <-node.HostEnterCS[id]

10 req <- struct{}{}

11 fmt.Printf("%2d, %v\n", id, (<-tC).Format("15:04:05.00000"))

12 time.Sleep(randomDuration(r, naptime))

13 req <- struct{}{}

14 fmt.Printf("%2d, %v\n", id, (<-tC).Format("15:04:05.00000"))

15 node.HostLeavingCS[id] <- struct{}{}

16 <-node.HostRequestComplete[id]

17 }

18 fmt.Println(id, " client finished; now just servicing other nodes")

19 waiting <- struct{}{}

20 <-finish

21 wg.Done()

22 }()

23 }

An excerpt of a typical program run based on three workers performing around 300 requests

each is included as Listing F.11. As the worker goroutines formally retire, the corresponding

Ra objects remain in service, responding to requests from other nodes until every worker

has completed its assigned tasks and the entire program, including the process networks,

may terminate.

9 Evaluation: Three case studies 189

The demonstration program is obliged to declare and allocate Go channels to provide a

communication medium between the network of Ra objects, which is inevitable, but also

to provide the communication medium between each Ra object and its client. These latter

channels could feasibly be declared and allocated by the object constructor, while the for-

mer channels could not. CSPIDER could only differentiate between the two instances on

the basis of contextual information about their usage outside the model—this could feasi-

bly be supplied by annotations, but the timescale of the project did not allow the in-depth

investigation of this possibility.

Listing 9.19: Declaring and allocating channels to interface the Ra objects

1 // Setup for Ricart-Agrawala objects to communicate

2 var nodes []*ra.Ra

3 var csrqPipes []chan struct{}

4 var csenPipes []chan struct{}

5 var cslvPipes []chan struct{}

6 var csrcPipes []chan struct{}

7 var reqPipes []chan ra.RequestMsg

8 var rspPipes []chan int

9

10 for i := 0; i < networkSize; i++ {

11 reqPipes = append(reqPipes, make(chan ra.RequestMsg))

12 rspPipes = append(rspPipes, make(chan int))

13 csrqPipes = append(csrqPipes, make(chan struct{}))

14 csenPipes = append(csenPipes, make(chan struct{}))

15 cslvPipes = append(cslvPipes, make(chan struct{}))

16 csrcPipes = append(csrcPipes, make(chan struct{}))

17 }

18 for i := 0; i < networkSize; i++ {

19 nodes = append(nodes, ra.NewRa(networkSize, i,

20 reqPipes, rspPipes, csrqPipes, csenPipes, cslvPipes, csrcPipes))

21 }

9.3.6 Evaluation

The proposed development method has resulted in a verified model of the Ricart-Agrawala

algorithm for distributed mutual exclusion. Within this model, the development method

promotes strict separation between the prototype implementation of a single node and the

definition of scenarios about the behaviour of said prototype, including scenarios where it

is deployed in a network. The major correctness conditions of the published algorithm

have all been expressed as specification scenarios. Other important safety conditions con-

9 Evaluation: Three case studies 190

cerning the symmetric nodes that perform the algorithm have also been expressed and

verified at the appropriate level.

The CSPIDER tool incorporated in the proposed development method has automatically

derived a cleanly encapsulated, parameterised and reusable Go component from a CSPM

implementation script, which contains an unprecedentedly broad—in the admittedly nar-

row context of automated implementation from CSPM models—array of process and chan-

nel parameterisation. The automatically derived type accurately implements the Ricart-

Agrawala distributed mutual exclusion algorithm when tested by a demonstration program

that sets goroutines competing for access to a shared resource that enforces no access con-

trol mechanism of its own.

The derived type synthesises an intermediate-complexity concurrent system—assembled

in the original CSPM implementation script from successive applications of the interface

parallel operator—that maps its component processes onto a simple, single-level output

model, silently discarding the redundant composition processes. This takes place, however,

without discarding the event-hiding expressions embedded in each composition, which

the CSPIDER tool uses to systematically encapsulate the derived type.

9.4 Discussion

This closing discussion focuses on the latter two case studies. The linear sorting array pri-

marily served as a test case for the CSPIDER tool, as well as the modifications to CSPM

implementation scripts that it requires. Here, the CSPIDER tool generated a faithful imple-

mentation of the original CSPM prototype, while satisfying the project objectives of main-

taining script-level compatibility with FDR and eliminating any need for user modification

of the generated code.

9.4.1 The concurrent prime generator

The concurrent prime generator case study demonstrated the application of basic verifi-

cation and composition techniques for an encapsulated network of CSPM processes, and

the CSPIDER tool derived a functioning, traceable implementation of the resulting CSPM

implementation prototype.

This case study was the first to apply this research’s novel strategy for embedding direction-

9 Evaluation: Three case studies 191

ality in non-parameterised CSPM events, which preserves the readability of CSPM models

and enables the accurate implementation of point-to-point process synchronisation by the

CSPIDER tool. This case study also clearly demonstrated the CSPIDER tool’s accurate in-

terpretation and implementation of the two most directly implementable forms of CSPM

process composition, as well as its mapping of the semantics of the CSPM event hiding

operator through the ‘channel visibility’ concept.

Unexpectedly, the prime generator case study appeared to point to two issues that warrant

further investigation, which the timescale of the broader project did not afford.

The first concerns dynamic process creation. In contrast to the dynamic nature of the ‘id-

iomatic’ Go sketch presented in Listing 9.6 and McIlroy (2016)’s discussion of dynamically-

adapting process networks, the model and derived type presented here are parameterised

static constructions. While dynamic process creation is purposely trivial to accomplish in

Go, can this be modelled in CSPM? If so, what verification results can be obtained about it?

And can CSPIDER derive implementations of it?

The second issue arose from the necessity of implementing the COLLECTOR process for the

dual purpose of encapsulating the derived type adequately and enabling the replicated

processes of the FILTERS composition to produce the fragments of their output stream.

COLLECTOR represents a compromise measure that, as discussed earlier, has limited applica-

bility in the context of CSPM modelling and in the context of the derived Go type, occupies

an entire process object definition in order to provide a crude and brittle version of what a

built-in Go channel can do in the first place.

Whether anything substantial can be done to address these subtle incompatibilities is an

open question. One possible approach might involve developing a form of CSPM support

file for CSPIDER: that is, pre-defined processes which model or ‘mock’ idiomatic Go con-

structs (such as fan-in or fan-out channels) in ways that satisfy CSPM’s semantics. These

pre-defined definitions might then be included and ‘plugged in’ to CSPM implementation

prototypes. If a future version of the CSPIDER tool recognised these definitions by identi-

fier or other annotation, it could feasibly generate ‘more idiomatic’ Go code by high-level

in-place substitution. Whether this could be accomplished while preserving the verification

results obtained for the CSPM model is, however, another open question.

9 Evaluation: Three case studies 192

9.4.2 The Ricart-Agrawala node

This final case study demonstrated the application of the proposed development method

to a design problem of intermediate-to-advanced complexity. The problem space is that of

a distributed message-passing algorithm—that is, the sort of protocol-like problem most

closely associated with CSP verification—and developing specification scenarios to express

the major correctness conditions of the algorithm was a successful and fairly straightfor-

ward procedure.

Initial misgivings about the applicability of CSPM to low-level design (i.e., the specification

and prototyping of the node’s component processes) were, in this case, not borne out, al-

though it should be emphasised that both the nature of the high-level problem and the

opportunity to place an upper bound on the range of sequence numbers assisted the au-

thor in constraining the state space of the resulting prototype. Adapting the sketches of the

implementation of this algorithm as presented in the concurrency literature to a message-

passing approach was less taxing than first anticipated, and obtaining specification scenar-

ios (e.g., for the atomicity of NODESTATE’s reading/writing of the local sequence number state

variable) was straightforward.

The output model enforced by CSPIDER maintains clear traceability between the derived

program code and the original CSPM implementation script: every globally-declared non-

composition CSPM process is rendered to a process object of the same name, and all

process objects within a system are declared, initialised, and interconnected in the de-

rived type’s constructor method. ‘Intermediate’ process compositions, as seen in this

case study’s model (RA_NODE, RECEIVE_NODE, RECEIVE_REQ) silently disappear from the CSPIDER

implementation, but the process invocation and event-hiding information originally ex-

pressed in these contexts is preserved and mapped into the ‘rewritten’ output model.

The greatest number of open questions around this case study concern the application of

CSPM modelling and model-checking. The computational demands of model-checking

some of the high-level specification scenarios for this case study were unexpectedly dra-

matic, and the timescale of the project unfortunately did not permit exploration of alterna-

tive formulations or optimisation strategies.

Does the implementation prototype express the design of a Ricart-Agrawala node at an

unnecessarily concrete level of detail? Are there structural aspects of the node model that

could be improved? Is verifying the specification scenarios by model-checking over a net-

work of three nodes sufficient to prove they hold for a network of any size? Empirical testing

9 Evaluation: Three case studies 193

of the derived implementation appears to suggest that it maintains mutual exclusion and

deadlock-freedom at greatly enlarged sizes, but testing results are not proof.

The fact that the CSPIDER tool is capable of synthesising a functioning program compo-

nent from the CSPM implementation script would seem to be an encouraging result, but

at the time of writing it is unclear whether the apparent challenge of verifying scenarios

over replicated instances of the modelled NODE indicate a subtler incompatibility between

CSPM models that are abstract enough to model-check effectively and CSPM models that

are concrete enough to enable software synthesis.

On the other hand, a less pessimistic appraisal could suggest that the availability of a CSPM

prototype and specification scenarios for the Ricart-Agrawala algorithm offer opportuni-

ties to experiment and simulate the operation of the algorithm. One example of an ex-

periment could involve replacing the present assumed-perfect communications medium

between the nodes with one that nondeterministically drops messages.

Considered overall, the preliminary results of applying the proposed development method,

and in particular the CSPIDER tool, are encouraging. Over a small number of examples

of varying complexity, the evaluation appears to demonstrate a consistently effective ap-

proach to prototyping and implementing encapsulated, parameterised, reusable compo-

nents of concurrent software. As has been shown, the mapping between CSPM and Go’s

superficially similar language constructs is not exact, but despite this the CSPIDER tool

achieves satisfyingly clear, functioning implementations from CSPM prototypes through

its application of the ANTLR 4 parser generator, its staged interpretation and represen-

tation of parsed input, and the systematic generative phase enabled by the ‘process net-

work’/‘process object’ output model.

9.5 Summary

This chapter provided an account of the evaluation of the proposed development method

based on three graduated case studies that each exercise different aspects of CSP modelling,

verification and implementation.

The first two case studies are relatively straightforward concurrent implementations of a

linear sorting array (adapted from a model presented in the critical analysis conducted by

T. Davies (2012)) and a prime number generator. Each demonstrate CSPIDER’s ability to

translate interesting aspects of CSPM modelling.

9 Evaluation: Three case studies 194

The third case study details the modelling, verification and automated translation of a node

that participates in the Ricart-Agrawala distributed mutual exclusion algorithm.

The chapter concludes with a discussion that reflects on the application of the method

to each case study in terms of the verification results obtained, the ease with which they

were obtained, and—in particular—the efficacy of the CSPIDER software tool in deriving a

functioning, effectively encapsulated Go component from each.

10 Conclusion

This chapter reviews the outcome of the research in relation to its stated objectives, dis-

cusses its primary contributions, and presents directions for future work.

10.1 Summary

This research has developed and critically evaluated a development method that enables

concurrent program designs to be modelled in the CSP process algebra, verified using

the existing FDR model checker, and automatically translated by an original software tool,

CSPIDER, into robustly encapsulated, reusable components implemented in the Go pro-

gramming language.

The evaluation of the method and tool was performed over three case studies, whose spec-

ification scenarios involved a variety of correctness properties and whose implementa-

tion prototypes employed a wide range of the CSP notation. In each case the method

obtained satisfactory verification results and the CSPIDER tool produced a functioning,

well-encapsulated component program that performed without visible defect in empirical

tests.

The development method and its supporting software tool jointly implement a strategy for

interpreting the concurrent design expressed by a CSPM model. The development method

clearly defines a set of minor adaptations and annotations that constrain the abstractions

present in CSP notation to the point where automated interpretation becomes viable. All

of these required adaptations preserve full compatibility with the primary CSP verification

tool. In other words, the CSPIDER tool interprets the exact model that the model checker

has verified.

Consequently, the research objective of interpreting CSPM models and resolving their in-

ternal logical dependencies in order to derive reusable program components has been ful-

filled, alongside the closely related objective of eliminating any necessity to adapt CSPM

models after verification in order to render them translatable. The case study of the lin-

ear sorting array demonstrates that the CSPIDER tool is capable of translating the model

without requiring any adaptations of the sort reported by T. Davies (2012) in his analysis of

195

10 Conclusion 196

Gardner et al. (2009)’s technique. The evaluation case studies subsequently demonstrate

the successful application of the CSPIDER tool to two further case studies of greater com-

plexity under the same conditions.

The research established that, while the Go programming language and runtime environ-

ment implement concurrency features which have no equivalent construct in CSP, Go

nonetheless provides necessary and sufficient support for the direct implementation of

CSP-based designs in a systematic and scalable manner. This having been demonstrated

through the evaluation case studies, this research objective was therefore fulfilled.

The final objective of the research was to develop a scalable and effectively-encapsulated

output model that structures the derived program components. The evaluation case stud-

ies have shown that the output model implemented by the CSPIDER tool successfully im-

plements several models that apply a variety of CSP process composition operators in dif-

ferent ways. Each case study also demonstrates that the CSPIDER tool’s output model en-

ables the automatic derivation of formal parameters and a channel-based interface for the

corresponding derived type.

CSPIDER directly supports the implementation of a large subset of the CSP language, in-

cluding the unprecedented implementation of the replicated alphabetised parallel oper-

ator, and is one of only two software tools known to the author that performs automatic

translation from CSP models. To the extent that CSPIDER’s original parsing, interpretation

and code generation strategies allow it to derive an implementation of a CSP model that is

structured exactly as it was verified, CSPIDER is presently unique.

10.2 Contributions

The primary contributions to knowledge of this work are:

The proposal and detailed demonstration of an integrated development method that en-

ables the implementation of reusable concurrent programs from verified CSP designs

in the Go runtime environment. The development method incorporates the use of a

newly-developed automatic interpreter and translator for CSPM models, and defines

a workflow that preserves full compatibility with a major CSP verification tool.

A software implementation technique, CSPIDER, which subject to clearly-defined usage

conventions, can automatically generate Go source packages directly from verified

CSP models (i.e., without requiring post-verification rewriting or annotation of the

10 Conclusion 197

CSP input file). CSPIDER supports a large and useful subset of the CSP implemen-

tation language, including the first direct implementation of the replicated alphabe-

tised parallel operator, and does so while maintaining compatibility with the FDR

model checker.

A reusable ANTLR 4 grammar for CSPM, provided within CSPIDER. The grammar con-

tains no embedded actions, and could thereby be used as a starting point for adapt-

ing CSPIDER to other target environments, or for other projects that require a CSPM

parser.

The detailed description of the design and implementation of an interpreter based on the

associated contribution of an ANTLR-generated parser for CSPM.

10.3 Future work

The development method stands to benefit from further investigation of CSPM modelling,

optimisation and compression techniques. It is mildly concerning that the starvation-

freedom results in the Ricart-Agrawala node case study were as computationally resource-

intensive to obtain as they were. The starting assumption is that this was the result of naïve

flaws in the modelling and/or verification strategy, but if there are standard best practices

for efficient modelling that have not been disregarded in this research, it is important for

the general purpose applicability of the method that these are uncovered.

The robust encapsulation of CSPIDER-generated types raises the possibility of experiments

with a compositional approach to constructing larger verified systems from instances of

CSPIDER-generated components.

Gardner (2005a)’s concept of ‘selective formalism’ is an exciting prospect, and—although

not a concept that the case studies could incorporate in the time available—one which the

CSPIDER process network/process object model was consciously designed to accommo-

date. Practical experiments with this concept are unlikely to require major revisions to the

CSPIDER tool.

As reported in Chapter 4, the Go environment implements channels that allow for multiple

producers and/or consumers to share a channel on a first-in first-out basis. Investigating

whether a suitable CSP model can be found for these in order to provide a general-purpose

approach to merging channels could be valuable.

10 Conclusion 198

In general terms, evaluation against further case studies is called for: however, considering

the time commitment involved in preparing and verifying models, the criteria for selecting

these studies need to be formulated carefully.

Although the CSPIDER tool has succeeded in producing a functional, encapsulated,

reusable component for each of the three evaluation case studies, there are improvements

to be made.

The process network/process object model scales relatively well (in terms of code structure,

not performance), on the basis of the evaluation presented in this research. However, im-

plementing dynamic process creation would offer a valuable test of the object model and

make CSPIDER-generated reusable types a rather more powerful proposition.

References

Jean-Raymond Abrial (1996). The B-book: Assigning Programs to Meanings. New York, NY,

USA: Cambridge University Press.

Jean-Raymond Abrial (2009). “Faultless systems: Yes we can!” In: Computer 42.9, pp. 30–

36. DOI: 10.1109/MC.2009.283.

Jean-Raymond Abrial (2010). Modeling in Event-B: System and Software Engineering. New

York, NY, USA: Cambridge University Press.

Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad

Mehta, and Laurent Voisin (2009). “Rodin: An open toolset for modelling and reason-

ing in Event-B”. In: International Journal of Software Tools for Technology Transfer 12.6,

pp. 447–466. DOI: 10.1007/s10009-010-0145-y.

Bernard K. Aichernig, Florian Lorber, and Stefan Tiran (2012). Formal Test-Driven Devel-

opment With Verified Test Cases. Tech. rep. IST-MBT-2012-02. Institute for Software Tech-

nology, Graz University of Technology, Graz, Austria.

Selim G. Akl (1985). Parallel Sorting Algorithms. Academic Press, Inc.

ANTLR. XPath (ANTLR 4 Runtime 4.7.1 API). Last accessed 28 Apr 2018. URL: http://www.

antlr.org/api/Java/org/antlr/v4/runtime/tree/xpath/XPath.html.

Frederick R.M. Barnes (2006). “Compiling CSP”. In: Communicating Process Architectures

2006. Ed. by Peter Welch, Jon Kerridge, and Frederick R.M. Barnes, pp. 377–388.

Björn Bartels and Moritz Kleine (2011). “A CSP-based Framework for the Specification,

Verification and Implementation of Adaptive Systems”. In: SEAMS ’11 Proceedings of the

6th International Symposium on Software Engineering for Adaptive and Self-Managing

Systems.

199

http://dx.doi.org/10.1109/MC.2009.283
http://dx.doi.org/10.1007/s10009-010-0145-y
http://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/xpath/XPath.html
http://www.antlr.org/api/Java/org/antlr/v4/runtime/tree/xpath/XPath.html

References 200

Mordechai Ben-Ari (2005). Principles of Concurrent and Distributed Programming. 2nd edi-

tion. Prentice-Hall.

Mordechai Ben-Ari (2010). “A model-checking primer”. In: ACM Inroads 1.1, pp. 40–47.

John Markus Bjørndalen, Brian Vinter, and Otto Anshus (2007). “PyCSP—Communicating

Sequential Processes for Python”. In: Communicating Process Architectures 2007. Ed. by

Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch. IOS Press, pp. 229–248.

Pontus Boström, Fredrik Degerlund, Kaisa Sere, and Marina Waldén (2014). “Derivation

of concurrent programs by stepwise scheduling of Event-B models”. English. In: Formal

Aspects of Computing 26.2, pp. 281–303. DOI: 10.1007/s00165-012-0260-5.

Jonathan P. Bowen, Kirill Bogdanov, John A. Clark, Mark Harman, Robert M. Hierons,

and Paul Krause (2002). “FORTEST: Formal Methods and Testing”. In: Proceedings of the

26th Annual International Computer Software and Applications Conference (COMPSAC

’02), pp. 91–104.

Jonathan P. Bowen and Michael G. Hinchey (1995). “Seven more myths of formal methods:

Dispelling industrial prejudices”. In: IEEE Computer 12.4, pp. 34–41.

Guy Broadfoot (2005). “Introducing formal methods into industry using Cleanroom and

CSP”. In: Dedicated Systems Magazine Q1, pp. 1–13.

Luca Cardelli and Rob Pike (1985). “Squeak: A language for communicating with mice”. In:

ACM SIGGRAPH Computer Graphics. Vol. 19. 3. ACM, pp. 199–204.

Ana Cavalcanti and Marie-Claude Gaudel (2007). “Testing for refinement in CSP”. In: For-

mal Methods and Software Engineering, ICFEM 2007. Vol. 4789. LNCS. Springer-Verlag,

pp. 151–170.

Ana Cavalcanti and Marie-Claude Gaudel (2014). “Test selection for traces refinement”. In:

Theoretical Computer Science 563, pp. 1–42. DOI: 10.1016/j.tcs.2014.08.012.

Ana Cavalcanti and Robert M. Hierons (2013). “Testing with inputs and outputs in CSP”. In:

Fundamental Approaches in Software Engineering. Springer Berlin Heidelberg, pp. 359–

374.

http://dx.doi.org/10.1007/s00165-012-0260-5
http://dx.doi.org/10.1016/j.tcs.2014.08.012

References 201

Shu Cheng (2014). “Formally modelling and verifying the FreeRTOS operating system”.

PhD thesis. University of York.

Samuel Colin, Arnaud Lanoix, Olga Kouchnarenko, and Jeanine Souquières (2008). “Us-

ing CSP||B components: Application to a platoon of vehicles”. In: Formal Methods for

Industrial Critical Systems. Ed. by D. Cofer and A. Fantechi. Springer, pp. 103–118.

Russ Cox (2012). Re: [go-nuts]GUARDED selective waiting. Last accessed 23 Mar 2018. URL:

https://groups.google.com/d/msg/golang-nuts/ChPxr_h8kUM/mntIttBSZDUJ.

Markus Dahlweid and Uwe Schulze (2003). “High level transition systems of CSP specifi-

cations and their application in automated testing”. PhD thesis. University of Bremen.

Jim Davies (2006). “Using CSP”. In: Refinement Techniques in Software Engineering. Ed. by

Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. Vol. 3167. LNCS. Springer, pp. 64–

122.

Thomas Davies (2012). “CSP implementation techniques: A critical analysis”. MA thesis.

Swansea University.

Neil Deshpande, Erica Sponsler, and Nathaniel Weiss (2012). Analysis of the Go runtime

scheduler. Last accessed 28 Apr 2018. URL: http://www1.cs.columbia.edu/~aho/

cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf.

James Dibley and Karen Bradshaw (2016). “Towards automatic code generation from ver-

ified models of concurrent systems”. In: 2016 Southern Africa Telecoms and Network Ap-

plications Conference (SATNAC). Ed. by Samuel van Loggerenberg and Jonabelle Laureles,

pp. 248–254.

Alan A.A. Donovan and Brian W. Kernighan (2016). The Go Programming Language.

Addison-Wesley.

Stephen Doxsee (2005). “Re-engineering CSP++ to conform with CSPM verification tools”.

MA thesis. University of Guelph.

Andrew Edmunds (2010). “Providing concurrent implementations for Event-B develop-

ments”. PhD thesis. University of Southampton.

https://groups.google.com/d/msg/golang-nuts/ChPxr_h8kUM/mntIttBSZDUJ
http://www1.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf
http://www1.cs.columbia.edu/~aho/cs6998/reports/12-12-11_DeshpandeSponslerWeiss_GO.pdf

References 202

Andrew Edmunds (2014). “Templates for Event-B Code Generation”. English. In: Abstract

State Machines, Alloy, B, TLA, VDM, and Z. Ed. by Yamine Ait Ameur and Klaus-Dieter

Schewe. Vol. 8477. LNCS. Springer Berlin Heidelberg, pp. 284–289. DOI: 10.1007/978-3-

662-43652-3_25.

Andrew Edmunds, Michael Butler, and John Colley (2012). “Building on the DEPLOY

legacy: Code generation and simulation”. In: Proceedings of DS-Event-B 2012: Workshop

on the Experience of and Advances in Developing Dependable Systems in Event-B, in con-

junction with ICFEM 2012 - Kyoto, Japan, November 13, 2012.

Event-B.org (2018). Event-B.org. Last accessed 28 Apr 2018. URL: http://www.event-b.

org/install.html.

Rune Møllegaard Friborg (2011). “CSP for executable scientific workflows”. PhD thesis.

University of Copenhagen.

Rune Møllegaard Friborg (2016). runefriborg/pycsp. Last accessed 28 Apr 2018. URL: https:

//github.com/runefriborg/pycsp.

Andreas Fürst, Thai Son Hoang, David Basin, Krishnaji Desai, Naoto Soto, and Kunihiko

Miyazaki (2014). “Code generation for Event-B”. In: Integrated Formal Methods: Proceed-

ings of the 11th International Conference, IFM 2014, Bertinoro, Italy, September 9-11, 2014.

W.B. Gardner (1999). “CSP++: An object-oriented application framework for software syn-

thesis from CSP specifications”. PhD thesis. University of Victoria.

W.B. Gardner (2005a). “Converging CSP specifications and C++programming via selective

formalism”. In: ACM Transactions on Embedded Computing Systems 4.2, pp. 302–330.

W.B. Gardner (2005b). “CSP++: How faithful to CSPm?” In: Communicating Process Archi-

tectures 2005. Ed. by Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and

David Wood, pp. 127–144.

W.B. Gardner (2008). Cspt: An Open Source Translator for CSPm. Last accessed 27 Apr 2018.

URL: http://www.uoguelph.ca/~gardnerw/pubs/cspt.pdf.

W.B. Gardner (2015). CSP++ Home. Last accessed 30 Mar 2018. URL: http : / / www .

uoguelph.ca/~gardnerw/csp++/.

http://dx.doi.org/10.1007/978-3-662-43652-3_25
http://dx.doi.org/10.1007/978-3-662-43652-3_25
http://www.event-b.org/install.html
http://www.event-b.org/install.html
https://github.com/runefriborg/pycsp
https://github.com/runefriborg/pycsp
http://www.uoguelph.ca/~gardnerw/pubs/cspt.pdf
http://www.uoguelph.ca/~gardnerw/csp++/
http://www.uoguelph.ca/~gardnerw/csp++/

References 203

W.B. Gardner, J. Moore-Oliva, J. Carter, A. Gumtie, and Y. Solovyov (2009). CSP++: An

Open Source Tool for Building Concurrent Applications From CSP Specifications. Tech. rep.

TR-UG-CIS-2009-001. University of Guelph.

Daniel Garner (2012). “Extending the CSP++ object oriented application framework”. MA

thesis. University of Wales, Swansea.

Thomas Gibson-Robinson. tomgr/libcspm. Last accessed 24 Mar 2018. URL: https://

github.com/tomgr/libcspm.

Thomas Gibson-Robinson (2014). Private communication with the author.

Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and A.W. Roscoe

(2013). “FDR3–A modern refinement checker for CSP”. In: International Conference on

Tools and Algorithms for the Construction and Analysis of Systems. Vol. 8413. LNCS,

pp. 187–201.

Thomas Gibson-Robinson and A.W. Roscoe (2014). “FDR Into The Cloud”. In: Communi-

cating Process Architectures 2014. Ed. by P.H. Welch et al. Open Channel Publishing.

Go Project. Effective Go. Last accessed 02 Jan 2018. URL: https://golang.org/doc/

effective_go.html.

Go Project. Effective Go - Channels. Last accessed 28 Apr 2018. URL: https://golang.org/

doc/effective_go.html#channels.

Go Project. Effective Go - Goroutines. Last accessed 28 Apr 2018. URL: https://golang.

org/doc/effective_go.html#goroutines.

Go Project. Package sync. Last accessed 27 April 2018. URL: https://golang.org/pkg/

sync/.

Go Project. Package sync - type WaitGroup. Last accessed 28 Apr 2018. URL: https://

golang.org/pkg/sync/#WaitGroup.

Go Project. The Go programming language. Last accessed 27 April 2018. URL: https://

golang.org/.

Go Project. The Go Programming Language Specification—Blank Identifier. Last accessed

28 Apr 2018. URL: https://golang.org/ref/spec#Blank_identifier.

Go Project. The Go Programming Language Specification—Function Declarations. Last ac-

cessed 28 Apr 2018. URL: https://golang.org/ref/spec#Function_declarations.

https://github.com/tomgr/libcspm
https://github.com/tomgr/libcspm
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html#channels
https://golang.org/doc/effective_go.html#channels
https://golang.org/doc/effective_go.html#goroutines
https://golang.org/doc/effective_go.html#goroutines
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/#WaitGroup
https://golang.org/pkg/sync/#WaitGroup
https://golang.org/
https://golang.org/
https://golang.org/ref/spec#Blank_identifier
https://golang.org/ref/spec#Function_declarations

References 204

Go Project. The Go Programming Language Specification—Short variable declarations. Last

accessed 28 Apr 2018. URL: https : / / golang . org / ref / spec # Short _ variable _

declarations.

Go Project. The Go Programming Language Specification—Terminating Statements. Last

accessed 28 Apr 2018. URL: https://golang.org/ref/spec#Terminating_statements.

Go Project (2017). The Go Programming Language Specification: version as of June 28, 2017.

Last accessed 02 Jan 2018. URL: https://golang.org/ref/spec.

Go Project (2018a). Effective Go - Select. Last accessed 28 Apr 2018. URL: https://golang.

org/doc/effective_go.html#select.

Go Project (2018b). Effective Go - Switch. Last accessed 28 Apr 2018. URL: https://golang.

org/doc/effective_go.html#switch.

Go Project (2018c). The Go programming language specification—Close. Last accessed 28

Apr 2018. URL: https://golang.org/ref/spec#Close.

Go Project (n.d.). A concurrent prime sieve. Last accessed 22 Apr 2018. URL: https://

golang.org/doc/play/sieve.go.

Anthony Hall (1990). “Seven myths of formal methods”. In: IEEE Software 7.5, pp. 11–19.

Anthony Hall and Roderick Chapman (2002). “Correctness by construction: Developing a

commercial secure system”. In: IEEE Software Jan/Feb, pp. 18–25.

Institut für Software und Programmiersprachen Heinrich-Heine-University (2017). The

ProB animator and model-checker. Last accessed 07 Mar 2018. URL: https://www3.hhu.

de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker.

Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleaveland, John Der-

rick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul Krause, Ger-

ald Lüttgen, Anthony J.H. Simons, Sergiy Vilkomir, Martin R. Woodward, and Hussein

Zedan (2009). “Using formal specifications to support testing”. In: ACM Computing Sur-

veys 41.2, 9:1–9:76. DOI: 10.1145/1459352.1459354.

C.A.R. Hoare (1978). “Communicating Sequential Processes”. In: Essays in Computer Sci-

ence. Ed. by C.B. Jones. Prentice Hall, pp. 259–289. URL: https://dl.acm.org/citation.

cfm?id=63445.

C.A.R. Hoare (1985). Communicating Sequential Processes. Prentice Hall.

https://golang.org/ref/spec#Short_variable_declarations
https://golang.org/ref/spec#Short_variable_declarations
https://golang.org/ref/spec#Terminating_statements
https://golang.org/ref/spec
https://golang.org/doc/effective_go.html#select
https://golang.org/doc/effective_go.html#select
https://golang.org/doc/effective_go.html#switch
https://golang.org/doc/effective_go.html#switch
https://golang.org/ref/spec#Close
https://golang.org/doc/play/sieve.go
https://golang.org/doc/play/sieve.go
https://www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
https://www3.hhu.de/stups/prob/index.php/The_ProB_Animator_and_Model_Checker
http://dx.doi.org/10.1145/1459352.1459354
https://dl.acm.org/citation.cfm?id=63445
https://dl.acm.org/citation.cfm?id=63445

References 205

Philippa J. Hopcroft and Guy Broadfoot (2005). “Combining the Box Structure Develop-

ment Method and CSP for software development”. In: Electronic Notes in Theoretical

Computer Science 128, pp. 127–144. DOI: 10.1016/j.entcs.2005.04.008.

A. Iliasov (2009). On Event-B and Control Flow. Tech. rep. Centre for Software Reliability,

Newcastle University.

Jonathan Jacky (1997). The Way of Z: Practical Programming with Formal Methods. Cam-

bridge University Press.

James E Johnson, David E Langworthy, Leslie Lamport, and Friedrich H Vogt (2004). “For-

mal specification of a web services protocol”. In: Electronic Notes in Theoretical Computer

Science 105, pp. 147–158.

William Kennedy (2014). The Nature of Channels in Go. Last accessed 28 Apr 2018. URL:

https://www.ardanlabs.com/blog/2014/02/the-nature-of-channels-in-go.html.

Moritz Kleine, Björn Bartels, Thomas Göthel, Steffen Helke, and Dirk Prenzel (2011).

“LLVM2CSP: Extracting CSP Models from Concurrent Programs”. In: NASA Formal Meth-

ods. Ed. by Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 500–505.

Donald E. Knuth (1973). The Art of Computer Programming: Vol. 3–Sorting and searching.

Addison-Wesley.

Derrick Kourie and Bruce W. Watson (2012). The correctness-by-construction approach to

programming. Springer-Verlag.

Leslie Lamport (2002). Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley Professional.

Leslie Lamport (2015). The TLA+ Hyperbook. Last accessed 28 Apr 2018. URL: http://

lamport.azurewebsites.net/tla/hyperbook.html.

Leslie Lamport (2016). “Viewpoint: Who builds a house without drawing blueprints”. In:

Communications of the ACM 58.4, pp. 38–41. DOI: 10.1145/2736328.

http://dx.doi.org/10.1016/j.entcs.2005.04.008
https://www.ardanlabs.com/blog/2014/02/the-nature-of-channels-in-go.html
http://lamport.azurewebsites.net/tla/hyperbook.html
http://lamport.azurewebsites.net/tla/hyperbook.html
http://dx.doi.org/10.1145/2736328

References 206

Jonathan Lawrence (2004). “Practical application of CSP and FDR to software design”. In:

CSP: The First 25 Years. Ed. by Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders. Vol. 3525.

LNCS. Springer, pp. 151–174.

Michael Leuschel and Michael Butler (2008). “ProB: An automated analysis toolset for

the B method”. In: International Journal on Software Tools for Technology Transfer 10.2,

pp. 185–203. DOI: 10.1007/s10009-007-0063-9.

Michael Leuschel and Marc Fontaine (2008). “Probing the depths of CSP-M: A new FDR-

compliant validation tool”. In: ICFEM 2008: Formal methods and software engineering.

Vol. 5256. LNCS. Springer: Berlin, Heidelberg, pp. 278–297.

Gavin Lowe (1996). “Breaking and fixing the Needham-Schroeder Public Key Protocol us-

ing FDR”. In: TACAs ’96 Proceedings of the Second International Workshop on Tools and

Algorithms for Construction and Analysis of Systems. Springer-Verlag, pp. 147–166.

David May (2004). “CSP, occam and Transputers”. In: Communicating Sequential Processes:

The First 25 Years. Ed. by Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders. Vol. 3525. LNCS.

Springer-Verlag, pp. 75–84.

M. Douglas McIlroy (2016). Coroutine Prime Number Sieve. Last accessed 08 Mar 2018. URL:

http://www.cs.dartmouth.edu/~doug/sieve/sieve.pdf.

C. Métayer, Jean-Raymond Abrial, and L. Voisin (2005). Event-B Language. Rigorous open

development environment for complex systems (RODIN) Deliverable 3.2.

Amira Methni, Matthieu Lemerre, Belgacem Ben Hedia, Serge Haddad, and Kamel

Barkaoui (2015). “Specifying and Verifying Concurrent C Programs with TLA+”. In: For-

mal Techniques for Safety-Critical Systems. Ed. by Cyrille Artho and Peter Csaba Ölveczky.

Cham: Springer International Publishing, pp. 206–222.

Bruce Mills (2009). Practical Formal Software Engineering: Wanting The Software You Get.

Cambridge University Press.

Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve Schneider, and Helen Tre-

harne (2012). Defining and Model Checking Abstractions of Complex Railway Models Us-

http://dx.doi.org/10.1007/s10009-007-0063-9
http://www.cs.dartmouth.edu/~doug/sieve/sieve.pdf

References 207

ing CSP||B. University of Surrey Computing Sciences Report CS-12-05. University of Sur-

rey.

Sape Mullender (2018). Indeterminism in Plan 9. Last accessed 27 Apr 2018. URL: http:

//lore.ua.ac.be/Teaching/CapitaMaster/threads.pdf.

Chris Newcombe (2011). Debugging designs. Proceedings of 11th International Workshop

on High Performance Transaction Systems. Pacific Grove, California. October 23-26, 2011.

Last accessed 28 Apr 2018. URL: http://www.hpts.ws/papers/2011/sessions_2011/

Debugging.pdf.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael

Deardeuff (2015). “How Amazon Web Services uses formal methods”. In: Communica-

tions of the ACM 58.04, pp. 66–73.

Terence Parr. ANTLR. Last accessed 07 Mar 2018. URL: https://www.antlr.org.

Terence Parr. StringTemplate. Last accessed 07 Mar 2018. URL: https : / / www .

stringtemplate.org.

Terence Parr (2012a). The Definitive ANTLR 4 Reference. Book version: P2.0–September

2014. The Pragmatic Bookshelf.

Terence Parr (2012b). Tree Rewriting in ANTLR v4. Last accessed 08 Mar 2018. URL: https:

//theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/

Tree+rewriting+in+ANTLR+v4.

Terence Parr, Sam Harwell, and Kathleen Fisher (2014). “Adaptive LL(*) parsing: The

power of dynamic analysis”. In: OOPSLA ’14 Proceedings of the 2014 ACM International

Conference on Object Oriented Programming Systems Languages and Applications. ACM,

pp. 579–598. DOI: 10.1145/2714064.2660202.

Jan Peleska (2004). “Applied formal methods–From CSP to executable hybrid specifica-

tions”. In: Communicating Sequential Processes: The First 25 Years. Ed. by Ali E. Abdallah,

Cliff B. Jones, and Jeff W. Sanders. Vol. 3525. LNCS. Springer-Verlag, pp. 253–320.

Jan Peleska (2013). “Industrial-Strength Model-Based Testing – State of the Art and Current

Challenges”. In: Eighth Workshop on Model-Based Testing (MBT 2013). Ed. by A. Petrenko

and H. Schlingloff, pp. 3–28.

http://lore.ua.ac.be/Teaching/CapitaMaster/threads.pdf
http://lore.ua.ac.be/Teaching/CapitaMaster/threads.pdf
http://www.hpts.ws/papers/2011/sessions_2011/Debugging.pdf
http://www.hpts.ws/papers/2011/sessions_2011/Debugging.pdf
https://www.antlr.org
https://www.stringtemplate.org
https://www.stringtemplate.org
https://theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/Tree+rewriting+in+ANTLR+v4
https://theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/Tree+rewriting+in+ANTLR+v4
https://theantlrguy.atlassian.net/wiki/spaces/~admin/blog/2012/12/08/524353/Tree+rewriting+in+ANTLR+v4
http://dx.doi.org/10.1145/2714064.2660202

References 208

Rob Pike (1989). “A concurrent window system”. In: Computing Systems 2.2, pp. 133–153.

Rob Pike (2012). Go at Google: Language design in the service of software engineering. Last

accessed 02 Jan 2018. URL: https://talks.golang.org/2012/splash.article.

Michel Raynal (2013). Concurrent Programming: Algorithms, Principles, Foundations.

Springer-Verlag.

Glenn Ricart and Ashok K. Agrawala (1981). “An optimal algorithm for mutual exclusion

in computer networks”. In: Communications of the ACM 24.1, pp. 9–17.

Alexander Romanovsky and Martyn Thomas, eds. (2013). Industrial Deployment of System

Engineering Methods. Springer-Verlag Berlin Heidelberg.

A.W. Roscoe (2010). Understanding Concurrent Systems. Springer.

A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M. Jackson, and J.B. Scat-

tergood (1995). “Hierarchical compression for model-checking CSP or how to check 1020

dining philosophers for deadlock”. In: TACAS 1995: Tools and Algorithms for the Construc-

tion and Analysis of Systems. Ed. by Brinksma E., Cleaveland W.R., Larsen K.G., Margaria

T., and Steffen B. Vol. 1019. LNCS. Springer-Verlag, pp. 133–152.

P.Y.A. Ryan, S.A. Schneider, M.H. Goldsmith, G. Lowe, and A.W. Roscoe (2000). The Mod-

elling and Analysis of Security Protocols: The CSP approach. Pearson Education.

Bryan Scattergood (1998). “The semantics and implementation of machine-readable CSP”.

PhD thesis. University of Oxford.

Bryan Scattergood and Philip Armstrong (2011). CSPM: A Reference Manual. Last accessed

01 Jan 2018. URL: http://www.cs.ox.ac.uk/ucs/cspm.pdf.

Steve Schneider (1999). Concurrent and Real-Time Systems: The CSP Approach. John Wiley

& Sons.

Steve Schneider (2001). The B-Method. Palgrave Macmillan.

https://talks.golang.org/2012/splash.article
http://www.cs.ox.ac.uk/ucs/cspm.pdf

References 209

Steve Schneider and Helen Treharne (2005). “CSP theorems for communicating B ma-

chines”. English. In: Formal Aspects of Computing 17.4, pp. 390–422. DOI: 10.1007/

s00165-005-0076-7.

Steve Schneider, Helen Treharne, and Heike Wehrheim (2010). “A CSP approach to con-

trol in Event-B”. English. In: Integrated Formal Methods 2010. Ed. by Dominique Méry

and Stephan Merz. Vol. 6396. LNCS. Springer Berlin Heidelberg, pp. 260–274. DOI: 10.

1007/978-3-642-16265-7_19.

Steve Schneider, Helen Treharne, and Heike Wehrheim (2011). “Bounded retransmission

in Event-B||CSP: A case study”. In: Electronic Notes in Theoretical Computer Science 280,

pp. 69–80.

Steve Schneider, Helen Treharne, and Heike Wehrheim (2014). “The behavioural seman-

tics of Event-B refinement”. In: Formal Aspects of Computing 26.2, pp. 251–280. DOI: 10.

1007/s00165-012-0265-0.

Werner Schuster (2011). Rob Pike on Parallelism and Concurrency in Programming Lan-

guages. Last accessed 27 Apr 2018. URL: https://www.infoq.com/interviews/pike-

concurrency.

Bernhard H.C. Sputh and Alastair R. Allen (2005). “JCSP-Poison: Safe termination of CSP

process networks”. In: Communicating Process Architectures 2005. Ed. by Jan Broenink,

Herman Roebbers, Johan Sunter, Peter Welch, and David Wood, pp. 71–107.

Phil Stocks and David Carrington (1996). “A framework for specification-based testing”.

In: IEEE Transactions on Software Engineering 22.11, pp. 777–793.

The Chord Project (n.d.). sit/dit Wiki. Last accessed 28 Apr 2018. URL: https://github.

com/sit/dht/wiki.

TLA+ Project (2015). The TLA Toolbox. Last accessed 28 Apr 2018. URL: http://lamport.

azurewebsites.net/tla/toolbox.html.

Helen Treharne and Steve Schneider (1999). “Using a process algebra to drive B opera-

tions”. In: Integrated Formal Methods 1999. Springer, pp. 437–456.

http://dx.doi.org/10.1007/s00165-005-0076-7
http://dx.doi.org/10.1007/s00165-005-0076-7
http://dx.doi.org/10.1007/978-3-642-16265-7_19
http://dx.doi.org/10.1007/978-3-642-16265-7_19
http://dx.doi.org/10.1007/s00165-012-0265-0
http://dx.doi.org/10.1007/s00165-012-0265-0
https://www.infoq.com/interviews/pike-concurrency
https://www.infoq.com/interviews/pike-concurrency
https://github.com/sit/dht/wiki
https://github.com/sit/dht/wiki
http://lamport.azurewebsites.net/tla/toolbox.html
http://lamport.azurewebsites.net/tla/toolbox.html

References 210

Jan Tretmans (2008). “Model-based testing with labelled transition systems”. In: Formal

models and testing: An outcome of the FORTEST network. Berlin: Springer-Verlag, pp. 1–

38.

University of Oxford. Channels. Last accessed 28 Apr 2018. URL: https://www.cs.ox.ac.

uk/projects/fdr/manual/cspm/definitions.html#channels.

University of Oxford. CSPm. Last accessed 07 Mar 2018. URL: https://www.cs.ox.ac.uk/

projects/fdr/manual/cspm.html#cspm.

University of Oxford. [CSPm] Built-in definitions. Last accessed. URL: https://www.cs.ox.

ac.uk/projects/fdr/manual/cspm/prelude.html.

University of Oxford. [CSPm] Defining processes. Last accessed. URL: https://www.cs.ox.

ac.uk/projects/fdr/manual/cspm/processes.html.

University of Oxford. [CSPm] Functional Syntax. Last accessed. URL: https://www.cs.ox.

ac.uk/projects/fdr/manual/cspm/syntax.html.

University of Oxford. FDR–Integrating FDR into other tools. Last accessed 28 Apr 2018. URL:

https://www.cs.ox.ac.uk/projects/fdr/manual/integrating.html.

University of Oxford. Functional syntax – Binding strength. Last accessed 30 Mar 2018. URL:

https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html#binding-

strength.

University of Oxford. Refinement checking. Last accessed 28 Apr 2018. URL: https://www.

cs.ox.ac.uk/projects/fdr/manual/implementation/refinement_checking.html.

University of Oxford. Set Functions. Last accessed 27 Apr 2018. URL: https://www.cs.ox.

ac.uk/projects/fdr/manual/cspm/prelude.html#set-functions.

University of Oxford. Type system. Last accessed 20 Mar 2018. URL: https://www.cs.ox.

ac.uk/projects/fdr/manual/cspm/types.html.

University of Oxford. Wildcard Identifier. Last accessed 28 Apr 2018. URL: https://www.cs.

ox.ac.uk/projects/fdr/manual/cspm/syntax.html#syntax_Wildcard%20Pattern.

University of Oxford (2017). FDR Documentation: FDR 4.2.3 documentation. Last accessed

01 Jan 2018. URL: https://www.cs.ox.ac.uk/projects/fdr/manual/.

Mark Utting and Bruno Legeard (2006). Practical Model-Based Testing: A Tools Approach.

Morgan Kaufmann.

https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/definitions.html#channels
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/definitions.html#channels
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm.html#cspm
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm.html#cspm
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/prelude.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/prelude.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/processes.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/processes.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html
https://www.cs.ox.ac.uk/projects/fdr/manual/integrating.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html#binding-strength
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html#binding-strength
https://www.cs.ox.ac.uk/projects/fdr/manual/implementation/refinement_checking.html
https://www.cs.ox.ac.uk/projects/fdr/manual/implementation/refinement_checking.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/prelude.html#set-functions
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/prelude.html#set-functions
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/types.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/types.html
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html#syntax_Wildcard%20Pattern
https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html#syntax_Wildcard%20Pattern
https://www.cs.ox.ac.uk/projects/fdr/manual/

References 211

Heike Wehrheim (2000). “Specification of an automatic manufacturing system: A case

study in using integrated formal methods”. In: Fundamental Approaches to Software En-

gineering. Third International Conference, FASE 2000. Ed. by T. Maibaum. Vol. 1783. LNCS.

Springer-Verlag, pp. 334–348.

Peter Welch. CSP for Java (JCSP). Last accessed 28 Apr 2018. URL: https://www.cs.kent.

ac.uk/projects/ofa/jcsp/explain.html.

Peter Welch (1998). “Java Threads in the light of occam/CSP”. In: Architectures, Languages

and Patterns. Ed. by P.H. Welch and A.W.P. Bakkers. IOS Press, pp. 259–284.

Peter Welch and Frederick R.M. Barnes (2004). “Communicating mobile processes: Intro-

ducing occam-pi”. In: Communicating Sequential Processes: The First 25 Years. Ed. by Ali

E. Abdallah, Cliff B. Jones, and Jeff W. Sanders. Vol. 3525. LNCS. Springer-Verlag, pp. 175–

210.

Peter Welch, Neil Brown, James Moores, Kevin Chalmers, and Bernhard Sputh (2007). “In-

tegrating and Extending JCSP”. In: Communicating Process Architectures 2007. Ed. by Al-

istair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch. IOS Press, pp. 1–22.

Peter Welch, G.H. Hilderink, A.W.P. Bakkers, and G.S. Stiles (2001). “Safe and verifiable

design of concurrent Java programs”. In: International Journal of Computers and Appli-

cations 23.3, pp. 159–165.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald (2009). “Formal

methods: Practice and experience”. In: ACM Computing Surveys 41.4, 19:1–19:36. DOI:

10.1145/1592434.1592436.

Stephen Wright (2009). Automatic Generation of C from Event-B. Online. Last accessed 28

Apr 2018. URL: http://www.lina.sciences.univ-nantes.fr/apcb/IM_FMT2009/

PAPERS/IM_FMT2009_Paper22_Wright.pdf.

Stephen Wright (2011). A Formally Constructed Instruction Set Architecture Definition of

the XCore Microprocessor. Tech. rep. University of Bristol. URL: http://deploy-eprints.

ecs.soton.ac.uk/346/.

XMOS (n.d.). The xCORE Difference. Last accessed 28 Apr 2018. URL: http://www.xmos.

com/products/silicon#xcore.

https://www.cs.kent.ac.uk/projects/ofa/jcsp/explain.html
https://www.cs.kent.ac.uk/projects/ofa/jcsp/explain.html
http://dx.doi.org/10.1145/1592434.1592436
http://www.lina.sciences.univ-nantes.fr/apcb/IM_FMT2009/PAPERS/IM_FMT2009_Paper22_Wright.pdf
http://www.lina.sciences.univ-nantes.fr/apcb/IM_FMT2009/PAPERS/IM_FMT2009_Paper22_Wright.pdf
http://deploy-eprints.ecs.soton.ac.uk/346/
http://deploy-eprints.ecs.soton.ac.uk/346/
http://www.xmos.com/products/silicon#xcore
http://www.xmos.com/products/silicon#xcore

References 212

Letu Yang (2008). “The automated translation of integrated formal specifications into con-

current programs”. PhD thesis. University of Southampton.

Letu Yang and Michael Poppleton (2007). “Automatic translation from combined B and

CSP specification to Java programs”. In: B 2007: Formal specification and development

in B. Ed. by Jacques Julliand and Olga Kouchnarenko. Vol. 4355. LNCS. Springer Berlin

Heidelberg. DOI: 10.1007/11955757_8.

Pamela Zave (2012). “Using lightweight modeling to understand Chord”. In: ACM SIG-

COMM Computer Communication Review 42.2, pp. 49–57.

http://dx.doi.org/10.1007/11955757_8

Appendices

213

Appendix A

An ANTLR grammar for CSPM

Listing A.1: ANTLR4 grammar for CSPM

1 grammar CSPM ;

2

3 @lexer::header {

4 package io.github.jamesdibley.cspider.parser.gen;

5 }

6

7 @parser::header {

8 package io.github.jamesdibley.cspider.parser.gen;

9 }

10

11 sourcefile

12 : declaration* EOF;

13

14 declaration

15 : assertionDecl

16 | chanDecl

17 | chanDeclWithSpec

18 | datatypeDecl

19 | extPatternDecl

20 | nametypeDecl

21 | patternDecl

22 | parametricPatternDecl

23 | subtypeDecl

24 | transparentDecl

25 ;

26

27 // Assertions -shouldn’t- be present in the implementation file, but we

28 // don’t assume their absence.

29 assertionDecl

30 : Assert (Not)? // assertions can be negated

31 assertion

32 ;

33

34 assertion

214

Appendix A An ANTLR grammar for CSPM 215

35 : proc RefTr proc

36 # assRefTrace

37 | proc RefFa proc

38 # assRefFailures

39 | proc RefFd proc

40 # assRefFailDivs

41 | proc ’:[’ Deadlock ’-’? Free FModel ’]’

42 # assDLFFailures

43 | proc ’:[’ Deadlock ’-’? Free (FDModel)? ’]’

44 # assDLFFailDivs

45 | proc ’:[’ Determ FModel ’]’

46 # assDetermFailures

47 | proc ’:[’ Determ (FDModel)? ’]’

48 # assDetermFailDivs

49 | proc ’:[’ Divergence ’-’? Free (FDModel)? ’]’

50 # assDivFree

51 | proc ’:[’ Has Trace FModel ’]:’ ’<’ expressionList ’>’

52 # assHTrFailures

53 | proc ’:[’ Has Trace (FDModel)? ’]:’ ’<’ expressionList ’>’

54 # assHTrFailDivs

55 | proc ’:[’ Has Trace TModel ’]:’ ’<’ expressionList ’>’

56 # assHTrTraces

57 | expression

58 # assExpr

59 ;

60

61 proc

62 : builtInProcess

63 | expression

64 ;

65

66 chanDecl

67 : Channel Name (’,’ Name)* ;

68

69 chanDeclWithSpec

70 : Channel Name (’,’ Name)* ’:’ expression ;

71

72 extPatternDecl

73 : ExtPatternAnnotation Name ’::’ expression ;

74

75 patternDecl

76 : patternLHS ’=’ letClause? expression ;

77

78 parametricPatternDecl

79 : Name ’::’ (’(’ .*? ’)’ ’=>’)? ’(’ expressionList ’)’ ’->’ expression

80 patternLHS ’=’ letClause? expression

81 ;

Appendix A An ANTLR grammar for CSPM 216

82

83 letClause

84 : Let

85 (patternDecl | parametricPatternDecl)+

86 Within

87 ;

88

89 patternLHS

90 : dottedPattern

91 | namePattern

92 | setPattern

93 | seqPattern

94 | tuplePattern

95 ;

96

97 dottedPattern

98 : Name (’.’ Name)+ ;

99

100 namePattern

101 : namePattern ’(’ ’)’

102 # npEmpty

103 | namePattern ’(’ expression (’,’ expression)* ’)’

104 # npArgs

105 | namePattern ’(’ expression ’@@’ expression ’)’

106 # npDouble

107 | Name

108 # npName

109 ;

110

111 seqPattern

112 : ’<’ Name (’,’ Name)* ’>’ ;

113

114 setPattern

115 : ’{’ Name ’}’ ;

116

117 tuplePattern

118 : ’(’ Name (’,’ Name)* ’)’ ;

119

120 datatypeDecl

121 : ’datatype’ Name ’=’ datatypeClause (’|’ datatypeClause)* ;

122

123 datatypeClause

124 : Name (’.’ expression)? ;

125

126 subtypeDecl // define subsets of a datatype

127 : ’subtype’ Name ’=’ datatypeClause (’|’ datatypeClause)*

128 ;

Appendix A An ANTLR grammar for CSPM 217

129

130 nametypeDecl // associate name with set of values

131 : ’nametype’ Name ’=’ expression

132 ;

133

134 expression

135 : ’(’ expression ’)’

136 # exprParens

137 | expression renamingClause

138 # exprRename

139 | expression ’^’ expression

140 # exprConcat

141 | ’#’ expression

142 # exprLength

143 | expression ’*’ expression

144 # exprMul

145 | expression ’/’ expression

146 # exprDiv

147 | expression ’%’ expression

148 # exprMod

149 | ’-’ expression

150 # exprNeg

151 | expression ’+’ expression

152 # exprAdd

153 | expression ’-’ expression

154 # exprSub

155 | expression ’==’ expression

156 # exprEq

157 | expression ’!=’ expression

158 # exprNEq

159 | expression ’<’ expression

160 # exprLT

161 | expression ’<=’ expression

162 # exprLTE

163 | expression ’>’ expression

164 # exprGT

165 | expression ’>=’ expression

166 # exprGTE

167 | ’not’ expression

168 # exprNot

169 | expression ’and’ expression

170 # exprAnd

171 | expression ’or’ expression

172 # exprOr

173 | expression ’:’ primaryExpr

174 # exprType

175 |<assoc=right>

Appendix A An ANTLR grammar for CSPM 218

176 expression ’.’ expression

177 # exprDotted

178 | expression ’?’ expression

179 # exprInput

180 | expression ’!’ expression

181 # exprOutput

182 |<assoc=right>

183 expression ’->’ expression

184 # exprPrefix

185 |<assoc=right>

186 expression ’&’ expression

187 # exprGuarded

188 | expression ’;’ expression

189 # exprSeqComp

190 | expression ’[>’ expression

191 # exprTimeout

192 | expression ’/\\’ expression

193 # exprInterrupt

194 | expression ’[]’ expression

195 # exprExtCh

196 | expression ’|~|’ expression

197 # exprIntCh

198 | expression ’[|’ primaryExpr ’|>’ expression

199 # exprException

200 | expression

201 ’[’ primaryExpr ’||’ primaryExpr ’]’

202 expression

203 # exprAlphaParallel

204 | expression

205 ’[|’ primaryExpr ’|]’

206 expression

207 # exprInterfaceParallel

208 | expression

209 ’[’ primaryExpr ’<->’ primaryExpr ’]’

210 expression

211 # exprLinkedParallel

212 | expression

213 ’|||’

214 expression

215 # exprInterleave

216 | expression ’\\’ primaryExpr

217 # exprHide

218 | ’||’ expressionList ’@’ ’[’ primaryExpr ’]’ expression

219 # exprReplAlphaParallel

220 | ’[]’ expressionList ’@’ expression

221 # exprReplExtCh

222 | ’[|’ primaryExpr ’|]’ expressionList ’@’ expression

Appendix A An ANTLR grammar for CSPM 219

223 # exprReplInterfaceParallel

224 | ’|||’ expressionList ’@’ expression

225 # exprReplInterleave

226 | ’|~|’ expressionList ’@’ expression

227 # exprReplIntCh

228 | If expression Then expression (Else expression)?

229 # exprIf

230 | primaryExpr

231 # exprPrimary

232 ;

233

234 renamingClause

235 : ’[[’ renaming (’,’ renaming)* ’]]’

236 | ’[[’ renaming (’,’ renaming)* ’|’ setGenerator (’,’ setGenerator)* ’]]’

237 ;

238

239 renaming

240 : expression ’<-’ expression ;

241

242 primaryExpr

243 : goReservedFunc

244 # pExprGoReservedFunc

245 | goReservedKeyword

246 # pExprGoReservedKeyword

247 | builtInFunc

248 # pExprBuiltInCall

249 | builtInProcess

250 # pExprBuiltInProcess

251 | builtInIdentifier

252 # pExprBuiltInIdentifier

253 | seqExpr

254 # pExprSeqExpr

255 | setExpr

256 # pExprSetExpr

257 | Name ’(’ expressionList ’)’

258 # pExprUserFuncCall

259 | Name ’::’ Name

260 # pExprModuleAccess

261 | Name

262 # pExprName

263 | mapLit

264 # pExprMapLit

265 | tupleExpr

266 # pExprTupExpr

267 | literal

268 # pExprLiteral

269 ;

Appendix A An ANTLR grammar for CSPM 220

270

271 goReservedFunc

272 : ’close’ ’(’ expression ’)’

273 | ’len’ ’(’ expression ’)’

274 | ’cap’ ’(’ expression ’)’

275 | ’new’ ’(’ expression ’)’

276 | ’make’ ’(’ expression ’)’

277 | ’append’ ’(’ expression ’)’

278 | ’copy’ ’(’ expression ’)’

279 | ’delete’ ’(’ expression ’)’

280 | ’complex’ ’(’ expression ’)’

281 | ’real’ ’(’ expression ’)’

282 | ’imag’ ’(’ expression ’)’

283 | ’panic’ ’(’ expression ’)’

284 | ’recover’ ’(’ expression ’)’

285 | ’protect’ ’(’ expression ’)’

286 | ’println’ ’(’ expression ’)’

287 ;

288

289 goReservedKeyword

290 : ’break’ | ’case’ | ’chan’ | ’const’ | ’continue’

291 | ’default’ | ’defer’ | ’else’ | ’fallthrough’ | ’for’

292 | ’func’ | ’go’ | ’goto’ | ’if’ | ’import’

293 | ’interface’ | ’map’ | ’package’ | ’range’ | ’return’

294 | ’select’ | ’struct’ | ’switch’ | ’type’ | ’var’

295 ;

296

297 expressionList

298 : expression (’,’ expression)* ;

299

300 literal

301 : Int

302 # litInt

303 | Char

304 # litChar

305 | String

306 # litString

307 ;

308

309 seqExpr

310 : ’<’ ’>’

311 # listEmpty

312 | ’<’ expression ’..’ expression ’>’

313 # listRangedInt

314 | ’<’ expression ’..’ ’>’

315 # listRangedIntInfinite // TODO: non-implementable!

316 | ’<’ expressionList ’>’

Appendix A An ANTLR grammar for CSPM 221

317 # list

318 | ’<’ expression ’..’ expression ’|’ seqStatements ’>’

319 # listRangedComp

320 | ’<’ expression ’..’ ’|’ seqStatements ’>’

321 # listRangedCompInfinite

322 | ’<’ expressionList ’|’ seqStatements ’>’

323 # listComp

324 | Concat ’(’ primaryExpr ’)’

325 # listConcat

326 | Tail ’(’ primaryExpr ’)’

327 # listTail

328 | Seq ’(’ primaryExpr ’)’

329 # listFromSet

330 ;

331

332 seqStatements

333 : seqStatement (’,’ seqStatement)* ;

334

335 seqStatement

336 : seqGenerator

337 | seqPredicate

338 ;

339

340 seqGenerator

341 : Name ’<-’ primaryExpr

342 # seqGenSingle

343 | tupleExpr ’<-’ primaryExpr

344 # seqGenTuple

345 ;

346

347 seqPredicate

348 : expression ;

349

350 setExpr

351 : ’{’ ’}’

352 # setEmpty

353 | ’{’ expression ’..’ expression ’}’

354 # setRangedInt

355 | ’{’ expression ’..’ ’}’

356 # setRangedIntInfinite

357 | ’{’ expressionList ’}’

358 # set

359 | ’{’ expression ’..’ expression ’|’ setStatements ’}’

360 # setRangedComp

361 | ’{’ expressionList ’|’ setStatements ’}’

362 # setComp

363 | ’{|’ expressionList ’|}’

Appendix A An ANTLR grammar for CSPM 222

364 # setEnumerated

365 | ’{|’ expressionList ’|’ setStatements ’|}’

366 # setEnumeratedComp

367 | Diff ’(’ primaryExpr ’,’ primaryExpr ’)’

368 # setDiff

369 | DistInter ’(’ primaryExpr ’)’

370 # setDistInter

371 | DistUnion ’(’ primaryExpr ’)’

372 # setDistUnion

373 | Inter ’(’ primaryExpr ’,’ primaryExpr ’)’

374 # setInter

375 | Union ’(’ primaryExpr ’,’ primaryExpr ’)’

376 # setUnion

377 | Powerset ’(’ primaryExpr ’)’

378 # setPowerset

379 | Set ’(’ primaryExpr ’)’

380 # setFromList

381 ;

382

383 setStatements

384 : setStatement (’,’ setStatement)* ;

385

386 setStatement

387 : setGenerator

388 | setPredicate

389 ;

390

391 setGenerator

392 : Name ’<-’ primaryExpr

393 | tupleExpr ’<-’ primaryExpr

394 ;

395

396 setPredicate

397 : expression;

398

399 mapLit

400 : ’(|’

401 (expression ’=>’ expression

402 (’,’ expression ’=>’ expression)*)?

403 ’|)’

404 ;

405

406 tupleExpr

407 : ’(’ expressionList? ’)’

408 ;

409

410 builtInFunc // All these functions take compulsory arguments

Appendix A An ANTLR grammar for CSPM 223

411 : Card ’(’ primaryExpr ’)’

412 # setCard

413 | Chaos ’(’ primaryExpr ’)’

414 # cspChaosProcess

415 | Elem ’(’ primaryExpr ’,’ primaryExpr ’)’

416 # seqElemTest

417 | Empty ’(’ primaryExpr ’)’

418 # setEmptyTest

419 | Error ’(’ String ’)’

420 # logError

421 | Head ’(’ primaryExpr ’)’

422 # seqHead

423 | Length ’(’ primaryExpr ’)’

424 # seqLen

425 | Member ’(’ primaryExpr ’,’ primaryExpr ’)’

426 # setMemberTest

427 | Null ’(’ primaryExpr ’)’

428 # seqNullTest

429 | Run ’(’ primaryExpr ’)’

430 # cspRunProcess

431 | SeqSet ’(’ primaryExpr ’)’

432 # setSeqOverSetInf

433 ;

434

435 builtInIdentifier

436 : BoolSet

437 | CharSet

438 | EventSet

439 | Events

440 | False

441 | IntSet

442 | Proc

443 | True

444 | Wildcard

445 ;

446

447 builtInProcess

448 : Stop

449 | Skip

450 | Diverge

451 ;

452

453 transparentDecl

454 : Transparent expressionList ;

455

456 //

457 // Lexer rules

Appendix A An ANTLR grammar for CSPM 224

458 //

459 ExtPatternAnnotation

460 : ’--#’ ;

461 Comment1 : ’--’ ~’#’ .*? ’\r’? ’\n’ -> skip ;

462 Comment2 : ’{-’ .*? ’-}’ -> skip ;

463

464 Stop : ’STOP’ ;

465 Skip : ’SKIP’ ;

466 Diverge : ’DIV’ ;

467 Run : ’RUN’ ; // nb. ’RUN’ is a function

468 Chaos : ’CHAOS’ ; // nb. CHAOS is a function

469

470 RefTr : ’[T=’ ;

471 RefFa : ’[F=’ ;

472 RefFd : ’[FD=’ ;

473

474 // TODO: Test application patterns for these options

475 PartOrdRedOpt : ’:[’ Partial .*? ’]’ ;

476 TauPriorityOpt : ’:[’ Tau .*? ’]’ ’{’ .*? ’}’ ;

477

478 Deadlock : ’deadlock’ ;

479 Determ : ’deterministic’ ;

480 Divergence : ’divergence’ ;

481 Has : ’has’ ;

482 Trace : ’trace’ ;

483 Free : ’free’ ;

484 FModel : ’[F]’ ;

485 TModel : ’[T]’ ;

486 FDModel : ’[FD]’ ;

487 Partial : ’partial’ ;

488 Tau : ’tau’ ;

489

490 And : ’and’ ;

491 Assert : ’assert’ ;

492 BoolSet : ’Bool’ ;

493 Card : ’card’ ;

494 Channel : ’channel’ ;

495 CharSet : ’Char’ ;

496 Concat : ’concat’ ;

497 Datatype : ’datatype’ ;

498 Diff : ’diff’ ; // diff(a1, a2): a1 - a2

499 DistInter : ’Inter’ ;

500 DistUnion : ’Union’ ;

501 Elem : ’elem’ ;

502 Else : ’else’ ;

503 Empty : ’empty’ ;

504 Endmodule : ’endmodule’ ;

Appendix A An ANTLR grammar for CSPM 225

505 Error : ’error’ ;

506 EventSet : ’Event’ ;

507 Events : ’Events’ ;

508 Exports : ’exports’ ;

509 External : ’external’ ;

510 False : ’False’ | ’false’ ;

511 Head : ’head’ ;

512 If : ’if’ ;

513 Include : ’include’ ;

514 Instance : ’instance’ ;

515 IntSet : ’Int’ ;

516 Inter : ’inter’ ; // inter(a1, a2): a1 /\ a2

517 Length : ’length’ ;

518 Let : ’let’ ;

519 Member : ’member’ ;

520 Module : ’module’ ;

521 Nametype : ’nametype’ ;

522 Not : ’not’ ;

523 Null : ’null’ ;

524 Or : ’or’ ;

525 Powerset : ’Set’ ; // Set(a): all subsets of a

526 Print : ’print’ ;

527 Proc : ’Proc’ ;

528 SeqSet : ’Seq’ ; // Seq(a): set of sequences over a set a

529 // "(infinite if a is not empty)"

530 Seq : ’seq’ ; // seq(a) convert a set to a sequence

531 // "(in an arbitrary order)"

532 Set : ’set’ ; // set(s) convert a sequence s into a set

533 Tail : ’tail’ ;

534 Then : ’then’ ;

535 Timed : ’Timed’ ;

536 Transparent : ’transparent’ ;

537 True : ’True’ | ’true’ ;

538 Type : ’type’ ;

539 Union : ’union’ ; // union(a1, a2): a1 \/ a2

540 Within : ’within’ ;

541

542 String : ’"’ (’\\"’ | .)*? ’"’ ;

543 Char : ’\’’ (AlphaNum | ’\\\’’) ’\’’ ;

544 Wildcard : ’_’ ;

545 // ’Identifiers with a trailing underscore (such as ’f_’) are

546 // reserved for machine generated-code.’

547 // https://www.cs.ox.ac.uk/projects/fdr/manual/cspm/syntax.html#syntax_Variable

548 //

549 ReservedName : Alpha (AlphaNum | UScore | Primes)* UScore ;

550

551 // ’These must begin with an alphabetic character and are followed by any

Appendix A An ANTLR grammar for CSPM 226

552 // number of alphanumeric characters or underscores, optionally

553 // followed by any number of prime characters (’).’

554 Name : Alpha (AlphaNum | UScore)* Primes? ;

555 Int : [0-9]+ ;

556 fragment Alpha : [a-zA-Z] ;

557 fragment AlphaNum

558 : [0-9a-zA-Z] ;

559 fragment NonAlphaNum

560 : ~[0-9a-zA-Z] ;

561 fragment Primes : ’\’’+ ;

562 fragment UScore : ’_’ ;

563 WS : (’ ’|’\t’) -> skip ;

564 NL : ’\r’? ’\n’ -> skip ;

Appendix B

The CSPIDER process network templated

in StringTemplate

Listing B.1: StringTemplate template for the CSPIDER process network

1 import "goFundamentals.stg"

2 import "expr.stg"

3 import "misc.stg"

4

5 // Process network string template

6

7 procNet(n, // Exportable type name

8 pkn, // package name

9 pnParamName, // process network argument attributes

10 pnParamType,

11 pnConstantName, // process network global constants

12 pnConstantType,

13 pnConstantInit,

14 pnStateVarName, // process network state variable attributes

15 pnStateVarType,

16 pnStateVarInit,

17 pnClientChanName, // client channel attributes

18 pnClientChanType,

19 pnClientChanArrayName, // client channel array attributes

20 pnClientChanArrayType,

21 pnRenamedChanClientName, // renamed channel exposed to client

22 pnRenamedChanType,

23 pnRenamedChanNetworkName,

24 nwChanName, // internal channel attributes

25 nwChanType,

26 nwChanArrayName, // internal channel array attributes

27 nwChanArraySize,

28 nwChanArrayType,

29 procName, // internal process attributes

30 procLiteral,

31 procArrayName, // internal replicated process attributes

32 procArrayCtr,

227

Appendix B The CSPIDER process network templated in StringTemplate 228

33 procArraySize,

34 procArrayLiteral,

35 pnFuncs, // Non-process functions

36 pnCommStruct, // multi-value channel structs

37 pnGuardedChanFuncs // typed GCFs (for use by processes within package)

38) ::= <<

39 package <pkn>

40

41 import "sync"

42

43 type <n> struct {

44 <field("*sync.WaitGroup", "wg")>

45 <if(pnConstantName)>

46 // process network state variables

47 <pnConstantName, pnConstantType:{n,t|<field(t,n)>}; separator="\n">

48 <endif>

49 <if(pnParamName)>

50 // process network parameters

51 <if(pnParamName)><pnParamName, pnParamType:{n,t|<field(t,n)>}; separator="\n"><

endif>

52 <endif>

53 <if(pnStateVarName)>

54 // process network state variables

55 <if(pnStateVarName)><pnStateVarName, pnStateVarType:{n,t|<field(t,n)>}; separator

="\n"><endif>

56 <endif>

57 <if(pnClientChanName || pnClientChanArrayName || pnRenamedChanClientName)>

58 // client channels

59 <endif>

60 <if(pnClientChanName)>

61 <pnClientChanName, pnClientChanType:{n,t|<field(t,n)>}; separator="\n">

62 <endif>

63 <if(pnClientChanArrayName)>

64 <pnClientChanArrayName, pnClientChanArrayType:{n,t|<field(t,n)>}; separator="\n">

65 <endif>

66 <if(pnRenamedChanClientName)>

67 <pnRenamedChanClientName, pnRenamedChanType:{n,t|<field(t,n)>}; separator="\n">

68 <endif>

69 <if(procName||procArrayName)>

70 // processes

71 <endif>

72 <if(procName)>

73 <procName:{n|<procField(n)>}; separator="\n">

74 <!<procField(procName); separator="\n">!>

75 <endif>

76 <if(procArrayName)>

77 <procArrayName:{n|<procArrayField(n)>}; separator="\n">

Appendix B The CSPIDER process network templated in StringTemplate 229

78 <!<procArrayField(procArrayName); separator="\n">!>

79 <endif>

80 }

81

82 func New<n>(<newArgsList(pnParamName, pnParamType, pnClientChanName, pnClientChanType,

pnClientChanArrayName, pnClientChanArrayType); wrap="\n">) <ptr(n)> {

83 <rVarDecl("wg", "sync.WaitGroup")>

84 <if(pnConstantName)>

85

86 // init package constants

87 <pnConstantName, pnConstantInit:{v,e|<sVarDecl(v,e)>}; separator="\n">

88 <endif>

89 <if(pnStateVarName)>

90

91 // init state variables

92 <pnStateVarName, pnStateVarInit:{v,e|<sVarDecl(v,e)>}; separator="\n">

93 <endif>

94 <if(nwChanName||nwChanArrayName)>

95

96 // allocate internal channels

97 <nwChanName, nwChanType:{c,m| <makeChan(c,m)>}; separator="\n">

98 <nwChanArrayName, nwChanArraySize, nwChanArrayType: {n,s,t | <makeChanArray(n,s,t)

>}; separator="\n\n">

99 <endif>

100 <if(procName)>

101

102 // allocate processes

103 <procName, procLiteral:{n, l| <makeProc(n,l)>}; separator="\n">

104 <endif>

105 <if(procArrayName)>

106

107 // allocate replicated processes

108 <procArrayName, procArraySize, procArrayLiteral, procArrayCtr:{n,s,l,c|<

makeProcArray(n,s,l,c)>}; separator="\n">

109 <endif>

110

111 pn := <addr(n)>{ wg: &wg,

112 <initProcNetFields(pnParamName, pnConstantName, pnStateVarName, procName,

procArrayName, pnClientChanName, pnClientChanArrayName,

pnRenamedChanClientName, pnRenamedChanNetworkName)>

113 }

114 <return("pn")>

115 }

116

117 func (pn *<n>) <n>() {

118 <procName:invokeProcName(); separator="\n">

119 <procArrayName:{n|<invokeProcArray(n)>}; separator="\n\n">

Appendix B The CSPIDER process network templated in StringTemplate 230

120 }

121

122 <if(pnFuncs)>

123 // User-defined (non-process) functions

124 <pnFuncs; separator="\n\n">

125

126 <endif>

127 <if(pnCommStruct)>

128 // Message structs for complex channels

129 <pnCommStruct; separator="\n\n">

130

131 <endif>

132 <if(pnGuardedChanFuncs)>

133 // Functions for guarded channel operations

134 <pnGuardedChanFuncs; separator="\n\n">

135 <endif>

136 >>

137

138

139 // Utility macros

140

141 procField(name) ::= <<

142 <name> <name:ptr()>

143 >>

144

145 procArrayField(name) ::= <<

146 <pluralise(name)> <name:ptr():slice()>

147 >>

148

149 invokeProcName(name) ::= <<

150 pn.<name>.<name>()

151 >>

152

153 invokeProcArray(name) ::= <<

154 for _, p := range pn.<name:pluralise()> {

155 p.<name>()

156 }

157 >>

158

159 initProcNetFields(pnP, pnC, pnSVN, pN, pAN, pCC, pCCA, pRCCN, pRCNN) ::= <<

160 <if(pnP)><pnP:{v|<fieldAssign(v,v)>,}; separator="\n"><endif>

161 <if(pnC)><pnC:{v|<fieldAssign(v,v)>,}; separator="\n"><endif>

162 <if(pnSVN)><pnSVN:{v|<fieldAssign(v,v)>,}; separator="\n"><endif>

163 <if(pN)><pN:{p|<fieldAssign(p,p)>,}; separator="\n"><endif>

164 <if(pAN)><pAN:{pa|<fieldAssignProcArray(pa)>,}; separator="\n"><endif>

165 <if(pCC)><pCC:{cc|<fieldAssign(cc,cc)>,}; separator="\n"><endif>

166 <if(pCCA)><pCCA:{cca|<fieldAssign(cca,cca)>,}; separator="\n"><endif>

Appendix B The CSPIDER process network templated in StringTemplate 231

167 <if(pRCCN)><pRCCN,pRCNN:{ccn,cnn|<fieldAssign(ccn,cnn)>,}; separator="\n"><endif>

168 >>

169

170 makeChan(name, type) ::=

171 "<name> := <chan(type):make()>"

172

173 makeChanArray(name, size, type) ::=

174 <<

175 var <name> <chan(type):slice()>

176 for i := 0; i \<= <size>; i++ {

177 <name> = <chan(type):make():appendChan(name)>

178 }

179 >>

180

181 fieldAssignProcArray(p) ::=

182 "<p:pluralise()>: <p:pluralise()>"

183

184 makeProc(name, literal) ::=

185 "<name> := <literal>"

186

187 makeProcArray(name, size, literal, ctr) ::=

188 <<

189 var <name:pluralise()> <ptr(name):slice()>

190 for <ctr> := 0; <ctr> \<= <size>; <ctr>++ {

191 <name:pluralise()> = <literal:append(name)>

192 }

193 >>

194

195 newArgsList(pnPN, pnPT, pnCCN, pnCCT, pnCCAN, pnCCAT) ::= <%

196 <if(pnPN)><pnPN,pnPT:{n,t|<arg(n,t)>}; separator=", "><endif>

197 <if(pnCCN&&pnPN)>, <endif>

198 <if(pnCCN)><pnCCN,pnCCT:{n,t|<arg(n,t)>}; separator=", "><endif>

199 <if((pnCCAN&&pnPN)||(pnCCAN&&pnCCN))>, <endif>

200 <if(pnCCAN)><pnCCAN,pnCCAT:{n,t|<arg(n,t)>}; separator=", "><endif>

201 %>

Appendix C

The CSPIDER process object templated in

StringTemplate

Listing C.1: StringTemplate template for the CSPIDER process object

1 import "goFundamentals.stg"

2 import "expr.stg"

3 import "misc.stg"

4

5

6 // Process object string templates

7

8 procObjectLiteral(

9 n,

10 varName,

11 varInit,

12 poChanName,

13 pnChanName

14) ::= <<

15 <addr(n)>{wg: &wg,

16 <varName, varInit: {n,i|<fieldAssign(n,i)>,}; separator="\n">

17 <poChanName, pnChanName:{o,n|<fieldAssign(o,n)>,}; separator="\n">

18 }

19 >>

20

21

22

23 processObject(

24 pkn, // package name

25 procPfx, // process label prefix

26 procLabel, // process labels

27 n, // name of process object

28 nI, // initial of process object

29 constantName, // object constant declarations

30 constantType,

31 stateVarName, // state variable declarations

32 stateVarType,

232

Appendix C The CSPIDER process object templated in StringTemplate 233

33 proxyChan, // proxy chan

34 chanName, // channel declarations

35 chanType,

36 chanArrayName, // channel array declarations

37 chanArrayType,

38 methodName, // method names

39 init, // initialisation assignments

40 initSt, // initial process label

41 procStMethods, // methods corresponding to states of the process object

42 userDefMethods // methods corresponding to CSPM functions

43) ::= <<

44 package <pkn>

45

46 const (

47 <pLabel("SKIP",procPfx)> = iota

48 <procLabel:pLabel(procPfx);separator = "\n">

49)

50

51 <! process object definition !>

52 type <n> struct {

53 // admin

54 wg *sync.WaitGroup

55 jumpTable map[int]func() int

56 jump int

57 <if(constantName)>

58 // constants

59 <constantName, constantType:{n,t|<field(t,n)>}; separator="\n">

60 <endif>

61 <if(stateVarName)>

62 // state variables

63 <stateVarName, stateVarType:{n,t|<field(t,n)>}; separator="\n">

64 <endif>

65 <if(proxyChan)>

66 // proxy channel

67 <proxy()> <emptyStruct():chan()>

68 <endif>

69 <if(chanName||chanArrayName)>

70 // channels

71 <endif>

72 <if(chanName)>

73 <chanName, chanType:{n,t|<field(t,n)>}; separator="\n">

74 <endif>

75 <if(chanArrayName)>

76 <chanArrayName, chanArrayType:{n,t|<field(t,n)>}; separator="\n">

77 <endif>

78 }

79

Appendix C The CSPIDER process object templated in StringTemplate 234

80 <! primary driver function - this is what we invoke from ’outside’ !>

81 func (<nI> *<n>) <n>() {

82 <nI>.jumpTable = map[int]func() int{

83 <procLabel, methodName:{c,m|<pLabel(c,procPfx)>: <nI>.<m>,}; separator="\n

">

84 }

85 <nI>.wg.Add(1)

86 <nI>.jump = <if(initSt)><initSt><else><first(procLabel):pLabel(procPfx)><endif>

87 <if(proxyChan)>

88 <nI>.<proxy()> = <makeProxyChan()>

89 <nI>.<proxy():chOut()>

90 <endif>

91 <if(init)>

92 // initialisation

93 <init; separator="\n">

94 <endif>

95

96 go func() {

97 for {

98 <nI>.jump = <nI>.jumpTable[<nI>.jump]()

99 if <nI>.jump == <pLabel("SKIP", procPfx)> {

100 break

101 }

102 }

103 <nI>.wg.Done()

104 }()

105 }

106

107 // Implemented process states

108 <procStMethods; separator="\n\n">

109

110 <if(userDefMethods)>

111 // User-defined (non-process) functions

112 <userDefMethods; separator="\n\n">

113 <endif>

114 >>

115

116

117 // Utility macros

118

119 pLabel(n, pfx) ::= "<pfx>_<n>"

120

121 makeProxyChan() ::= "make(<chan()>, 1)"

Appendix D

Case study: Linear sorting array

D.1 CSPIDER-compatible model (adapted from T. Davies

(2012, pp. 115-117))

D.1.1 Implementation component

Listing D.1: Implementation component of the linear sorting array CSPM model

1 {-

2 lsaImpl.csp

3

4 Linear sorting array in CSPM, after Thomas Davies (2012).

5 Implementation component. Incomplete without lsaSpec.csp.

6

7 This model has been prepared for automated translation by the CSPIDER tool

8 and as such applies some unusual conventions. Review the CSPIDER

9 documentation for more information. It is fully compatible with FDR4 and

10 may be model-checked. Compatibility with other model checkers has not been

11 tested.

12

13 Copyright 2018 James Dibley <jdibley@gmail.com>

14 -}

15

16 {- !!! Do not delete the following line if you intend to translate this model using

CSPIDER !!! -}

17 --# arraySize :: Int

18 Vals = {0..1}

19

20 channel digitChan : {2..arraySize}.Vals

21 channel input, output : Vals

22

23 receiveSet :: (Int) -> {Event}

24 receiveSet(id) =

25 {digitChan.id.a | a <- {0,1}}

235

Appendix D Case study: Linear sorting array 236

26

27 sendSet :: (Int) -> {Event}

28 sendSet(id) =

29 {digitChan.to.a | a <- {0,1},

30 to <- {id + 1},

31 id != arraySize}

32

33 synchroSet :: (Int) -> {Event}

34 synchroSet(id) =

35 union(receiveSet(id), sendSet(id))

36

37 ARRAYCELL :: (Int) -> Proc

38 ARRAYCELL(id) =

39 let

40 CELL :: (Int, Int, Int) -> Proc

41 CELL(id, store, count) =

42 count == 0 &

43 digitChan.id?x -> CELL(id, x, count+1)

44 []

45 count > 0 and count < arraySize - id &

46 digitChan.id?x ->

47 (if x > store

48 then

49 digitChan.id+1!x -> CELL(id, store, count+1)

50 else

51 digitChan.id+1!store -> CELL(id, x, count+1))

52 []

53 count == arraySize - id &

54 OUTPUT(id, store, count)

55 OUTPUT :: (Int, Int, Int) -> Proc

56 OUTPUT(id, store, count) =

57 count < arraySize &

58 digitChan.id+1!store -> digitChan.id?x -> OUTPUT(id, x, count+1)

59 []

60 count == arraySize &

61 digitChan.id+1!store -> OUTPUT(id, 0, count+1)

62 []

63 count == arraySize+1 &

64 CELL(id, 0, 0)

65 within CELL(id, 1, 0)

66

67 ARRAY =

68 (|| id:{0..arraySize-1} @ [synchroSet(id)] ARRAYCELL(id))

69 [[digitChan.0 <- input, digitChan.arraySize <- output]]

Appendix D Case study: Linear sorting array 237

D.1.2 Specification component

Listing D.2: Specification component of the linear sorting array CSPM model

1 {-

2 lsaSpec.csp

3

4 Linear sorting array in CSPM, after Thomas Davies (2012).

5 Specification component. Incomplete without lsaImpl.csp.

6

7 Copyright 2018 James Dibley <jdibley@gmail.com>

8 -}

9

10 include "lsaImpl.csp"

11

12 channel ok, notSorted -- only used by the specification

13

14 arraySize = 6

15

16 RECEIVEONES(count) =

17 if count == 0

18 then ok -> RECEIVEONES(arraySize)

19 else output?x ->

20 if x == 1

21 then RECEIVEONES(count - 1)

22 else RECEIVEZEROS(count - 1)

23

24 RECEIVEZEROS(count) =

25 if count == 0

26 then ok -> RECEIVEONES(arraySize)

27 else output?x ->

28 if x == 0

29 then RECEIVEZEROS(count - 1)

30 else notSorted -> STOP

31

32 SYSTEM(arraySize) =

33 RECEIVEONES(arraySize)

34 [| {| output |} |]

35 ARRAY

36 \ {| digitChan |}

37

38 P = ok -> P

39

40 HIDINGSYS =

41 SYSTEM(arraySize) \ {| digitChan, output, input|}

42

43 assert ARRAY :[divergence free]

44 assert ARRAY :[deadlock free [F]]

Appendix D Case study: Linear sorting array 238

45 assert SYSTEM(arraySize) :[divergence free]

46 assert SYSTEM(arraySize) :[deadlock free [F]]

47 assert HIDINGSYS [T= P

48 assert P [T= HIDINGSYS

D.1.3 Verification

Listing D.3: Verification results for linear sorting array

1 Welcome to FDR Version 4.2.3 copyright 2016 Oxford University Innovation Ltd. All Rights

Reserved.

2 License: Academic license for non-commercial use only

3 Log:

4 [...]

5 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

6 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

7 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

8 [...]

9 Finished

10 Reconstructing counterexamples

11 ARRAY :[divergence free]: Passed

12

13 [...]

14 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

15 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

16 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

17 [...]

18 Finished

19 Reconstructing counterexamples

20 ARRAY :[deadlock free [F]]: Passed

21

22 [...]

23 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

24 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

25 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

26 [...]

27 Finished

28 Reconstructing counterexamples

29 SYSTEM(arraySize) :[divergence free]: Passed

30

31 [...]

32 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

Appendix D Case study: Linear sorting array 239

33 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

34 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

35 [...]

36 Finished

37 Reconstructing counterexamples

38 SYSTEM(arraySize) :[deadlock free [F]]: Passed

39

40 [...]

41 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

42 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

43 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

44 [...]

45 Finished

46 Reconstructing counterexamples

47 HIDINGSYS [T= P: Passed

48

49 [...]

50 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

51 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

52 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

53 [...]

54 Finished

55 Reconstructing counterexamples

56 P [T= HIDINGSYS: Passed

D.2 Lsa: CSPIDER-generated Go implementation

D.2.1 Process network: Lsa

Listing D.4: Process network Lsa

1 package lsa

2

3 import "sync"

4

5 type Lsa struct {

6 wg *sync.WaitGroup

7 // process network parameters

8 arraySize int

9 // client channels

Appendix D Case study: Linear sorting array 240

10 Input chan int

11 Output chan int

12 // processes

13 arraycells []*arraycell

14 }

15

16 func NewLsa(arraySize int) *Lsa {

17 var wg sync.WaitGroup

18

19 // allocate internal channels

20 var digitChan []chan int

21 for i := 0; i <= arraySize; i++ {

22 digitChan = append(digitChan, make(chan int))

23 }

24

25 // allocate replicated processes

26 var arraycells []*arraycell

27 for id := 0; id <= arraySize-1; id++ {

28 arraycells = append(arraycells, &arraycell{wg: &wg,

29 id: id,

30 arraySize: arraySize,

31 digitChan: digitChan,

32 })

33 }

34

35 pn := &Lsa{wg: &wg,

36 arraySize: arraySize,

37 arraycells: arraycells,

38 Input: digitChan[0],

39 Output: digitChan[arraySize],

40 }

41 return pn

42 }

43

44 func (pn *Lsa) Lsa() {

45 for _, p := range pn.arraycells {

46 p.arraycell()

47 }

48 }

49

50 // Functions for guarded channel operations

51 func guardedIntChan(b bool, c chan int) chan int {

52 if !b {

53 return nil

54 }

55 return c

56 }

Appendix D Case study: Linear sorting array 241

57

58 func guardedSignalChan(b bool, c chan struct{}) chan struct{} {

59 if !b {

60 return nil

61 }

62 return c

63 }

D.2.2 Process object: arraycell

Listing D.5: Process object arraycell

1 package lsa

2

3 import "sync"

4

5 const (

6 ARRAYCELL_SKIP = iota

7 ARRAYCELL_CELL

8 ARRAYCELL_OUTPUT

9)

10

11 type arraycell struct {

12 // admin

13 wg *sync.WaitGroup

14 jumpTable map[int]func() int

15 jump int

16 // state variables

17 arraySize int

18 id int

19 store int

20 count int

21 // proxy channel

22 proxy chan struct{}

23 // channels

24 digitChan []chan int

25 }

26

27 func (a *arraycell) arraycell() {

28 a.jumpTable = map[int]func() int{

29 ARRAYCELL_CELL: a.cell,

30 ARRAYCELL_OUTPUT: a.output,

31 }

32 a.wg.Add(1)

33 a.jump = ARRAYCELL_CELL

Appendix D Case study: Linear sorting array 242

34 a.proxy = make(chan struct{}, 1)

35 a.proxy <- struct{}{}

36 go func() {

37 for {

38 a.jump = a.jumpTable[a.jump]()

39 if a.jump == ARRAYCELL_SKIP {

40 break

41 }

42 }

43 a.wg.Done()

44 }()

45 }

46

47 // Implemented process states

48 func (a *arraycell) cell() int {

49 select {

50 case x := <-guardedIntChan(a.count == 0, a.digitChan[a.id]):

51 a.store = x // CELL(store := x)

52 a.count = a.count + 1 // CELL(count := count+1)

53 return ARRAYCELL_CELL

54 case x := <-guardedIntChan(a.count > 0 && a.count < a.arraySize-a.id, a.digitChan[

a.id]):

55 if x > a.store {

56 a.digitChan[a.id+1] <- x

57 a.count = a.count + 1 // CELL(count := count+1)

58 return ARRAYCELL_CELL

59 } else {

60 a.digitChan[a.id+1] <- a.store

61 a.store = x // CELL(store := x)

62 a.count = a.count + 1 // CELL(count := count+1)

63 return ARRAYCELL_CELL

64 }

65 case <-guardedSignalChan(a.count == a.arraySize-a.id, a.proxy):

66 a.proxy <- struct{}{}

67 return ARRAYCELL_OUTPUT

68 }

69 }

70

71 func (a *arraycell) output() int {

72 select {

73 case guardedIntChan(a.count < a.arraySize, a.digitChan[a.id+1]) <- a.store:

74 x := <-a.digitChan[a.id]

75 a.store = x // OUTPUT(store := x)

76 a.count = a.count + 1 // OUTPUT(count := count+1)

77 return ARRAYCELL_OUTPUT

78 case guardedIntChan(a.count == a.arraySize, a.digitChan[a.id+1]) <- a.store:

79 a.store = 0 // OUTPUT(store := 0)

Appendix D Case study: Linear sorting array 243

80 a.count = a.count + 1 // OUTPUT(count := count+1)

81 return ARRAYCELL_OUTPUT

82 case <-guardedSignalChan(a.count == a.arraySize+1, a.proxy):

83 a.proxy <- struct{}{}

84 a.store = 0 // CELL(store := 0)

85 a.count = 0 // CELL(count := 0)

86 return ARRAYCELL_CELL

87 }

88 }

D.3 Demonstration program

Listing D.6: Demonstration program for linear sorting array

1 package main

2

3 import (

4 "fmt"

5 "math/rand"

6 "time"

7

8 "bitbucket.com/jdibley/lsa"

9)

10

11 func genRandomSquare(size int, r *rand.Rand) [][]int {

12 s := make([][]int, size)

13 for i := 0; i < size; i++ {

14 s[i] = make([]int, size)

15 for j := 0; j < size; j++ {

16 s[i][j] = r.Intn(512)

17 }

18 }

19 return s

20 }

21

22 func main() {

23 arraySize := 6

24 r := rand.New(rand.NewSource(time.Now().UnixNano()))

25 rows := genRandomSquare(arraySize, r)

26

27 fmt.Println("Original rows: ")

28 for i := 0; i < arraySize; i++ {

29 for j := 0; j < arraySize; j++ {

30 fmt.Printf("%d\t", rows[i][j])

31 }

Appendix D Case study: Linear sorting array 244

32 fmt.Printf("\n")

33 }

34

35 lsa := lsa.NewLsa(arraySize)

36 lsa.Lsa()

37

38 fmt.Println("Sorted rows: ")

39 for i := 0; i < arraySize; i++ {

40 for j := 0; j < arraySize; j++ {

41 lsa.Input <- rows[i][j]

42 }

43 for k := 0; k < arraySize; k++ {

44 fmt.Printf("%d\t", <-lsa.Output)

45 }

46 fmt.Printf("\n")

47 }

48 }

D.4 Output from demonstration program

Listing D.7: Output from demonstration program

1 Original rows:

2 66 180 440 114 287 498

3 465 68 217 217 364 261

4 46 464 64 286 73 117

5 175 26 176 45 491 423

6 322 192 410 313 203 243

7 27 65 503 295 139 502

8 Sorted rows:

9 498 440 287 180 114 66

10 465 364 261 217 217 68

11 464 286 117 73 64 46

12 491 423 176 175 45 26

13 410 322 313 243 203 192

14 503 502 295 139 65 27

Appendix E

Case study: Prime generator

E.1 CSPIDER-compatible model

E.1.1 Implementation component

Listing E.1: Implementation component of the prime generator CSPM model

1 {-

2 pgImpl.csp

3

4 Concurrent prime generator after McIlroy in CSPM

5 Implementation component. Incomplete without pgSpec.csp.

6

7 This model has been prepared for automated translation by the CSPIDER tool

8 and as such applies some unusual conventions. Review the CSPIDER

9 documentation for more information. It is fully compatible with FDR4 and

10 may be model-checked. Compatibility with other model checkers has not been

11 tested.

12

13 Copyright 2018 James Dibley <jdibley@gmail.com>

14 -}

15

16 {- !!! Do not delete the following line if you intend to translate this model using

CSPIDER !!! -}

17 --# maxLimit :: Int

18

19 estSqRt :: (Int, Int) -> Int

20 estSqRt(x, limit) =

21 if x * x >= limit

22 then

23 x

24 else

25 estSqRt(x+1, limit)

26

27 numFilterIDs = estSqRt(2, maxLimit)

245

Appendix E Case study: Prime generator 246

28 FilterIDs = {0..numFilterIDs}

29 Numbers = {2..maxLimit}

30

31 -- Events: environmental comms

32 channel done

33 channel primes : Numbers

34 -- Events: inter-process comms

35 channel out : FilterIDs.Numbers

36 channel pipesDone : FilterIDs

37 --channel primePipes : FilterIDs.Numbers

38 channel filterPipes : FilterIDs.Numbers

39 channel filterShutdown : FilterIDs

40 -- Events: internal channel ends

41 channel sdIn, sdOut, cDoneIn, cDoneOut, pDoneOut

42

43 EMITTER:: (Int) -> Proc

44 EMITTER(x) =

45 let

46 EMIT0:: (Int) -> Proc

47 EMIT0(x) =

48 filterPipes.0!x -> EMIT1(x+1)

49 EMIT1 :: (Int) -> Proc

50 EMIT1(x) =

51 if x <= maxLimit

52 then

53 filterPipes.0!x -> EMIT1(x+2)

54 else

55 sdOut -> SKIP

56 within EMIT0(x) [[sdOut <- filterShutdown.0]]

57

58 aFILTER :: (Int) -> {Event}

59 aFILTER(id) = {| filterPipes.id, filterPipes.id+1,

60 filterShutdown.id, filterShutdown.id+1, out.id, pipesDone.id |}

61 FILTER :: (Int) -> Proc

62 FILTER(id) =

63 let

64 FILTER0 :: (Int) -> Proc

65 FILTER0(id) =

66 if id == numFilterIDs - 1

67 then

68 filterPipes.id?y

69 -> out.id!y -> FILTER0(id)

70 []

71 sdIn

72 -> pDoneOut -> SKIP

73 else

74 filterPipes.id?x

Appendix E Case study: Prime generator 247

75 -> out.id!x -> FILTER1(id, x)

76 []

77 sdIn

78 -> sdOut -> SKIP

79 FILTER1 :: (Int, Int) -> Proc

80 FILTER1(id, p) =

81 filterPipes.id?x ->

82 (if x % p != 0

83 then

84 filterPipes.id+1!x -> FILTER1(id, p)

85 else FILTER1(id, p))

86 []

87 sdIn -> sdOut -> SKIP

88 within FILTER0(id) [[sdIn <- filterShutdown.id,

89 sdOut <- filterShutdown.id+1,

90 pDoneOut <- pipesDone.id]]

91

92 FILTERS =

93 || id:{0..numFilterIDs-1} @ [aFILTER(id)] FILTER(id)

94

95 PIPELINE =

96 EMITTER(2)

97 [| {|filterPipes.0, filterShutdown.0|}|]

98 FILTERS

99 \ {| filterPipes, filterShutdown |}

100

101 COLLECTOR :: (Int, Int) -> Proc

102 COLLECTOR(fID, lastFilter) =

103 let

104 COLLECT :: (Int, Int) -> Proc

105 COLLECT(fID, lastFilter) =

106 if fID < lastFilter

107 then

108 out.fID?y -> primes!y -> COLLECT(fID+1, lastFilter)

109 else

110 out.fID?y -> primes!y -> COLLECT(fID, lastFilter)

111 []

112 cDoneIn -> cDoneOut -> SKIP

113 within COLLECT(fID, lastFilter) [[cDoneIn <- pipesDone.numFilterIDs-1,

114 cDoneOut <- done]]

115

116 PRIMEGENERATOR =

117 PIPELINE [| {|out, pipesDone|} |] COLLECTOR(0, numFilterIDs-1) \{|out, pipesDone|}

118

119 -- Pass00 test

120 TEST =

121 cDoneIn -> STOP |~| cDoneOut -> STOP

Appendix E Case study: Prime generator 248

E.1.2 Specification component

Listing E.2: Specification component of the prime generator CSPM model

1 {-

2 psSpec.csp

3

4 Concurrent prime generator (after McIlroy) in CSPM.

5 Specification component. Incomplete without pgImpl.csp.

6

7 Copyright 2018 James Dibley <jdibley@gmail.com>

8 -}

9

10 include "pgImpl.csp"

11

12 maxLimit = 8

13

14 assert PRIMEGENERATOR :[divergence free]

15

16 -- The following check is a ’termination-friendly’ equivalent of

17 -- assert PRIMEGENERATOR :[deadlock free]

18 assert SKIP [F= PRIMEGENERATOR \Events

19

20 -- Remaining verification can be accomplished by animation

E.1.3 Verification

Listing E.3: FDR verification report for the prime generator CSPM model

1 Welcome to FDR Version 4.2.3 copyright 2016 Oxford University Innovation Ltd. All Rights

Reserved.

2 License: Academic license for non-commercial use only

3 [...]

4 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

5 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

6 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

7 [...]

8 Finished

9 Reconstructing counterexamples

10 PRIMEGENERATOR :[divergence free]: Passed

11

12 [...]

13 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

14 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

Appendix E Case study: Prime generator 249

15 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

16 [...]

17 Finished

18 Reconstructing counterexamples

19 SKIP [F= PRIMEGENERATOR \ Events: Passed

E.2 Pg: CSPIDER-generated Go implementation

E.2.1 Process network: Pg

Listing E.4: Process network Pg

1 package pg

2

3 import "sync"

4

5 type Pg struct {

6 wg *sync.WaitGroup

7 // process network parameters

8 maxLimit int

9 // process network state variables

10 numFilterIDs int

11 // client channels

12 Done chan struct{}

13 Primes chan int

14 // processes

15 emitter *emitter

16 collector *collector

17 filters []*filter

18 }

19

20 func NewPg(maxLimit int, Done chan struct{}, Primes chan int) *Pg {

21 var wg sync.WaitGroup

22

23 // init state variables

24 numFilterIDs := estSqRt(2, maxLimit)

25

26 // allocate internal channels

27 var out []chan int

28 for i := 0; i <= numFilterIDs; i++ {

29 out = append(out, make(chan int))

30 }

31

Appendix E Case study: Prime generator 250

32 var pipesDone []chan struct{}

33 for i := 0; i <= numFilterIDs; i++ {

34 pipesDone = append(pipesDone, make(chan struct{}))

35 }

36

37 var filterPipes []chan int

38 for i := 0; i <= numFilterIDs; i++ {

39 filterPipes = append(filterPipes, make(chan int))

40 }

41

42 var filterShutdown []chan struct{}

43 for i := 0; i <= numFilterIDs; i++ {

44 filterShutdown = append(filterShutdown, make(chan struct{}))

45 }

46

47 // allocate processes

48 emitter := &emitter{wg: &wg,

49 x: 2,

50 maxLimit: maxLimit,

51 sdOut: filterShutdown[0],

52 filterPipes: filterPipes,

53 }

54 collector := &collector{wg: &wg,

55 fID: 0,

56 lastFilter: numFilterIDs - 1,

57 numFilterIDs: numFilterIDs,

58 maxLimit: maxLimit,

59 primes: Primes,

60 cDoneIn: pipesDone[numFilterIDs-1],

61 cDoneOut: Done,

62 out: out,

63 }

64

65 // allocate replicated processes

66 var filters []*filter

67 for id := 0; id <= numFilterIDs-1; id++ {

68 filters = append(filters, &filter{wg: &wg,

69 id: id,

70 numFilterIDs: numFilterIDs,

71 maxLimit: maxLimit,

72 sdIn: filterShutdown[id],

73 pDoneOut: pipesDone[id],

74 sdOut: filterShutdown[id+1],

75 filterPipes: filterPipes,

76 out: out,

77 })

78 }

Appendix E Case study: Prime generator 251

79

80 pn := &Pg{wg: &wg,

81 maxLimit: maxLimit,

82 numFilterIDs: numFilterIDs,

83 emitter: emitter,

84 collector: collector,

85 filters: filters,

86 Done: Done,

87 Primes: Primes,

88 }

89 return pn

90 }

91

92 func (pn *Pg) Pg() {

93 pn.emitter.emitter()

94 pn.collector.collector()

95 for _, p := range pn.filters {

96 p.filter()

97 }

98 }

99

100 // User-defined (non-process) functions

101 func estSqRt(x int, limit int) int {

102 if x*x >= limit {

103 return x

104 } else {

105 return estSqRt(x+1, limit)

106 }

107 }

E.2.2 Process object: collector

Listing E.5: Process object collector

1 package pg

2

3 import "sync"

4

5 const (

6 COLLECTOR_SKIP = iota

7 COLLECTOR_COLLECT

8)

9

10 type collector struct {

11 // admin

Appendix E Case study: Prime generator 252

12 wg *sync.WaitGroup

13 jumpTable map[int]func() int

14 jump int

15 // state variables

16 numFilterIDs int

17 maxLimit int

18 fID int

19 lastFilter int

20 // channels

21 primes chan int

22 cDoneIn chan struct{}

23 cDoneOut chan struct{}

24 out []chan int

25 }

26

27 func (c *collector) collector() {

28 c.jumpTable = map[int]func() int{

29 COLLECTOR_COLLECT: c.collect,

30 }

31 c.wg.Add(1)

32 c.jump = COLLECTOR_COLLECT

33 go func() {

34 for {

35 c.jump = c.jumpTable[c.jump]()

36 if c.jump == COLLECTOR_SKIP {

37 break

38 }

39 }

40 c.wg.Done()

41 }()

42 }

43

44 // Implemented process states

45 func (c *collector) collect() int {

46 if c.fID < c.lastFilter {

47 y := <-c.out[c.fID]

48 c.primes <- y

49 c.fID = c.fID + 1 // COLLECT(fID := fID+1)

50 return COLLECTOR_COLLECT

51 } else {

52 select {

53 case y := <-c.out[c.fID]:

54 c.primes <- y

55 return COLLECTOR_COLLECT

56 case <-c.cDoneIn:

57 c.cDoneOut <- struct{}{}

58 return COLLECTOR_SKIP

Appendix E Case study: Prime generator 253

59 }

60 }

61 }

E.2.3 Process object: filter

Listing E.6: Process object filter

1 package pg

2

3 import "sync"

4

5 const (

6 FILTER_SKIP = iota

7 FILTER_FILTER0

8 FILTER_FILTER1

9)

10

11 type filter struct {

12 // admin

13 wg *sync.WaitGroup

14 jumpTable map[int]func() int

15 jump int

16 // state variables

17 numFilterIDs int

18 maxLimit int

19 id int

20 p int

21 // channels

22 sdIn chan struct{}

23 pDoneOut chan struct{}

24 sdOut chan struct{}

25 filterPipes []chan int

26 out []chan int

27 }

28

29 func (f *filter) filter() {

30 f.jumpTable = map[int]func() int{

31 FILTER_FILTER0: f.filter0,

32 FILTER_FILTER1: f.filter1,

33 }

34 f.wg.Add(1)

35 f.jump = FILTER_FILTER0

36 go func() {

37 for {

Appendix E Case study: Prime generator 254

38 f.jump = f.jumpTable[f.jump]()

39 if f.jump == FILTER_SKIP {

40 break

41 }

42 }

43 f.wg.Done()

44 }()

45 }

46

47 // Implemented process states

48 func (f *filter) filter0() int {

49 if f.id == f.numFilterIDs-1 {

50 select {

51 case y := <-f.filterPipes[f.id]:

52 f.out[f.id] <- y

53 return FILTER_FILTER0

54 case <-f.sdIn:

55 f.pDoneOut <- struct{}{}

56 return FILTER_SKIP

57 }

58 } else {

59 select {

60 case x := <-f.filterPipes[f.id]:

61 f.out[f.id] <- x

62 f.p = x // FILTER1(p := x)

63 return FILTER_FILTER1

64 case <-f.sdIn:

65 f.sdOut <- struct{}{}

66 return FILTER_SKIP

67 }

68 }

69 }

70

71 func (f *filter) filter1() int {

72 select {

73 case x := <-f.filterPipes[f.id]:

74 if x%f.p != 0 {

75 f.filterPipes[f.id+1] <- x

76 return FILTER_FILTER1

77 } else {

78 return FILTER_FILTER1

79 }

80 case <-f.sdIn:

81 f.sdOut <- struct{}{}

82 return FILTER_SKIP

83 }

84 }

Appendix E Case study: Prime generator 255

E.2.4 Process object: intgenerator

Listing E.7: Process object intgenerator

1 package pg

2

3 import "sync"

4

5 const (

6 INTGENERATOR_SKIP = iota

7 INTGENERATOR_GEN0

8 INTGENERATOR_GEN1

9)

10

11 type intgenerator struct {

12 // admin

13 wg *sync.WaitGroup

14 jumpTable map[int]func() int

15 jump int

16 // state variables

17 maxLimit int

18 x int

19 // channels

20 sdOut chan struct{}

21 filterPipes []chan int

22 }

23

24 func (i *intgenerator) intgenerator() {

25 i.jumpTable = map[int]func() int{

26 INTGENERATOR_GEN0: i.gen0,

27 INTGENERATOR_GEN1: i.gen1,

28 }

29 i.wg.Add(1)

30 i.jump = INTGENERATOR_GEN0

31 go func() {

32 for {

33 i.jump = i.jumpTable[i.jump]()

34 if i.jump == INTGENERATOR_SKIP {

35 break

36 }

37 }

38 i.wg.Done()

39 }()

40 }

41

42 // Implemented process states

43 func (i *intgenerator) gen0() int {

44 i.filterPipes[0] <- i.x

Appendix E Case study: Prime generator 256

45 i.x = i.x + 1 // GEN1(x := x+1)

46 return INTGENERATOR_GEN1

47 }

48

49 func (i *intgenerator) gen1() int {

50 if i.x <= i.maxLimit {

51 i.filterPipes[0] <- i.x

52 i.x = i.x + 2 // GEN1(x := x+2)

53 return INTGENERATOR_GEN1

54 } else {

55 i.sdOut <- struct{}{}

56 return INTGENERATOR_SKIP

57 }

58 }

E.3 Demonstration program

Listing E.8: Demonstration program for the prime generator

1 package main

2

3 import (

4 "fmt"

5

6 "bitbucket.com/jdibley/pg"

7)

8

9 func main() {

10 Done := make(chan struct{})

11 Primes := make(chan int)

12 limit := 500

13 fmt.Println("Primes up to: ", limit)

14 p := pg.NewPg(limit, Done, Primes)

15 p.Pg()

16 LOOP:

17 for {

18 select {

19 case i := <-p.Primes:

20 fmt.Printf("%d, ", i)

21 case <-p.Done:

22 fmt.Println()

23 fmt.Println("Done.")

24 break LOOP

25 }

26 }

Appendix E Case study: Prime generator 257

27 }

E.4 Output from demonstration program

Listing E.9: Output from the prime generator demonstration program

1 Primes up to: 1024

2 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,

179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269,

271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373,

379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,

479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593,

599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,

701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821,

823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,

941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021,

3 Done.

Appendix F

Case study: Ricart-Agrawala mutual

exclusion node

F.1 CSPIDER-compatible model

F.1.1 Implementation component

Listing F.1: Implementation component of the Ricart-Agrawala node CSPM model

1 {-

2 raImpl.csp

3

4 Ricart-Agrawala distributed mutual exclusion in CSPM.

5 Implementation component. Incomplete without raSpec.csp.

6

7 This model has been prepared for automated translation by the CSPIDER tool

8 and as such applies some unusual conventions. Review the CSPIDER

9 documentation for more information. It is fully compatible with FDR4 and

10 may be model-checked. Compatibility with other model checkers has not been

11 tested.

12

13 Copyright 2018 James Dibley <jdibley@gmail.com>

14 -}

15

16 {- !!! Do not delete the following line if you intend to translate this model using

CSPIDER !!! -}

17 --# netSize:: Int

18

19 M = ((2*netSize)-1)

20 AllNodes = {0..netSize-1}

21 SeqNumbers = {0..M-1}

22

23 -- Events: external comms

24 channel request : AllNodes.AllNodes.SeqNumbers -- dst.src.reqNum

258

Appendix F Case study: Ricart-Agrawala mutual exclusion node 259

25 channel response : AllNodes.AllNodes -- dst.src

26

27 -- Events: internal

28 channel getRequestCS,

29 setRequestCS : Bool

30 channel getHighestNum,

31 setHighestNum,

32 getLocalSeqNumExtReq,

33 getLocalSeqNumProtocol : SeqNumbers

34 channel getNextExtReq : AllNodes.SeqNumbers

35 channel deferResponse : Bool.AllNodes

36 channel getDeferred,

37 getNextExtRsp,

38 hostRequestingCS,

39 hostEnterCS,

40 hostLeavingCS,

41 getDeferredCount,

42 hostRequestComplete : AllNodes

43 channel setLocalSeqNum,

44 beginExtReqComparison,

45 endExtReqComparison

46 channel erCompBeginOut, -- ‘local’ names for CSPIDER’s benefit

47 erCompEndOut,

48 hReqCSIn,

49 setLSNOut,

50 hEnterCSOut,

51 hLeaveCSIn,

52 hReqCSOut,

53 setLocalSeqNumIn,

54 beginExtReqComparisonIn,

55 endExtReqComparisonIn

56

57

58 -- Environmental interactions

59 aRequestOut :: (Int) -> {Event}

60 aRequestOut(id) = -- outbound requests (PROTOCOL)

61 {request.x.id.z | x <- diff(AllNodes,{id}), z <- SeqNumbers}

62 aResponseOut :: (Int) -> {Event}

63 aResponseOut(id) = -- outbound responses (EXTREQ / PROTOCOL)

64 {response.x.id | x <- diff(AllNodes,{id})}

65 aRequestIn :: (Int) -> {Event}

66 aRequestIn(id) = -- inbound requests (RXREQ)

67 {request.id.y.z | y <- diff(AllNodes,{id}), z <- SeqNumbers}

68 aResponseIn :: (Int) -> {Event}

69 aResponseIn(id) = -- inbound responses (RXRSP)

70 {response.id.y | y <- diff(AllNodes,{id})}

71 aClient :: (Int) -> {Event}

Appendix F Case study: Ricart-Agrawala mutual exclusion node 260

72 aClient(id) = -- client application comms

73 {hostRequestingCS.id, hostEnterCS.id, hostLeavingCS.id, hostRequestComplete.id}

74

75 -- Intra-node composition interfaces

76 aRXREQifEXTREQ =

77 {| getNextExtReq |}

78 aEXTREQifNODESTATE =

79 {| beginExtReqComparison, getHighestNum, setHighestNum,

80 getRequestCS, getLocalSeqNumExtReq, deferResponse, endExtReqComparison |}

81 aPROTOifNODESTATE =

82 {| setRequestCS, setLocalSeqNum, getLocalSeqNumProtocol,

83 getDeferredCount, getDeferred |}

84 aRXRSPifPROTO =

85 {| getNextExtRsp |}

86

87 -- Process alphabets

88 aRXREQ :: (Int) -> {Event}

89 aRXREQ(id) =

90 union(aRequestIn(id), aRXREQifEXTREQ)

91 aEXTREQ :: (Int) -> {Event}

92 aEXTREQ(id) =

93 union(aResponseOut(id),

94 union(aRXREQifEXTREQ, aEXTREQifNODESTATE))

95 aNODESTATE =

96 union(aPROTOifNODESTATE, aEXTREQifNODESTATE)

97 aPROTO :: (Int) -> {Event}

98 aPROTO(id) =

99 union(aResponseOut(id),

100 union(aRequestOut(id),

101 union(aClient(id),

102 union(aPROTOifNODESTATE, aRXRSPifPROTO))))

103 aRXRSP :: (Int) -> {Event}

104 aRXRSP(id) =

105 union(aResponseIn(id), aRXRSPifPROTO)

106

107 -- Functions

108 maxNumUnderModulo :: (Int, Int) -> Int

109 maxNumUnderModulo(num1, num2) =

110 if num1 < M and num2 < M

111 then

112 if num1 > num2

113 then if ((num1 - num2) >= netSize) then num2 else num1

114 else if ((num2 - num1) >= netSize) then num1 else num2

115 else

116 error("maxNumUnderModulo called with invalid inputs")

117

118 strictLessThanUnderModulo :: (Int, Int) -> Bool

Appendix F Case study: Ricart-Agrawala mutual exclusion node 261

119 strictLessThanUnderModulo(num1, num2) =

120 if num1 < M and num2 < M

121 then

122 (num1 != num2) and (maxNumUnderModulo(num1, num2)==num2)

123 else

124 error("strictLessThanUnderModulo called with invalid inputs")

125

126 incr :: (Int) -> Int

127 incr(sn) = (sn + 1) % M

128

129 -- Processes

130 RXREQ :: (Int) -> Proc

131 RXREQ(id) =

132 let

133 RX :: (Int, <Int>) -> Proc

134 RX(id, s) =

135 if null(s)

136 then

137 request.id?reqSrc.reqSeqNum

138 -> RX(id, <reqSrc>^<reqSeqNum>)

139 else

140 length(s) < (netSize - 1) * 2 &

141 request.id?reqSrc.reqSeqNum

142 -> RX(id, s^<reqSrc>^<reqSeqNum>)

143 []

144 getNextExtReq!head(s).head(tail(s)) -> RX(id, tail(tail(s)))

145 within RX(id, <>)

146

147 EXTREQ :: (Int) -> Proc

148 EXTREQ(id) =

149 let

150 ER :: (Int) -> Proc

151 ER(id) =

152 getNextExtReq?reqSrc.reqSeqNum

153 -- compare and possibly update highest number

154 -> getHighestNum?localHighestSeqNum

155 -> setHighestNum!maxNumUnderModulo(localHighestSeqNum, reqSeqNum)

156 -- compare external request

157 -> erCompBeginOut

158 -> getRequestCS?requesting

159 -> getLocalSeqNumExtReq?localSeqNum

160 -> if

161 requesting == True

162 and (strictLessThanUnderModulo(localSeqNum, reqSeqNum)

163 or ((localSeqNum == reqSeqNum) and (id < reqSrc)))

164 then

165 deferResponse!True.reqSrc

Appendix F Case study: Ricart-Agrawala mutual exclusion node 262

166 -> erCompEndOut -> ER(id)

167 else

168 deferResponse!False.0

169 -> response.reqSrc!id

170 -> erCompEndOut -> ER(id)

171 within ER(id) [[erCompBeginOut <- beginExtReqComparison,

172 erCompEndOut <- endExtReqComparison]]

173

174 NODESTATE :: (Int) -> Proc

175 NODESTATE(id) =

176 let

177 NS :: (Int, Int, Bool, Int, {Int}) -> Proc

178 NS(id, localSN, reqCS, highSN, deferred) =

179 setRequestCS?enable

180 -> (if enable == True

181 then

182 setLocalSeqNumIn

183 -> NS(id, incr(highSN), true, highSN, deferred)

184 else

185 NS(id, localSN, False, highSN, deferred))

186 []

187 beginExtReqComparisonIn

188 -> getRequestCS!reqCS

189 -> getLocalSeqNumExtReq!localSN

190 -> deferResponse?deferring.node

191 -> (if

192 deferring == True and node != id

193 then

194 endExtReqComparisonIn

195 -> NS(id, localSN, reqCS, highSN, union(deferred,{node}))

196 else

197 endExtReqComparisonIn

198 -> NS(id, localSN, reqCS, highSN, deferred))

199 []

200 getHighestNum!highSN

201 -> setHighestNum?updatedNum

202 -> NS(id, localSN, reqCS, updatedNum, deferred)

203 []

204 getLocalSeqNumProtocol!localSN

205 -> NS(id, localSN, reqCS, highSN, deferred)

206 []

207 getDeferredCount!card(deferred)

208 -> NS(id, localSN, reqCS, highSN, deferred)

209 []

210 card(deferred) > 0 &

211 getDeferred!head(seq(deferred))

212 -> NS(id, localSN, reqCS, highSN, set(tail(seq(deferred))))

Appendix F Case study: Ricart-Agrawala mutual exclusion node 263

213 within NS(id, 0, False, 0, {})

214 [[setLocalSeqNumIn <- setLocalSeqNum,

215 beginExtReqComparisonIn <- beginExtReqComparison,

216 endExtReqComparisonIn <- endExtReqComparison]]

217

218 PROTO :: (Int) -> Proc

219 PROTO(id) =

220 let

221 PROTOCOL :: (Int) -> Proc

222 PROTOCOL(id) =

223 hReqCSIn

224 -> setRequestCS!True

225 -> setLSNOut

226 -> getLocalSeqNumProtocol?x

227 -> PROTOCOL_PRE_REQ(id, 0, x, diff(AllNodes,{id}))

228 PROTOCOL_PRE_REQ :: (Int, Int, Int, {Int}) -> Proc

229 PROTOCOL_PRE_REQ(id, requestsSent, seqNum, otherNodes) =

230 if card(otherNodes) == 0

231 then

232 PROTOCOL_PRE_RSP(id, requestsSent)

233 else

234 request.head(seq(otherNodes))!id.seqNum

235 -> PROTOCOL_PRE_REQ(id, requestsSent+1, seqNum,

236 set(tail(seq(otherNodes))))

237 PROTOCOL_PRE_RSP :: (Int, Int) -> Proc

238 PROTOCOL_PRE_RSP(id, responsesAnticipated) =

239 if responsesAnticipated == 0

240 then PROTOCOL_ACCESS(id)

241 else

242 getNextExtRsp?_

243 -> PROTOCOL_PRE_RSP(id, responsesAnticipated-1)

244 PROTOCOL_ACCESS :: (Int) -> Proc

245 PROTOCOL_ACCESS(id) =

246 hEnterCSOut

247 -> hLeaveCSIn

248 -> setRequestCS!False

249 -> getDeferredCount?x

250 -> PROTOCOL_POST(id, x)

251 PROTOCOL_POST :: (Int, Int) -> Proc

252 PROTOCOL_POST(id, deferredCount) =

253 if deferredCount == 0

254 then

255 getDeferredCount?_

256 -> hReqCSOut

257 -> PROTOCOL(id)

258 else

259 getDeferred?node

Appendix F Case study: Ricart-Agrawala mutual exclusion node 264

260 -> response.node!id

261 -> PROTOCOL_POST(id, deferredCount - 1)

262 within PROTOCOL(id) [[hReqCSIn <- hostRequestingCS.id,

263 setLSNOut <- setLocalSeqNum,

264 hEnterCSOut <- hostEnterCS.id,

265 hLeaveCSIn <- hostLeavingCS.id,

266 hReqCSOut <- hostRequestComplete.id]]

267

268 RXRSP :: (Int) -> Proc

269 RXRSP(id) =

270 let

271 RX :: (Int, <Int>) -> Proc

272 RX(id, s) =

273 if null(s)

274 then

275 response.id?rspSrc -> RX(id, <rspSrc>)

276 else

277 length(s) < netSize-1 &

278 response.id?rspSrc -> RX(id, s^<rspSrc>)

279 []

280 getNextExtRsp!head(s) -> RX(id, tail(s))

281 within RX(id, <>)

282

283 -- Composition

284 RECEIVE_REQ :: (Int) -> Proc

285 RECEIVE_REQ(id) =

286 RXREQ(id)

287 [| aRXREQifEXTREQ |]

288 EXTREQ(id)

289 \ aRXREQifEXTREQ

290

291 RECEIVE_NODE :: (Int) -> Proc

292 RECEIVE_NODE(id) =

293 RECEIVE_REQ(id)

294 [| aEXTREQifNODESTATE |]

295 NODESTATE(id)

296 \ aEXTREQifNODESTATE

297

298 RA_NODE :: (Int) -> Proc

299 RA_NODE(id) =

300 RECEIVE_NODE(id)

301 [| aPROTOifNODESTATE |]

302 PROTO(id)

303 \ aPROTOifNODESTATE

304

305 NODE :: (Int) -> Proc

306 NODE(id) =

Appendix F Case study: Ricart-Agrawala mutual exclusion node 265

307 RA_NODE(id)

308 [| aRXRSPifPROTO |]

309 RXRSP(id)

310 \ aRXRSPifPROTO

F.1.2 Specification component

Listing F.2: Specification component of the Ricart-Agrawala node CSPM model

1 {-

2 raSpec.csp

3

4 Ricart-Agrawala distributed mutual exclusion in CSPM.

5 Specification component. Incomplete without raImpl.csp.

6

7 Copyright 2018 James Dibley <jdibley@gmail.com>

8 -}

9

10 include "raImpl.csp"

11

12 -- PARAMETERISATION

13 netSize = 3 -- network size

14

15 -- VERIFICATION

16 -- COMPONENT CHECKS

17 -- double-check component processes assemble correctly

18 assert RXREQ(0) [| aRXREQifEXTREQ |] EXTREQ(0)

19 \ aRXREQifEXTREQ :[divergence free]

20 assert RXREQ(0) [| aRXREQifEXTREQ |] EXTREQ(0)

21 \ aRXREQifEXTREQ :[deadlock free [F]]

22 assert EXTREQ(0) [| aEXTREQifNODESTATE |] NODESTATE(0)

23 \ aEXTREQifNODESTATE :[divergence free]

24 assert EXTREQ(0) [| aEXTREQifNODESTATE |] NODESTATE(0)

25 \ aEXTREQifNODESTATE :[deadlock free [F]]

26 assert NODESTATE(0) [| aPROTOifNODESTATE |] PROTO(0)

27 \ aPROTOifNODESTATE :[divergence free]

28 assert NODESTATE(0) [| aPROTOifNODESTATE |] PROTO(0)

29 \ aPROTOifNODESTATE :[deadlock free [F]]

30 assert PROTO(0) [| aRXRSPifPROTO |] RXRSP(0)

31 \ aRXRSPifPROTO :[divergence free]

32 assert PROTO(0) [| aRXRSPifPROTO |] RXRSP(0)

33 \ aRXRSPifPROTO :[deadlock free [F]]

34

35 -- 1. does RXREQ implement a buffer?

36 channel leftReq, rightReq : AllNodes.SeqNumbers

Appendix F Case study: Ricart-Agrawala mutual exclusion node 266

37 BUFF_REQ(<>) =

38 leftReq?x -> BUFF_REQ(<x>)

39 BUFF_REQ(s^<y>) =

40 #s < netSize - 1 &

41 (STOP |~| leftReq?x -> BUFF_REQ(<x>^s^<y>))

42 []

43 rightReq!y -> BUFF_REQ(s)

44 assert BUFF_REQ(<>) [FD= RXREQ(0) [[request.0 <- leftReq, getNextExtReq <- rightReq]]

45

46 -- 2. does RXRSP implement a buffer?

47 channel leftRsp, rightRsp : AllNodes

48 BUFF_RSP(<>) =

49 leftRsp?x -> BUFF_RSP(<x>)

50 BUFF_RSP(s^<y>) =

51 #s < netSize - 1 &

52 (STOP |~| leftRsp?x -> BUFF_RSP(<x>^s^<y>))

53 []

54 rightRsp!y -> BUFF_RSP(s)

55 assert BUFF_RSP(<>) [FD= RXRSP(0) [[response.0 <- leftRsp, getNextExtRsp <- rightRsp]]

56

57 -- 3. Does NODESTATE maintain atomicity between external request comparisons

58 -- and protocol updates to the local sequence number?

59 SPEC_SAFETY_NS1’ =

60 beginExtReqComparison -> endExtReqComparison -> SPEC_SAFETY_NS1’

61 []

62 setRequestCS.True -> setLocalSeqNum -> SPEC_SAFETY_NS1’

63 NODESTATE_ATOMICITY =

64 SPEC_SAFETY_NS1’ ||| RUN(diff(aNODESTATE,

65 {beginExtReqComparison, endExtReqComparison,

66 setRequestCS.True, setLocalSeqNum}))

67 assert NODESTATE_ATOMICITY [T= NODESTATE(0)

68

69 -- COMPO

70 -- compose node into a Ricart-Agrawala protocol network

71 aRECEIVE_REQ(i) = union(aRXREQ(i), aEXTREQ(i))

72 aRECEIVE_NODE(i) = union(aRECEIVE_REQ(i), aNODESTATE)

73 aRA_NODE(i) = union(aRECEIVE_NODE(i), aPROTO(i))

74 aNODE(i) = union(aRA_NODE(i), aRXRSP(i))

75

76 -- These checks can be run but inefficiently establish results we can

77 -- obtain more efficiently over the NETWORK composition.

78 -- assert NODE(0) :[deadlock free]

79 -- assert NODE(0) :[divergence free]

80

81

82 -- NETWORK CHECKS

83 NETWORK =

Appendix F Case study: Ricart-Agrawala mutual exclusion node 267

84 || i:AllNodes @ [aNODE(i)] NODE(i)

85 assert NETWORK :[divergence free]

86 -- result of the following check is only valid if NETWORK

87 -- is found to be divergence-free

88 assert NETWORK :[deadlock free [F]]

89

90 -- 1. Safety condition: Is mutual exclusion upheld by the network?

91 CRITICALSEC(i) =

92 hostEnterCS.i -> hostLeavingCS.i -> MUTEX_HOLDS’

93 MUTEX_HOLDS’ =

94 [] i:AllNodes @ CRITICALSEC(i)

95 MUTEX_HOLDS =

96 MUTEX_HOLDS’ ||| RUN(diff(Events, {|hostEnterCS, hostLeavingCS|}))

97 assert MUTEX_HOLDS [T= NETWORK

98

99 -- 2. Liveness condition: If a node requests access to the network, will it

100 -- (a) for an arbitrary sequence number, (S_1)

101 -- (b) send exactly one request to every other

102 -- node on the network (S_2)

103 -- (c) receive exactly one response from each other

104 -- node on the network (S_3)

105 S_0(i) =

106 hostRequestingCS.i -> S_1(i)

107 []

108 (CHAOS(Events) |~| STOP)

109

110 S_1(i) =

111 ([] y : SeqNumbers @ S_2(i, y, seq(diff(AllNodes, {i}))))

112 []

113 (CHAOS(Events) |~| STOP)

114

115 S_2(i, y, requestsToSend) =

116 if length(requestsToSend) > 0

117 then

118 (request.head(requestsToSend).i.y -> S_2(i, y, tail(requestsToSend))

119 []

120 (CHAOS(Events) |~| STOP))

121 else

122 S_3(i, diff(AllNodes,{i}))

123

124 S_3(i, responsesExpected) =

125 if card(responsesExpected) > 0

126 then

127 (([] x : responsesExpected @ response.i.x -> S_3(i, diff(responsesExpected,{x})))

128 []

129 (CHAOS(Events) |~| STOP))

130 else

Appendix F Case study: Ricart-Agrawala mutual exclusion node 268

131 CHAOS(Events) |~| STOP

132

133 FINITE_BYPASS(i) = S_0(i)

134

135 -- We run this check over the most algorithmically disadvantaged node in the

136 -- network (e.g., the node that will always lose a same-sequence-ID

137 -- tie-breaker).

138 assert FINITE_BYPASS(netSize-1) [F= NETWORK

F.1.3 Verification

Listing F.3: FDR verification report for the Ricart-Agrawala node CSPM model

1 Welcome to FDR Version 4.2.3 copyright 2016 Oxford University Innovation Ltd. All Rights

Reserved.

2 License: Academic license for non-commercial use only

3 [...]

4 Parallel BTree Explorer using 8 workers, 36 to 36 bytes per state

5 Next level storage overhead is 4.1512 bytes per state (415.12 MB per 100 million

states)

6 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

7 [...]

8 Finished

9 Reconstructing counterexamples

10 NETWORK :[divergence free]: Passed

11

12 [...]

13 Parallel BTree Explorer using 8 workers, 36 to 36 bytes per state

14 Next level storage overhead is 4.1512 bytes per state (415.12 MB per 100 million

states)

15 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

16 [...]

17 Finished

18 Reconstructing counterexamples

19 NETWORK :[deadlock free [F]]: Passed

20

21 [...]

22 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

23 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

24 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

25 [...]

26 Finished

27 Reconstructing counterexamples

28 BUFF_REQ(<>) [FD= RXREQ(0) [[request.0 <- leftReq, getNextExtReq <- rightReq]]: Passed

Appendix F Case study: Ricart-Agrawala mutual exclusion node 269

29

30 [...]

31 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

32 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

33 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

34 [...]

35 Finished

36 Reconstructing counterexamples

37 BUFF_RSP(<>) [FD= RXRSP(0) [[response.0 <- leftRsp, getNextExtRsp <- rightRsp]]: Passed

38

39 [...]

40 Parallel BTree Explorer using 8 workers, 28 to 28 bytes per state

41 Next level storage overhead is 4.02934 bytes per state (402.934 MB per 100 million

states)

42 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

43 [...]

44 Finished

45 Reconstructing counterexamples

46 NODESTATE_ATOMICITY [T= NODESTATE(0): Passed

47

48 [...]

49 Parallel BTree Explorer using 8 workers, 36 to 36 bytes per state

50 Next level storage overhead is 4.1512 bytes per state (415.12 MB per 100 million

states)

51 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

52 [...]

53 Finished

54 Reconstructing counterexamples

55 MUTEX_HOLDS [T= NETWORK: Passed

56

57 [...]

58 Parallel BTree Explorer using 8 workers, 36 to 36 bytes per state

59 Next level storage overhead is 4.1512 bytes per state (415.12 MB per 100 million

states)

60 Using BTree blocks of size 8 KiB and next-level blocks of size 8 KiB

61 [...]

62 Finished

63 Reconstructing counterexamples

64 FINITE_BYPASS(2) [F= NETWORK: Passed

Appendix F Case study: Ricart-Agrawala mutual exclusion node 270

F.2 Ra: CSPIDER-generated Go implementation of a

Ricart-Agrawala mutual exclusion node

F.2.1 Process network: Ra

Listing F.4: Process network Ra

1 package ra

2

3 import (

4 "sync"

5

6 "bitbucket.com/jdibley/cspider"

7)

8

9 type Ra struct {

10 wg *sync.WaitGroup

11 // process network parameters

12 netSize int

13 id int

14 // process network state variables

15 M int

16 AllNodes *cspider.IntSet

17 // client channels

18 Request []chan RequestMsg

19 Response []chan int

20 HostRequestingCS []chan struct{}

21 HostEnterCS []chan struct{}

22 HostLeavingCS []chan struct{}

23 HostRequestComplete []chan struct{}

24 // processes

25 rxreq *rxreq

26 extreq *extreq

27 nodestate *nodestate

28 proto *proto

29 rxrsp *rxrsp

30 }

31

32 func NewRa(netSize int, id int, Request []chan RequestMsg, Response []chan int,

HostRequestingCS []chan struct{}, HostEnterCS []chan struct{}, HostLeavingCS []chan

struct{}, HostRequestComplete []chan struct{}) *Ra {

33 var wg sync.WaitGroup

34

35 // init state variables

36 M := ((2 * netSize) - 1)

Appendix F Case study: Ricart-Agrawala mutual exclusion node 271

37 AllNodes := cspider.NewIntSet()

38 AllNodes.AddRange(0, netSize-1)

39

40 // allocate internal channels

41 setLocalSeqNum := make(chan struct{})

42 beginExtReqComparison := make(chan struct{})

43 endExtReqComparison := make(chan struct{})

44 getRequestCS := make(chan bool)

45 setRequestCS := make(chan bool)

46 getHighestNum := make(chan int)

47 setHighestNum := make(chan int)

48 getLocalSeqNumExtReq := make(chan int)

49 getLocalSeqNumProtocol := make(chan int)

50 getNextExtReq := make(chan getNextExtReqMsg)

51 deferResponse := make(chan deferResponseMsg)

52 getDeferred := make(chan int)

53 getNextExtRsp := make(chan int)

54 getDeferredCount := make(chan int)

55

56 // allocate processes

57 rxreq := &rxreq{wg: &wg,

58 id: id,

59 netSize: netSize,

60 s: cspider.NewIntSeq(),

61 getNextExtReq: getNextExtReq,

62 request: Request,

63 }

64 extreq := &extreq{wg: &wg,

65 id: id,

66 M: M,

67 netSize: netSize,

68 getNextExtReq: getNextExtReq,

69 getHighestNum: getHighestNum,

70 setHighestNum: setHighestNum,

71 erCompBeginOut: beginExtReqComparison,

72 getRequestCS: getRequestCS,

73 getLocalSeqNumExtReq: getLocalSeqNumExtReq,

74 deferResponse: deferResponse,

75 erCompEndOut: endExtReqComparison,

76 response: Response,

77 }

78 nodestate := &nodestate{wg: &wg,

79 id: id,

80 M: M,

81 netSize: netSize,

82 deferred: cspider.NewIntSet(),

83 setRequestCS: setRequestCS,

Appendix F Case study: Ricart-Agrawala mutual exclusion node 272

84 setLocalSeqNumIn: setLocalSeqNum,

85 beginExtReqComparisonIn: beginExtReqComparison,

86 getRequestCS: getRequestCS,

87 getLocalSeqNumExtReq: getLocalSeqNumExtReq,

88 deferResponse: deferResponse,

89 endExtReqComparisonIn: endExtReqComparison,

90 getHighestNum: getHighestNum,

91 setHighestNum: setHighestNum,

92 getLocalSeqNumProtocol: getLocalSeqNumProtocol,

93 getDeferredCount: getDeferredCount,

94 getDeferred: getDeferred,

95 }

96 proto := &proto{wg: &wg,

97 id: id,

98 AllNodes: AllNodes,

99 netSize: netSize,

100 otherNodes: cspider.NewIntSet(),

101 hReqCSIn: HostRequestingCS[id],

102 setRequestCS: setRequestCS,

103 setLSNOut: setLocalSeqNum,

104 getLocalSeqNumProtocol: getLocalSeqNumProtocol,

105 getNextExtRsp: getNextExtRsp,

106 hEnterCSOut: HostEnterCS[id],

107 hLeaveCSIn: HostLeavingCS[id],

108 getDeferredCount: getDeferredCount,

109 hReqCSOut: HostRequestComplete[id],

110 getDeferred: getDeferred,

111 request: Request,

112 response: Response,

113 }

114 rxrsp := &rxrsp{wg: &wg,

115 id: id,

116 netSize: netSize,

117 s: cspider.NewIntSeq(),

118 getNextExtRsp: getNextExtRsp,

119 response: Response,

120 }

121

122 pn := &Ra{wg: &wg,

123 netSize: netSize,

124 id: id,

125 M: M,

126 AllNodes: AllNodes,

127 rxreq: rxreq,

128 extreq: extreq,

129 nodestate: nodestate,

130 proto: proto,

Appendix F Case study: Ricart-Agrawala mutual exclusion node 273

131 rxrsp: rxrsp,

132 Request: Request,

133 Response: Response,

134 HostRequestingCS: HostRequestingCS,

135 HostEnterCS: HostEnterCS,

136 HostLeavingCS: HostLeavingCS,

137 HostRequestComplete: HostRequestComplete,

138 }

139 return pn

140 }

141

142 func (pn *Ra) Ra() {

143 pn.rxreq.rxreq()

144 pn.extreq.extreq()

145 pn.nodestate.nodestate()

146 pn.proto.proto()

147 pn.rxrsp.rxrsp()

148 }

149

150 // Message structs for complex channels

151 type RequestMsg struct {

152 f00 int

153 f01 int

154 }

155

156 type getNextExtReqMsg struct {

157 f00 int

158 f01 int

159 }

160

161 type deferResponseMsg struct {

162 f00 bool

163 f01 int

164 }

165

166 // Functions for guarded channel operations

167 func guardedRequestMsgChan(b bool, c chan RequestMsg) chan RequestMsg {

168 if !b {

169 return nil

170 }

171 return c

172 }

173

174 func guardedIntChan(b bool, c chan int) chan int {

175 if !b {

176 return nil

177 }

Appendix F Case study: Ricart-Agrawala mutual exclusion node 274

178 return c

179 }

F.2.2 Process object: extreq (‘External request processing’)

Listing F.5: Process object extreq

1 package ra

2

3 import "sync"

4

5 const (

6 EXTREQ_SKIP = iota

7 EXTREQ_ER

8)

9

10 type extreq struct {

11 // admin

12 wg *sync.WaitGroup

13 jumpTable map[int]func() int

14 jump int

15 // state variables

16 M int

17 netSize int

18 id int

19 // channels

20 getNextExtReq chan getNextExtReqMsg

21 getHighestNum chan int

22 setHighestNum chan int

23 erCompBeginOut chan struct{}

24 getRequestCS chan bool

25 getLocalSeqNumExtReq chan int

26 deferResponse chan deferResponseMsg

27 erCompEndOut chan struct{}

28 response []chan int

29 }

30

31 func (e *extreq) extreq() {

32 e.jumpTable = map[int]func() int{

33 EXTREQ_ER: e.er,

34 }

35 e.wg.Add(1)

36 e.jump = EXTREQ_ER

37 go func() {

38 for {

Appendix F Case study: Ricart-Agrawala mutual exclusion node 275

39 e.jump = e.jumpTable[e.jump]()

40 if e.jump == EXTREQ_SKIP {

41 break

42 }

43 }

44 e.wg.Done()

45 }()

46 }

47

48 // Implemented process states

49 func (e *extreq) er() int {

50 erGetNextExtReqIn3 := <-e.getNextExtReq

51 reqSrc := erGetNextExtReqIn3.f00

52 reqSeqNum := erGetNextExtReqIn3.f01

53 localHighestSeqNum := <-e.getHighestNum

54 e.setHighestNum <- e.maxNumUnderModulo(localHighestSeqNum, reqSeqNum)

55 e.erCompBeginOut <- struct{}{}

56 requesting := <-e.getRequestCS

57 localSeqNum := <-e.getLocalSeqNumExtReq

58 if requesting == true && (e.strictLessThanUnderModulo(localSeqNum, reqSeqNum) ||

((localSeqNum == reqSeqNum) && (e.id < reqSrc))) {

59 e.deferResponse <- deferResponseMsg{f00: true,

60 f01: reqSrc}

61 e.erCompEndOut <- struct{}{}

62 return EXTREQ_ER

63 } else {

64 e.deferResponse <- deferResponseMsg{f00: false,

65 f01: 0}

66 e.response[reqSrc] <- e.id

67 e.erCompEndOut <- struct{}{}

68 return EXTREQ_ER

69 }

70 }

71

72 // User-defined (non-process) functions

73 func (e *extreq) maxNumUnderModulo(num1 int, num2 int) int {

74 if num1 < e.M && num2 < e.M {

75 if num1 > num2 {

76 if (num1 - num2) >= e.netSize {

77 return num2

78 } else {

79 return num1

80 }

81 } else {

82 if (num2 - num1) >= e.netSize {

83 return num1

84 } else {

Appendix F Case study: Ricart-Agrawala mutual exclusion node 276

85 return num2

86 }

87 }

88 } else {

89 panic("maxNumUnderModulo called with invalid inputs")

90 }

91 }

92

93 func (e *extreq) strictLessThanUnderModulo(num1 int, num2 int) bool {

94 if num1 < e.M && num2 < e.M {

95 return (num1 != num2) && (e.maxNumUnderModulo(num1, num2) == num2)

96 } else {

97 panic("strictLessThanUnderModulo called with invalid inputs")

98 }

99 }

F.2.3 Process object: nodestate

Listing F.6: Process object nodestate

1 package ra

2

3 import (

4 "sync"

5

6 "bitbucket.com/jdibley/cspider"

7)

8

9 const (

10 NODESTATE_SKIP = iota

11 NODESTATE_NS

12)

13

14 type nodestate struct {

15 // admin

16 wg *sync.WaitGroup

17 jumpTable map[int]func() int

18 jump int

19 // state variables

20 M int

21 netSize int

22 id int

23 localSN int

24 reqCS bool

25 highSN int

Appendix F Case study: Ricart-Agrawala mutual exclusion node 277

26 deferred *cspider.IntSet

27 // channels

28 setRequestCS chan bool

29 setLocalSeqNumIn chan struct{}

30 beginExtReqComparisonIn chan struct{}

31 getRequestCS chan bool

32 getLocalSeqNumExtReq chan int

33 deferResponse chan deferResponseMsg

34 endExtReqComparisonIn chan struct{}

35 getHighestNum chan int

36 setHighestNum chan int

37 getLocalSeqNumProtocol chan int

38 getDeferredCount chan int

39 getDeferred chan int

40 }

41

42 func (n *nodestate) nodestate() {

43 n.jumpTable = map[int]func() int{

44 NODESTATE_NS: n.ns,

45 }

46 n.wg.Add(1)

47 n.jump = NODESTATE_NS

48 go func() {

49 for {

50 n.jump = n.jumpTable[n.jump]()

51 if n.jump == NODESTATE_SKIP {

52 break

53 }

54 }

55 n.wg.Done()

56 }()

57 }

58

59 // Implemented process states

60 func (n *nodestate) ns() int {

61 select {

62 case enable := <-n.setRequestCS:

63 if enable == true {

64 <-n.setLocalSeqNumIn

65 n.localSN = n.incr(n.highSN) // NS(localSN := incr(highSN))

66 n.reqCS = true // NS(reqCS := true)

67 return NODESTATE_NS

68 } else {

69 n.reqCS = false // NS(reqCS := False)

70 return NODESTATE_NS

71 }

72 case <-n.beginExtReqComparisonIn:

Appendix F Case study: Ricart-Agrawala mutual exclusion node 278

73 n.getRequestCS <- n.reqCS

74 n.getLocalSeqNumExtReq <- n.localSN

75 nsDeferResponseIn19 := <-n.deferResponse

76 deferring := nsDeferResponseIn19.f00

77 node := nsDeferResponseIn19.f01

78 if deferring == true && node != n.id {

79 <-n.endExtReqComparisonIn

80 n.deferred = n.deferred.Union(cspider.NewIntSet(node)) // NS(

deferred := union(deferred,{node}))

81 return NODESTATE_NS

82 } else {

83 <-n.endExtReqComparisonIn

84 return NODESTATE_NS

85 }

86 case n.getHighestNum <- n.highSN:

87 updatedNum := <-n.setHighestNum

88 n.highSN = updatedNum // NS(highSN := updatedNum)

89 return NODESTATE_NS

90 case n.getLocalSeqNumProtocol <- n.localSN:

91 return NODESTATE_NS

92 case n.getDeferredCount <- n.deferred.Card():

93 return NODESTATE_NS

94 case guardedIntChan(n.deferred.Card() > 0, n.getDeferred) <- n.deferred.Seq().Head

():

95 n.deferred = n.deferred.Seq().Tail().Set() // NS(deferred := set(tail(seq(

deferred))))

96 return NODESTATE_NS

97 }

98 }

99

100 // User-defined (non-process) functions

101 func (n *nodestate) incr(sn int) int {

102 return (sn + 1) % n.M

103 }

F.2.4 Process object: proto (‘Protocol’)

Listing F.7: Process object proto

1 package ra

2

3 import (

4 "sync"

5

6 "bitbucket.com/jdibley/cspider"

Appendix F Case study: Ricart-Agrawala mutual exclusion node 279

7)

8

9 const (

10 PROTO_SKIP = iota

11 PROTO_PROTOCOL

12 PROTO_PROTOCOL_PRE_REQ

13 PROTO_PROTOCOL_PRE_RSP

14 PROTO_PROTOCOL_ACCESS

15 PROTO_PROTOCOL_POST

16)

17

18 type proto struct {

19 // admin

20 wg *sync.WaitGroup

21 jumpTable map[int]func() int

22 jump int

23 // state variables

24 AllNodes *cspider.IntSet

25 netSize int

26 id int

27 requestsSent int

28 seqNum int

29 otherNodes *cspider.IntSet

30 responsesAnticipated int

31 deferredCount int

32 // channels

33 hReqCSIn chan struct{}

34 setRequestCS chan bool

35 setLSNOut chan struct{}

36 getLocalSeqNumProtocol chan int

37 getNextExtRsp chan int

38 hEnterCSOut chan struct{}

39 hLeaveCSIn chan struct{}

40 getDeferredCount chan int

41 hReqCSOut chan struct{}

42 getDeferred chan int

43 request []chan RequestMsg

44 response []chan int

45 }

46

47 func (p *proto) proto() {

48 p.jumpTable = map[int]func() int{

49 PROTO_PROTOCOL: p.protocol,

50 PROTO_PROTOCOL_PRE_REQ: p.protocol_pre_req,

51 PROTO_PROTOCOL_PRE_RSP: p.protocol_pre_rsp,

52 PROTO_PROTOCOL_ACCESS: p.protocol_access,

53 PROTO_PROTOCOL_POST: p.protocol_post,

Appendix F Case study: Ricart-Agrawala mutual exclusion node 280

54 }

55 p.wg.Add(1)

56 p.jump = PROTO_PROTOCOL

57 go func() {

58 for {

59 p.jump = p.jumpTable[p.jump]()

60 if p.jump == PROTO_SKIP {

61 break

62 }

63 }

64 p.wg.Done()

65 }()

66 }

67

68 // Implemented process states

69 func (p *proto) protocol() int {

70 <-p.hReqCSIn

71 p.setRequestCS <- true

72 p.setLSNOut <- struct{}{}

73 x := <-p.getLocalSeqNumProtocol

74 p.requestsSent = 0 // PROTOCOL_PRE_REQ(

requestsSent := 0)

75 p.seqNum = x // PROTOCOL_PRE_REQ(seqNum

:= x)

76 p.otherNodes = p.AllNodes.Diff(cspider.NewIntSet(p.id)) // PROTOCOL_PRE_REQ(

otherNodes := diff(AllNodes,{id}))

77 return PROTO_PROTOCOL_PRE_REQ

78 }

79

80 func (p *proto) protocol_pre_req() int {

81 if p.otherNodes.Card() == 0 {

82 p.responsesAnticipated = p.requestsSent // PROTOCOL_PRE_RSP(

responsesAnticipated := requestsSent)

83 p.requestsSent = 0 // requestsSent no longer in use:

zeroing-out value

84 p.seqNum = 0 // seqNum no longer in use:

zeroing-out value

85 p.otherNodes = cspider.NewIntSet() // otherNodes no longer in use:

zeroing-out value

86 return PROTO_PROTOCOL_PRE_RSP

87 } else {

88 p.request[p.otherNodes.Seq().Head()] <- RequestMsg{f00: p.id,

89 f01: p.seqNum}

90 p.requestsSent = p.requestsSent + 1 // PROTOCOL_PRE_REQ(

requestsSent := requestsSent+1)

91 p.otherNodes = p.otherNodes.Seq().Tail().Set() // PROTOCOL_PRE_REQ(

otherNodes := set(tail(seq(otherNodes))))

Appendix F Case study: Ricart-Agrawala mutual exclusion node 281

92 return PROTO_PROTOCOL_PRE_REQ

93 }

94 }

95

96 func (p *proto) protocol_pre_rsp() int {

97 if p.responsesAnticipated == 0 {

98 p.responsesAnticipated = 0 // responsesAnticipated no longer in use:

zeroing-out value

99 return PROTO_PROTOCOL_ACCESS

100 } else {

101 <-p.getNextExtRsp

102 p.responsesAnticipated = p.responsesAnticipated - 1 // PROTOCOL_PRE_RSP(

responsesAnticipated := responsesAnticipated-1)

103 return PROTO_PROTOCOL_PRE_RSP

104 }

105 }

106

107 func (p *proto) protocol_access() int {

108 p.hEnterCSOut <- struct{}{}

109 <-p.hLeaveCSIn

110 p.setRequestCS <- false

111 x := <-p.getDeferredCount

112 p.deferredCount = x // PROTOCOL_POST(deferredCount := x)

113 return PROTO_PROTOCOL_POST

114 }

115

116 func (p *proto) protocol_post() int {

117 if p.deferredCount == 0 {

118 <-p.getDeferredCount

119 p.hReqCSOut <- struct{}{}

120 p.deferredCount = 0 // deferredCount no longer in use: zeroing-out value

121 return PROTO_PROTOCOL

122 } else {

123 node := <-p.getDeferred

124 p.response[node] <- p.id

125 p.deferredCount = p.deferredCount - 1 // PROTOCOL_POST(deferredCount :=

deferredCount-1)

126 return PROTO_PROTOCOL_POST

127 }

128 }

Appendix F Case study: Ricart-Agrawala mutual exclusion node 282

F.2.5 Process object: rxreq (‘Receives requests’)

Listing F.8: Process object rxreq

1 package ra

2

3 import (

4 "sync"

5

6 "bitbucket.com/jdibley/cspider"

7)

8

9 const (

10 RXREQ_SKIP = iota

11 RXREQ_RX

12)

13

14 type rxreq struct {

15 // admin

16 wg *sync.WaitGroup

17 jumpTable map[int]func() int

18 jump int

19 // state variables

20 netSize int

21 id int

22 s *cspider.IntSeq

23 // channels

24 getNextExtReq chan getNextExtReqMsg

25 request []chan RequestMsg

26 }

27

28 func (r *rxreq) rxreq() {

29 r.jumpTable = map[int]func() int{

30 RXREQ_RX: r.rx,

31 }

32 r.wg.Add(1)

33 r.jump = RXREQ_RX

34 go func() {

35 for {

36 r.jump = r.jumpTable[r.jump]()

37 if r.jump == RXREQ_SKIP {

38 break

39 }

40 }

41 r.wg.Done()

42 }()

43 }

44

Appendix F Case study: Ricart-Agrawala mutual exclusion node 283

45 // Implemented process states

46 func (r *rxreq) rx() int {

47 if r.s.Null() {

48 rxRequestIn0 := <-r.request[r.id]

49 reqSrc := rxRequestIn0.f00

50 reqSeqNum := rxRequestIn0.f01

51 r.s = cspider.NewIntSeq(reqSrc).AddBack(cspider.NewIntSeq(reqSeqNum)) //

RX(s := <reqSrc>^<reqSeqNum>)

52 return RXREQ_RX

53 } else {

54 select {

55 case rxRequestIn1 := <-guardedRequestMsgChan(r.s.Length() < (r.netSize-1)

*2, r.request[r.id]):

56 reqSrc := rxRequestIn1.f00

57 reqSeqNum := rxRequestIn1.f01

58 r.s = r.s.AddBack(cspider.NewIntSeq(reqSrc)).AddBack(cspider.

NewIntSeq(reqSeqNum)) // RX(s := s^<reqSrc>^<reqSeqNum>)

59 return RXREQ_RX

60 case r.getNextExtReq <- getNextExtReqMsg{f00: r.s.Head(),

61 f01: r.s.Tail().Head()}:

62 r.s = r.s.Tail().Tail() // RX(s := tail(tail(s)))

63 return RXREQ_RX

64 }

65 }

66 }

F.2.6 Process object: rxrsp (‘Receives responses’)

Listing F.9: Process object rxrsp

1 package ra

2

3 import (

4 "sync"

5

6 "bitbucket.com/jdibley/cspider"

7)

8

9 const (

10 RXRSP_SKIP = iota

11 RXRSP_RX

12)

13

14 type rxrsp struct {

15 // admin

Appendix F Case study: Ricart-Agrawala mutual exclusion node 284

16 wg *sync.WaitGroup

17 jumpTable map[int]func() int

18 jump int

19 // state variables

20 netSize int

21 id int

22 s *cspider.IntSeq

23 // channels

24 getNextExtRsp chan int

25 response []chan int

26 }

27

28 func (r *rxrsp) rxrsp() {

29 r.jumpTable = map[int]func() int{

30 RXRSP_RX: r.rx,

31 }

32 r.wg.Add(1)

33 r.jump = RXRSP_RX

34 go func() {

35 for {

36 r.jump = r.jumpTable[r.jump]()

37 if r.jump == RXRSP_SKIP {

38 break

39 }

40 }

41 r.wg.Done()

42 }()

43 }

44

45 // Implemented process states

46 func (r *rxrsp) rx() int {

47 if r.s.Null() {

48 rspSrc := <-r.response[r.id]

49 r.s = cspider.NewIntSeq(rspSrc) // RX(s := <rspSrc>)

50 return RXRSP_RX

51 } else {

52 select {

53 case rspSrc := <-guardedIntChan(r.s.Length() < r.netSize-1, r.response[r.

id]):

54 r.s = r.s.AddBack(cspider.NewIntSeq(rspSrc)) // RX(s := s^<rspSrc

>)

55 return RXRSP_RX

56 case r.getNextExtRsp <- r.s.Head():

57 r.s = r.s.Tail() // RX(s := tail(s))

58 return RXRSP_RX

59 }

60 }

Appendix F Case study: Ricart-Agrawala mutual exclusion node 285

61 }

F.3 Demonstration program

Listing F.10: Demonstration program for the Ricart-Agrawala mutual exclusion network

1 package main

2

3 import (

4 "fmt"

5 "math/rand"

6 "runtime"

7 "sync"

8 "time"

9

10 "bitbucket.com/jdibley/ra"

11)

12

13 const (

14 networkSize = 12

15 hesitation = 78

16 naptime = 45

17 numReqs = 250

18)

19

20 func clock(wg *sync.WaitGroup, req chan struct{}, tC chan time.Time, done chan struct{}) {

21 wg.Add(1)

22 go func() {

23 LOOP:

24 for {

25 select {

26 case <-req:

27 tC <- time.Now()

28 case <-done:

29 break LOOP

30 }

31 }

32 wg.Done()

33 }()

34 }

35

36 func randomDuration(r *rand.Rand, bound int64) time.Duration {

37 return time.Duration(r.Int63n(bound)) * time.Millisecond

38 }

39

Appendix F Case study: Ricart-Agrawala mutual exclusion node 286

40 func worker(wg *sync.WaitGroup, id int, req chan struct{}, tC chan time.Time, node *ra.Ra,

41 r *rand.Rand, waiting chan struct{}, finish chan struct{}) {

42 wg.Add(1)

43 go func() {

44 node.Ra()

45 time.Sleep(randomDuration(r, hesitation))

46 for i := 0; i < numReqs; i++ {

47 node.HostRequestingCS[id] <- struct{}{}

48 <-node.HostEnterCS[id]

49 req <- struct{}{}

50 fmt.Printf("%2d, %v\n", id, (<-tC).Format("15:04:05.00000"))

51 time.Sleep(randomDuration(r, naptime))

52 req <- struct{}{}

53 fmt.Printf("%2d, %v\n", id, (<-tC).Format("15:04:05.00000"))

54 node.HostLeavingCS[id] <- struct{}{}

55 <-node.HostRequestComplete[id]

56 }

57 fmt.Println(id, " client finished; now just servicing other nodes")

58 waiting <- struct{}{}

59 <-finish

60 wg.Done()

61 }()

62 }

63

64 func main() {

65 runtime.GOMAXPROCS(1)

66 var myWg sync.WaitGroup

67 // Setup for demonstration program: clock, workers, etc.

68 shutdownClock := make(chan struct{})

69 waiting := make(chan struct{})

70 finish := make(chan struct{})

71 csReqChan := make(chan struct{})

72 csTimeChan := make(chan time.Time)

73 r := rand.New(rand.NewSource(time.Now().UnixNano()))

74

75 clock(&myWg, csReqChan, csTimeChan, shutdownClock)

76

77 // Setup for Ricart-Agrawala objects to communicate

78 var nodes []*ra.Ra

79 var csrqPipes []chan struct{}

80 var csenPipes []chan struct{}

81 var cslvPipes []chan struct{}

82 var csrcPipes []chan struct{}

83 var reqPipes []chan ra.RequestMsg

84 var rspPipes []chan int

85

86 for i := 0; i < networkSize; i++ {

Appendix F Case study: Ricart-Agrawala mutual exclusion node 287

87 reqPipes = append(reqPipes, make(chan ra.RequestMsg))

88 rspPipes = append(rspPipes, make(chan int))

89 csrqPipes = append(csrqPipes, make(chan struct{}))

90 csenPipes = append(csenPipes, make(chan struct{}))

91 cslvPipes = append(cslvPipes, make(chan struct{}))

92 csrcPipes = append(csrcPipes, make(chan struct{}))

93 }

94 for i := 0; i < networkSize; i++ {

95 nodes = append(nodes, ra.NewRa(networkSize, i,

96 reqPipes, rspPipes, csrqPipes, csenPipes, cslvPipes, csrcPipes))

97 }

98

99 for i := 0; i < networkSize; i++ {

100 worker(&myWg, i, csReqChan, csTimeChan, nodes[i], r, waiting, finish)

101 }

102

103 fmt.Println("Configured worker network.")

104 fmt.Println(networkSize, " workers performing ", numReqs, " exclusion requests

with 0-",

105 hesitation, "milliseconds of hesitation between requests and 0-", naptime,

106 "milliseconds of naptime once they acquire exclusive access.")

107

108 for w := 0; w < networkSize; w++ {

109 <-waiting

110 }

111 for i := 0; i < networkSize; i++ {

112 finish <- struct{}{}

113 }

114

115 shutdownClock <- struct{}{}

116 myWg.Wait()

117 fmt.Println("Successful termination.")

118 }

F.4 Output from demonstration program

Listing F.11: Output from the Ricart-Agrawala network demonstration program

1 Configured worker network.

2 3 workers performing 331 exclusion requests with 0- 33 milliseconds of hesitation

between requests and 0- 178 milliseconds of naptime once they acquire exclusive access

.

3 0, 17:33:35.40519

4 0, 17:33:35.44839

5 2, 17:33:35.44862

Appendix F Case study: Ricart-Agrawala mutual exclusion node 288

6 2, 17:33:35.54982

7 1, 17:33:35.55008

8 1, 17:33:35.66932

9 0, 17:33:35.66942

10 0, 17:33:35.76163

11 2, 17:33:35.76181

12 2, 17:33:35.88796

13 1, 17:33:35.88817

14 1, 17:33:35.93880

15

16 [...]

17

18 1, 17:35:04.33413

19 1, 17:35:04.43819

20 2, 17:35:04.43829

21 2, 17:35:04.49342

22 0, 17:35:04.49350

23 0, 17:35:04.65992

24 1, 17:35:04.66000

25 0 client finished; now just servicing other nodes

26 1, 17:35:04.76466

27 2, 17:35:04.76473

28 2, 17:35:04.82183

29 1, 17:35:04.82195

30 1, 17:35:04.90972

31 2, 17:35:04.90985

32 2, 17:35:05.01073

33 1, 17:35:05.01079

34 2 client finished; now just servicing other nodes

35 1, 17:35:05.17188

36 1 client finished; now just servicing other nodes

37 Successful termination.

	ACM Computing Classification System Classification
	Acknowledgements
	Table of Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 Context of the research
	1.2 Research statement
	1.3 Objectives of the research
	1.4 Approach
	1.5 Original contributions of the research
	1.6 Limitations of the research
	1.7 Organisation of the thesis

	2 Related work
	2.1 Overview
	2.1.1 Applications of verification
	2.1.2 Techniques for verification

	2.2 Recent case studies in the verification of concurrent software
	2.3 Verification in software development
	2.4 Communicating Sequential Processes (CSP)
	2.4.1 Hybrid formulations

	2.5 Event-B
	2.6 TLA+
	2.7 Selection of a formalism
	2.8 Summary

	3 Communicating Sequential Processes
	3.1 Overview
	3.2 CSPM
	3.2.1 Defining events and processes
	3.2.2 Defining sequential processes
	3.2.3 Defining functions

	3.3 Verification and semantic models
	3.3.1 The traces model
	3.3.2 The failures model
	3.3.3 The divergences model
	3.3.4 Defining concurrent processes

	3.4 Verification through model-checking
	3.5 Summary

	4 Go
	4.1 Overview
	4.2 Concurrency
	4.3 Channels
	4.3.1 Input/output and synchronisation
	4.3.2 Selecting over channels
	4.3.3 Implementation details and comparison with CSP
	4.3.4 Other communication primitives

	4.4 User-defined types
	4.5 Packages
	4.6 Summary

	5 The proposed development method
	5.1 Overview
	5.2 Workflow phases
	5.3 Modeling implementation components in CSP
	5.3.1 Modelling adaptations
	5.3.2 Support for CSPM

	5.4 Model verification with FDR
	5.5 The CSPIDER tool
	5.5.1 Parsing CSPM with the CSPIDER tool
	5.5.2 Interpreting CSPM with the CSPIDER tool

	5.6 Code generation with CSPIDER
	5.7 Summary

	6 Parsing and validating CSPM scripts
	6.1 Parsing and interpretation issues
	6.2 Developing a parser and language application using ANTLR
	6.2.1 Existing CSPM parsers

	6.3 Parsing CSPM using ANTLR
	6.3.1 Structuring the grammar to support XPath pattern-matching
	6.3.2 Defining the CSPM expression
	6.3.3 Testing the parser

	6.4 Input validation
	6.5 Summary

	7 Interpreting CSPM and building the intermediate representation
	7.1 Defining implementable style conventions for CSPM
	7.1.1 Separating specification scenarios
	7.1.2 Bounding recursive process definitions
	7.1.3 Restricted syntax on channel operations
	7.1.4 Type annotation of parameterised expressions
	7.1.5 Externally-assigned parameters

	7.2 Implementing the intermediate representation
	7.3 Interpreting and modelling simple declarations
	7.3.1 Dependency ordering

	7.4 Interpreting CSPM processes and user-defined functions
	7.4.1 Distinguishing between functions and parameterised processes
	7.4.2 Channel (re-)classification
	7.4.3 Implementing channel encapsulation
	7.4.4 Type specification re-interpretation
	7.4.5 Renaming
	7.4.6 Process and function synthesis
	7.4.7 Cataloguing data references

	7.5 Directed subtree exploration
	7.5.1 Local definition environment declarations

	7.6 Consolidating the intermediate representation
	7.6.1 Constructing complex communication channels
	7.6.2 Supporting process composition: synthesising process alphabets
	7.6.3 Consolidation of the constructed definitions

	7.7 Summary

	8 Model-driven translation and code generation
	8.1 Overview
	8.2 The CSPIDER output model
	8.2.1 Process objects
	8.2.2 Process networks
	8.2.3 Design philosophy

	8.3 Templating
	8.3.1 StringTemplate principles and applications
	8.3.2 Templating the target language

	8.4 Model-driven translation
	8.4.1 Overview of generative phase
	8.4.2 Implementation of generative phase

	8.5 Synthesising process networks
	8.5.1 Synthesising process objects
	8.5.2 The StringTemplate-annotated parse tree
	8.5.3 Mapping Boolean-guarded alternatives in CSPM external choice
	8.5.4 Synthesising functions

	8.6 Rendering output
	8.7 Summary

	9 Evaluation: Three case studies
	9.1 Linear sorting array
	9.1.1 Adaptations
	9.1.2 Translation
	9.1.3 Testing
	9.1.4 Evaluation

	9.2 Prime number generator
	9.2.1 Verification
	9.2.2 Implementation prototype
	9.2.3 Translation
	9.2.4 Testing
	9.2.5 Evaluation

	9.3 Ricart-Agrawala distributed mutual exclusion node
	9.3.1 Motivation as a case study
	9.3.2 Verification
	9.3.3 Implementation prototype
	9.3.4 Translation
	9.3.5 Testing
	9.3.6 Evaluation

	9.4 Discussion
	9.4.1 The concurrent prime generator
	9.4.2 The Ricart-Agrawala node

	9.5 Summary

	10 Conclusion
	10.1 Summary
	10.2 Contributions
	10.3 Future work

	References
	Appendices
	A An ANTLR grammar for CSPM
	B The CSPIDER process network templated in StringTemplate
	C The CSPIDER process object templated in StringTemplate
	D Case study: Linear sorting array
	D.1 CSPIDER-compatible model (adapted from [115-117]davies2012)
	D.1.1 Implementation component
	D.1.2 Specification component
	D.1.3 Verification

	D.2 Lsa: CSPIDER-generated Go implementation
	D.2.1 Process network: Lsa
	D.2.2 Process object: arraycell

	D.3 Demonstration program
	D.4 Output from demonstration program

	E Case study: Prime generator
	E.1 CSPIDER-compatible model
	E.1.1 Implementation component
	E.1.2 Specification component
	E.1.3 Verification

	E.2 Pg: CSPIDER-generated Go implementation
	E.2.1 Process network: Pg
	E.2.2 Process object: collector
	E.2.3 Process object: filter
	E.2.4 Process object: intgenerator

	E.3 Demonstration program
	E.4 Output from demonstration program

	F Case study: Ricart-Agrawala mutual exclusion node
	F.1 CSPIDER-compatible model
	F.1.1 Implementation component
	F.1.2 Specification component
	F.1.3 Verification

	F.2 Ra: CSPIDER-generated Go implementation of a Ricart-Agrawala mutual exclusion node
	F.2.1 Process network: Ra
	F.2.2 Process object: extreq (`External request processing')
	F.2.3 Process object: nodestate
	F.2.4 Process object: proto (`Protocol')
	F.2.5 Process object: rxreq (`Receives requests')
	F.2.6 Process object: rxrsp (`Receives responses')

	F.3 Demonstration program
	F.4 Output from demonstration program

