Engineering Conferences International ECI Digital Archives

Beneficiation of Phosphates VIII

Proceedings

5-3-2018

Milling of the Phosphate Rock Flotation Circuit Circulating Load Aiming Production Increase and Iron Content Reduction in the Final Concentrate

André Carlos Silva Federal University of Goiás, Brazil

Michelle Fernanda de Lira Teixeira *Copebras/CMOC, Catalão-Brazil*

Anastácio Honório de Melo Filho *Copebras/CMOC, Catalão-Brazil*

Thiago Drumond de Alvarez de Araújo *Copebras/CMOC, Catalão-Brazil*

Maurício José de Oliveira Júnior *Copebras/CMOC, Catalão-Brazil*

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/phosphates_viii

Recommended Citation

André Carlos Silva, Michelle Fernanda de Lira Teixeira, Anastácio Honório de Melo Filho, Thiago Drumond de Alvarez de Araújo, Maurício José de Oliveira Júnior, Wanderson Ferreira Borges Júnior, Bruno Palhares Milanezi, and Jailson Pinto Cardoso, "Milling of the Phosphate Rock Flotation Circuit Circulating Load Aiming Production Increase and Iron Content Reduction in the Final Concentrate" in "Beneficiation of Phosphates VIII", Dr. Patrick Zhang, Florida Industrial and Phosphate Research Institute, USA Professor Jan Miller, University of Utah, USA Professor Laurindo Leal Filho, Vale Institute of Technology (ITV), Brazil Marius Porteus, Foskor-Mining Division, South Africa Professor Neil Snyders, Stellenbosch University, South Africa Mr. Ewan Wingate, WorleyParsons Services Pty Ltd., Australia Prof. Guven Akdogan, Stellenbosch University, South Africa Eds, ECI Symposium Series, (2018). http://dc.engconfintl.org/phosphates_viii/6

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Beneficiation of Phosphates VIII by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

André Carlos Silva, Michelle Fernanda de Lira Teixeira, Anastácio Honório de Melo Filho, Thiago Drumond de Alvarez de Araújo, Maurício José de Oliveira Júnior, Wanderson Ferreira Borges Júnior, Bruno Palhares Milanezi, and Jailson Pinto Cardoso

PHOSPHATE ROCK PRODUCTION INCREASE THROUGH THE MILLING OF THE APATITE FLOTATION CIRCULATING LOAD

Prof Dr André Carlos Silva, M.F.L. Teixeira, B.P. Milanezi, A.H.P. Melo Filho, T.D.A. Araujo, W.F. Borges Junior, E.M.S. Silva

Modelling and Mineral Processing Research Lab

Brazilian fertilizer supply from 2015 to 2018. Adapted from ANDA, 2018

Copebras/CMOC

CMOC International

The Chapadão Mine has being in operation since 1976 and in 2014 was responsible for 21% of the Brazilian phosphate rock production

0-504

Copebrás

GO-50

Mineral Processing plants Niobras Mineradora

Chapadão mine

Google

CMOC International Braril

In 2015, the company produced 1.1 million tons of phosphate fertilizers, 265 kt of phosphoric acid, and 147 kt of dicalcium phosphate (DCP) for animal supplementary feed.

The company products portfolio is composed in addition by sulfuric and hexafluorosilicic acids.

> CMOC International Brasil - Copebras

> > Copebrás

Fagundes Construção e Mineração

GO-503

MP-47 Feed = 380 t/h (d.b.)

MP-76 Feed = 300 t/h (d.b.)

CMOC International Brasil - Copebras

200

Imagery ©2018 DigitalGlobe, Map data ©2018 Go

Google

Phosphate rock processing flowsheet at Copebras/CMOC in Brazil

Phosphate rock processing flowsheet at Copebras/CMOC in Brazil

Do we need a circulating load?

Mineralogical characterization

Flotation tests at bench scale

Copebras/CMOC internal procedure PCT.13.001.050 for apatite flotation tests in bench scale

FAPEG

CNPa

Operational parameter	Value
Starch (g/t)	500
Lioflot 567 (g/t)	320
Flotinor 071 (g/t)	20
рН	10
Impeller speed (rpm)	1100
Solids (%)	
Conditioning	50
Flotation	35
Conditioning (min)	
Depressor	2.5
Collector – rougher	0.5
Collector – scavenger	0.5
Flotation (min)	
Rougher	2
Cleaner	1.25
Scavenger	1.5

Methodology

Experimental design for the middling rougher flotation tests

Factors	Levels		
d ₉₅	3 (208, 150, and 74 μm)		
Collector dosage	3 (160, 200, and 240 g/t)		
Depressant dosage	2 (500 and 700 g/t)		

Methodology

Experimental design for the middling rougher flotation tests

Sample	Test	Solids % during the conditioning	Collector (g/t)	Depressant (g/t)
Middling	1.1	49.4	160	500
without milling 1.2 d ₉₅ = 208 μm 1.3	48.8	200	500	
	1.3	49.1	240	500
A	2.1	46.4	160	700
	2.2	46.9	200	700
	2.3	46.1	240	700
d ₉₅ = 150 μm	3.1	50.8	160	500
	3.2	49.6	200	500
	3.3	52.4	240	500
	4.1	55.1	160	700
В	4.2	38.9	200	700
	4.3	39.6	240	700
Arter mining d ₉₅ = 74 μm	5.1	51.1	160	500
	5.2	49.8	200	500
	5.3	49.1	240	500

Methodology

Average XRF results for the feed of the tests 1 (middling without milling) and the industrial threshold for the oxides in the final concentrate

Feed	P ₂ O ₅	CaO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	MgO	BaO	CPR
Average	22.85	29.30	18.81	18.62	0.95	0.83	0.58	1.28
St. Dev.	0.09	0.09	0.27	0.24	0.02	0.01	0.01	0.00
Ind. thres.	≥ 37	-	≤ 0.82	≤ 2.90	≤ 3	≤ 0.50	≤ 0.50	≤ 1.32

Mineralogical characterization of the flotation feed. (a) Quantitative analysis by the Rietveld Method. Compositional map obtained by EDS from SEM image: (b) global, (c) P, (d) Ca and (e) Fe.

500µm

500µm

FLOTATION TESTS

Conclusions

- Samples from Copebras/CMOC mineral processing plant were collected and mineralogical characterized.
- The results showed that the main phase present in the middling sample was *apatite* (55.24%), followed by *quartz* (23.34%) and *hematite* (7.33%).
- This result was double-checked by the XRF results.

APEG

25

Conclusions

- Two attractive scenarios were found.
 - The first one, for the non-milled middling, was obtained for the test 1.1, which produced with grade concentrate with *low levels of contaminants*.
 - This test was carried out with the industrially adopted depressant dosage (500 g/t), but a considerably lower collector dosage (160 g/t instead of 320 g/t).

No milling Depressant 500 g/t Collector 160 g/t

Scenario 1: Proposed flowsheet

Conclusions

- The second scenario, for the *milled middling*, was obtained for test 4.2.
- Even operating with particle size relatively smaller than the other tests a high recovery (mass and metallurgical) and relatively low level of contaminants were found.
- In this particular test, a higher depressant dosage (700 g/t) and lower collector dosage (200 g/t) were used.

Middling milled (d₉₅ = 74 μm) Depressant 700 g/t Collector 200 g/t

Phosphate rock processing flowsheet at Copebras/CMOC in Brazil

Modelling and Mineral Processing Research La

Conclusions

IFG

- The tests 5.1 and 5.2 (middling B) did not reached the industrial threshold for *P₂O₅ content*, but they showed high metallurgical and mass recoveries and considerably low P₂O₅ content in the tailings.
- Therefore, this sample is suitable to an *additional cleaner stage*, which could raise the P_2O_5 content in the concentrate, which will be made in a future work.

Conclusions

 The industrial implementation of a milling stage for the flotation circulation load and a subsequent flotation of this material has the potential to increase the overall process efficiency by approximately **5.5%**, resulting in a production increase of **62** kt/year of phosphate rock concentrate, with P_2O_5 content similar to the one currently produced.

Acknowledgements

- The authors gratefully acknowledge the financial support from the Brazilian agencies CNPq, CAPES, FAPEG and FUNAPE.
- In addition, we would like to thank the Copebras/CMOC to allow this study, CRTI and UFG.

Modelling and Mineral Processing Research Lab

Influence of the impeller speed on phosphate rock flotation

FAPEG

G

Prof. Dr.-Ing. André Carlos Silva - ancarsil@ufg.br

