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Novel Transposases for Cell-Line Development
& Engineering

Ferenc Boldog™® Sowmya Rajendran, Maggie Lee, Molly Hunter, Candice Talsalt, Lynn Webster, Vivi Truong, Elizabeth Hart,

Nicolay Kulikov, Thomas Purcell, Mark Welch, Miles Scotcher**, Claes Gustafsson™** and Jeremy Minshull -
ATUM (formerly DNA2.0), Newark, CA USA. *fboldog@atum.bio, **miles@atum.bio, ***claes@atum.bio ( Jr— A T U M

Abstract Leap-In transposase benefits

The generation of stable cell lines is critical for the ‘ ‘ ‘

commercial production of protein therapeutics.
Current methodologies to introduce engineered

recombinant genes into production strains relies Application-optimized Shortened stable poolrecovery Stable integration combined with
on homologous recombination, a method limited expression constructs times structural integrity

i i <<19 — - ,
by per integration rates (<<1%), concatemer Maximize expression levels using Clonal productivity distributionis Transposases integrate the entire,
formation and Comn?on. _ .transgene ATUM's proprietary gene characteristically higher and intact transposon, thereby
rearrangements. To address this limitation, ATUM sequence and vector optimization mere uniform in stable pools maintaining its structuralintegrity,

has identified and engineered two orthologous @ tools.
transposases, designated Leap-In 1 (from frog)

and expression balance.

and Leap-In 2 (from insect), that stably integrate Adjust and tune expression levels Fewer clones need to be Clonal cells lines created using Leap-
svnthetic transbosons into ’éhe host aenome with of your gene(s) by testing screened to enable identification In transposases exhibit genetic
c)l/ose to 100 o/p integration freq ergm and an combinations of vector elements. of highly productive clonal cell stability and stable productivity
o1 ' u y lines over 60 lati [
e : population doublings.
absolute minimum of concatemers or other
genetic instabilities. Each synthetic transposon Express multichain proteins Initiate process development Controlintegration copy number by

can encode up to 4 unique open reading frames (such as bispecific antibodies) or  earlier with more representative  manipulating dose of transposase

(ORFs) flanked by inverted terminal repeats
recognized by the cognate transposase. Each

multiple genes within apathway. pool derived reagents. and synthetic transposon.

Foot-print free excision of
transposon from host genome.

OREF is under discrete expression control thereby
enabling tuning of expression ratios by
adjustment of each ORF independently. Leap-In
transposases speed cell recovery times, enabling
the generation of high expressing stable pools (up
to 5g/L) in as little as 2 weeks post transfection.

‘ Application - optimized expression constructs

Leap-In transposase process
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e Transposon and e Single copies of entire
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‘ Shortened timelines
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Upper graph - Under typical selection conditions (strong GS promoter, 50 uM MSX), cell pools
created using tranposases recover viability >7 days faster than cell pools created by random
integration.

Lower graph - Under drug-free selection conditions (attenuated GS promoter), cell pools
created using transposases recover viability in = 3 weeks, whereas cell pools created by random
integration fail to recover.

Screening and selection of clones expressing transposon-based antibody construct
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Two identical ORFs coding for a secreted protein were tagged with V5 (ORF1) ORFs encoding 3 or 4 fluorescent proteins were cloned into six different 3-ORF vectors, and a single 4- of prf)cess development and GLP'tOXICOlOgy . Top 166 clones from stable pools . Top 22 clones of previous 166 . Top 8 clones of previous 22

or FLAG (ORF2). A combination of vector elements were utilized to control OREF vector. Fluorescence was measured at the stable pool stage. For the 3-ORF vector, various ratios studies.

the ratio of expression of ORF2 to ORF1. Expression ratios of ORF2 : ORF1 of all three ORFs were achieved. For the 4-ORF vector, a 4-fold range of expression was observed be- o 20 days in static 96-well plate o 7 daysin 24-deep well plate e 14 days in 125 ml flask, fed

between 2.5:1and 1: 1.5 were demonstrated. tween the different ORFs. with feeding fed batch culture batch, non-optimized culture
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An antibody expression construct was transfected into HD-BIOP3 GS null CHOKI1 cells (Horizon
Discovery) in the presence (+ transposase) or absence (- transposase) of Leap-In transposase.
Targeted Locus Amplification was used to analyze the structural integrity of expression cassette
integrations.

Foot-print free excision of transposon from host genome.

A synthetic transposon (RFP gene flanked by
Leap-In 1 ITR’s inside a GFP gene flanked by
Leap-In 2 ITR’s) was integrated into CHO cells
using Leap-In 2 transposase. Cells exhibited
red fluorescence as RFP is expressed.

ITR2 5'GFP ITR1 RFP ITR1 | 3'GEP m—

Cells transfected with Leap-In 1 mRNA.

4 Leap-In1transposase excised RFP at

cognate ITRs.

Cells exhibited green fluorescence as
intact GFP is expressed

Studies are currently ongoing to demonstrate that integration of single
copies of transposons is possible.

‘ Stable integration combined with structural integrity

Clonal cell lines generated using Leap-In transposases exhibit
genetic stability and stable productivity over 60 population
doublings.
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Nine CHO GS KO clones, derived from the transposase-mediated integration of an antibody expression
cassette, were grown in 24-deep well plate for 60 generations (population doublings (PD)) in the presence (-Gln)
and absence (+Gln) of selection. Productivity and integrated copy number of clones after 60 PD were compared
to TO. No significant change in productivity or copy number under the with glutamine (+Gln) and minus
glutamine (-Gln) growth conditions were observed compared to TO.

Excision efficiency of wild type and engineered hyperactive
Leap-In® 1transposases
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Hyperactive transposase variants

Hyperactive transposase variants designed using ProteinGPS® demonstrate foot-print free excision. Variants
were ranked by excision efficiency measured as per figure on left. Different concentrations of hyperactive
transposase mMRNA demonstrated a dose response. Hyperactive transposase variants tested show an
approximately 80-fold higher activity compared to wild type in this assay.

1:1 correlation between copy number and specific productivity in transposase
mediated DG44 stable pools.
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Stable pools derived from the transposase-mediated integration of an antibody expression cassette in DG44 cells, were grown under
fed-batch conditions. Productivity and copy number were measured. The correlation between copy number and specific
productivity indicates that each integrated copy is intact and functional.

Typical timeline of cell line development at ATUM
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o Stable pool-derived protein is available as early as 2 weeks post transfection.

o Clonal cell line without stability information, available as early as 12 weeks post
-transfection.

« RCBs (Research Cell Banks) released as early as 20 weeks post-transfection.
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