THE REDUCTION OF PLATINUM CONSUMPTION IN ENVIRONMENTAL CATALYSTS FOR COMPLETE OXIDATION OF VOLATILE ORGANIC COMPOUNDS

Nobuhito Imanaka, Department of Applied Chemistry, Faculty of Engineering, Osaka University,USA imanaka@chem.eng.osaka-u.ac.jp

Key Words: Catalysts, Volatile organic compounds, Oxidation, Environmental catalysts, Platinum

Pt/Co₃O₄/CeO₂-ZrO₂-SnO₂/ \Box -Al₂O₃ catalysts were successfully prepared by both conventional co-precipitation and impregnation methods. The catalytic performances for toluene oxidation on these materials indicate that the addition of Co₃O₄ to the Pt/CeO₂-ZrO₂-SnO₂/ \Box -Al₂O₃ catalyst was significantly effective in reducing the platinum amount without further reduction in its activity. In fact, complete oxidation of toluene was realized by using the 1wt%Pt/11wt%Co₃O₄/16wt%Ce_{0.62}Zr_{0.20}Sn_{0.18}O_{2.0}/ \Box -Al₂O₃ catalyst at the temperature as low as 160 °C, which was lower than that with the 5wt%Pt/ \Box -Al₂O₃ catalyst (170 °C). Since the oxidation activities of both 1wt%Pt/16wt%Ce_{0.62}Zr_{0.20}Sn_{0.18}O_{2.0}/ \Box -Al₂O₃ and 1wt%Pt/11wt% Co₃O₄/ \Box -Al₂O₃ were below compared to that of the present 1wt%Pt/11wt%Co₃O₄/16wt%Ce_{0.62}Zr_{0.20}Sn_{0.18}O_{2.0}/ \Box -Al₂O₃ nutreason for the high toluene oxidation activity in the 1wt%Pt/11wt%Co₃O₄/16wt%Ce_{0.62}Zr_{0.20}Sn_{0.18}O_{2.0}/ \Box -Al₂O₃ catalyst can be ascribed to the concerted effect of Pt, Co₃O₄, and Ce_{0.62}Zr_{0.20}Sn_{0.18}O_{2.0} on \Box -Al₂O₃.

In addition, novel type of refractory and noble Pt metal-free $17wt\%La_{1-x}Ca_xCoO_{3-x/2}/Ce_{0.76}Zr_{0.19}Zn_{0.05}O_{1.95}$ (0 ≤ x ≤ 0.15) catalysts was also tested for complete toluene oxidation. The composition was optimized to obtain the optimum toluene oxidation activity. Catalytic tests for toluene oxidation and characterization of oxygen release/storage properties of these materials suggest that the Ca²⁺ addition in the LaCoO₃ lattice was appreciably effective in the enhancement of the toluene oxidation even after high-temperature treatment as high as around 1400 °C. In fact, complete oxidation of toluene was realized at 320 °C by using the $17wt\%La_{0.9}Ca_{0.1}CoO_{2.95}/Ce_{0.76}Zr_{0.19}Zn_{0.05}O_{1.95}$ catalyst treated at 1400 °C. La_{0.9}Ca_{0.1}CoO_{2.95} oxide on the Ce_{0.76}Zr_{0.19}Zn_{0.05}O_{1.95} support promoted toluene oxidation without using any precious platinum metal, and, therefore, the present catalyst has an advanced potential as the novel toluene oxidation catalyst.