Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV

Proceedings

9-18-2017

Feasibility research of gaining "refractory high entropy carbides" through in situ carburization of refractory high entropy alloys

Yuanlin Ai National University of Defense Technology, 495586680@qq.com

Shuxin Bai National University of Defense Technology

Li'an Zhu National University of Defense Technology

Yicong Ye National University of Defense Technology

Follow this and additional works at: http://dc.engconfintl.org/uhtc_iv Part of the <u>Engineering Commons</u>

Recommended Citation

Yuanlin Ai, Shuxin Bai, Li'an Zhu, and Yicong Ye, "Feasibility research of gaining "refractory high entropy carbides" through in situ carburization of refractory high entropy alloys" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV", Jon Binner, The University of Birmingham, Edgbaston, United Kingdom Bill Lee, Imperial College, London, United Kingdom Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/uhtc_iv/53

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

National University of Defense Technology

Feasibility Research of Gaining "Refractory High Entropy Carbides" Through In Situ Carburization of Refractory High Entropy Alloys

Lian Zhu, Yuanlin Ai, Shuxin Bai

National University of Defense Technology, China

2

High-entropy alloys (HEAs)

- First proposed by Yeh in 2004
- Excellent comprehensive properties
- 4 core effects

Gludovatz, B. et al. Nature Commun. 7, 10602 (2016)

1. Introduction

High-entropy ultra-high temperature ceramics (HEUHTCs) ?

- Entropy stabilized material?
- Excellent comprehensive properties?

2. Experimental

Preparation of HfZrTiTa alloy

melting

Solid carburization

- Pack cementation (900°C, 10h)
- Carburizing agent (powder):
 - 90% C+10% Na₂CO₃
 - 90%C+10%CaCO₃
 - 100%C
- Loading amount
 - Full
 - Half full

Testing and characterization

- Micro-hardness
 - Load: 50 g; Holding time: 15 s
- Cyclic oxidation
 - 1300°C 25min
- XRD
- SEM
- EDS

HfZrTiTa alloy

BCC single phase structure with near equal atomic percent

HfZrTiTa alloy

1000°C for 10h, then cooled to room temperature with 10°C/min

Single BCC \rightarrow BCC+HCP

50μm

Grain boundary → precipitation enriched with Ta and depleted with Ti, Zr and Hf

Pack cementation process

Table 1 The results of pack cementation process

Loading amount	Carburizing agent	Carburized layer
Full	90%C+10%Na ₂ CO ₃	X
Full	90%C+10%CaCO ₃	×
Full	100%C	×
Half full	90%C+10%Na ₂ CO ₃	×
Half full	90%C+10%CaCO ₃	×
Half full	100%C	\checkmark

 $C+O_2=CO_2$ $CO_2+C=2CO$

Carburized HfZrTiTa

Morphology

Cross sectional morphology

Carburized HfZrTiTa

- Carburized HfZrTiTa
 XRD
- No obvious peaks
 Amorphous structure
 HEA based supersaturated solid solution containing C

Carburized HfZrTiTa

- Elemental analysis
- Uniform element
 distribution in inner
 carburized layer
- The surface is rich in Ti and C
- The substrate adjacent to
 the carburized layer
 exhibits an inhomogeneous
 composition

	С
harmon many white warmon warmon when the	malunamention
mm. M. Marin Manus Manus Marine Ma	Zi mmmmmn Ti
m.n.M.M.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.m.	mann
MAN WAR MANNA M	Htt Marine Marine
malan management	Ta

EDS line-scanning of the sample

Carburized HfZrTiTa

- Elemental analysis

- □ A: Ta-rich precipitates
- B: Similar element distribution as the initial alloy
- **C**: Ti-rich region

Element distribution in different regions

Carburized HfZrTiTa

- Micro-hardness
- □ The maximum

hardness was ~1590 HV

- The average hardness was ~1341 HV
- The substrate adjacent
 to the carburized layer
 was harder than that of
 HfZrTiTa (~500HV)

Inner layer Outer layer substrate close to carburized layer 1600 1400 Hardness/HV 1200 1000 800 X300 50µm 07/APR/17 20kV

The micro-hardness values and corresponding indentations

Carburized HfZrTiTa

– Micro-hardness

- The measured value is
 lower than the "rule-ofmixtures" average and that
 of each individual carbide
- The carburized coating
 could be a HEA based C
 containing supersaturated
 solid solution
- The hardness is mainly attributed to the solid solution strengthening

Comparation of Vicker micro-hardness of carburized layer with the reported values

Carburized HfZrTiTa

Oxidation resistance

15min20min25minMorphology evolution during oxidation

Weight gain VS oxidation time

Carburized HfZrTiTa – Oxidation resistance

The cross sectional morphology of oxidized sample

Element distribution in different regions after the oxidation test

Hf ■Zr ■Ti ■Ta

- A carburized coating with amorphous structure was produced by solid carburization of HfZrTiTa HEA using 100% graphite powder at 900°C for 10 hrs.
- The carburized coating could be a HEA based C containing supersaturated solid solution according to the micro-hardness, XRD and elemental analysis results.
- The poor oxidation resistance may be caused by the large internal stress generated during the oxidation and the quite low oxidation temperature adopted.

National Natural Science Foundation of China (Grant No. 51501224 & 51371196)

• The colleagues and students in our group

• The organizers of the conference

Thanks for your attention!