Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV

Proceedings

9-20-2017

Oxidation of UC: an in-situ high temperature environmental scanning electron microscopy study

Claudia Gasparrini Imperial College London, UK, c.gasparrini14@imperial.ac.uk

Michael J.D. Rushton Imperial College London, UK

William E. Lee Imperial College London, UK

Renaud Podor Institut de Chimie Séparative de Marcoule, France

Denis Horlait CNRS/IN2P3 and University of Bordeaux, France

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/uhtc_iv Part of the <u>Engineering Commons</u>

Recommended Citation

Claudia Gasparrini, Michael J.D. Rushton, William E. Lee, Renaud Podor, Denis Horlait, and Olivier Fiquet, "Oxidation of UC: an insitu high temperature environmental scanning electron microscopy study" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV", Jon Binner, The University of Birmingham, Edgbaston, United Kingdom Bill Lee, Imperial College, London, United Kingdom Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/uhtc_iv/21

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

Claudia Gasparrini, Michael J.D. Rushton, William E. Lee, Renaud Podor, Denis Horlait, and Olivier Fiquet

DISTINCTIVE

Centre for Nuclear Engineering

Oxidation of UC: an *in situ* high temperature environmental scanning electron microscopy study

Claudia Gasparrini ^a, Renaud Podor ^b, Denis Horlait ^{a,c}, Michael J Rushton ^a, Olivier Fiquet ^d and William Edward Lee ^a

^a Centre for Nuclear Engineering, Dpt. Materials, Imperial College London, London (UK)
^b Institut de Chimie Séparative de Marcoule, BP17171, 30207 Bagnols-sur-Cèze, France
^c CNRS, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, 33175 Gradignan, France
^d Commissariat a l'Energie Atomique (CEA), Cadarache, France

Uranium Carbide: a UHTC with peculiar popcorn-like transformation

UC has high melting temperature (2508 °C) and thermal conductivity (25 W/(m K) from 1150 – 2250 °C) and therefore is an UHTC.

Uranium carbide

400 °C 10 Pa O₂

Corn

https://www.youtube.com/watch?v=FSZd33awqQk

T > 177 ° C *

* Hoseney, R C; Zeleznak, K; Abdelrahman, A, "Mechanism of popcorn popping", Journal of Cereal Science, 43-52, 1983,

Oxidation of UC: a key step prior immobilisation

Understanding uranium carbide (UC) oxidation is important as it is used for reprocessing or as conditioning treatment before disposal :

* Iyer, V. S. et al. "Oxidation behavior of carbide fuels". Nucl. Technol. 91, 388-393 (1990).

Experimental work on UC performed at NNL and ICSM

UC pellets from Dounreay oxidised @ NNL laboratories

Small batch (mg) UC fragments

Conversion / SSA and C% vs T Medium batch (g) UC fragments and pellets Influence of T and PO₂ on oxidation and ignition

UC pellets (CEA Cadarache) @ICSM

Oxide morphology vs temperature: UC fragments SEM characterisation

Oxidation performed in air in a muffle furnace on UC fragments

T (°C)	600	700	800	900	900
Dwell time (h)	4	4	4	4	17

Photo of the oxide product

Secondary electron images of oxide powder

In situ high temperature oxidation of UC

The sintering of oxide seen in furnace experiments was investigated with a fixed partial pressure of 10 Pa O₂ from 600-900°C

Temperature influence (T≥ 600°C) on oxidation: oxide sintering

10 Pa $O_2 T = 600^{\circ}C \rightarrow$ oxidation completed in 20 minutes

Oxidation occurs all over the surface as soon as sample is in contact with oxygen

10 Pa O₂ T = 800 °C \rightarrow oxidation not yet completed in 3 hours

Oxidation occurs at the edges first whilst the top surface appeared compact due to partial sintering of the oxide. Stress build-up promotes cracks which generate the next surfaces to oxidise.

In situ high temperature oxidation of UC

The sintering of oxide seen in furnace experiments was investigated with a fixed partial pressure of 10 Pa O₂ from 600-900°C

10 Pa O₂ 600 °C

10 Pa O₂ 800 °C

Transformation from UC to UO_2 and UO_2 to U_3O_8 was investigated in atmosphere of 10-100 Pa O_2 from 450-575°C

50 Pa O₂ 450 °C

500 µm

Area = 1.71 mm²

Imperial College London Image analysis techniques: sample area expansion and crack propagation

Image processing via Fiji ImageJ is used to get information on sample expansion, crack propagation, crack length and network during oxidation.

* Gasparrini, C et al. "Oxidation of UC: an *in situ* high temperature environmental scanning electron microscopy study". J Nucl Mat, 494, 127-137, (2017)

UC oxidation pathways

The morphological changes during transition from UC to UO_2 and from UC to U_3O_8 have been monitored *in situ*. These are characterised by two pathways: a non explosive (pathway 1) and an explosive one (pathway 2).

In situ UC oxidation in a HT-ESEM

Time = 6 h (shown in 35 seconds)

UC transformation to UO₂ (450 °C 10 Pa O₂)

Sample area expansion and crack propagation follow a similar trend comprised of: induction period, exponential area expansion and crack propagation followed by and logarithmic trend.

HRTEM analysis shows the oxide to be polycrystalline UO₂

UC oxidation in a HT-ESEM

UC transformation to U_3O_8 (450 °C 50 Pa O_2)

Sample area expansion, crack propagation crack length and number of junctions all follow an exponential trend. UC ignition is triggered by the fragmentation of the sample.

HRTEM analysis shows the oxide to be orthorhombic U_3O_8 and tetragonal U_3O_7 . U_3O_8 transformation is triggered by ignition of UC which propagates as a SHS reaction.

Self-propagating high-temperature synthesis (SHS)

The slow motion popcorn-like explosion recorded on a sample oxidised at 575 °C in 10 Pa O_2 shows the propagation front of the SHS reaction.

The SHS reaction in this sample propagates with a speed between 150 – 500 \pm 50 $\mu m/s$ across the sample.

Conclusions

- In situ HT-ESEM study on UC oxidation reveals the influence of T and PO₂ on the transformation between UC to UO₂ and U₃O₈.
- A method for the correlation of crack propagation and sample expansion has been developed via Fiji ImageJ. Crack network is responsible for UC ignition. UC oxidises to UO₂ when growth factor t₁ ≥ 740 ± 49 s, or to U₃O₈ when t₁ ≤ 470 ± 14 s.
- UC ignition to U_3O_8 triggers a SHS reaction which propagates throughout the sample.

Thanks for your attention!

And special thanks to all the people at NNL, ICSM, CEA and Imperial that made this project possible !

Engineering and Physical Sciences Research Council