Engineering Conferences International ECI Digital Archives

Biofabrication for Hierarchical in Vitro Tissue Models

Proceedings

6-7-2017

Biofabrication using recombinant spider silk proteins as a biomaterial

Tamara B. Aigner Department for Biomaterials, University of Bayreuth, Germany, tamara.aigner@bm.uni-bayreuth.de

Elise K. DeSimone Department for Biomaterials, University of Bayreuth, Germany

Thomas Scheibel Department for Biomaterials, University of Bayreuth, Germany

Follow this and additional works at: http://dc.engconfintl.org/biofab_tissue_model Part of the <u>Engineering Commons</u>

Recommended Citation

Tamara B. Aigner, Elise K. DeSimone, and Thomas Scheibel, "Biofabrication using recombinant spider silk proteins as a biomaterial" in "Biofabrication for Hierarchical in Vitro Tissue Models", Jürgen Groll (University of Würzburg, Germany) Jos Malda (University Medical Centre Utrecht, The Netherlands) Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biofab_tissue_model/22

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biofabrication for Hierarchical in Vitro Tissue Models by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Biofabrication using recombinant spider silk proteins as a biomaterial

<u>Aigner T.B.</u>, DeSimone E.K., Scheibel T.

Department for Biomaterials, University of Bayreuth, Germany

Why spider silk?

Image: E. Doblhofer

- no toxicity
- no immuno-reactivity
- slow biodegradation
- good mechanical properties

\rightarrow interesting material for biomedical applications

Material	Stiffness (GPa)	Strength (GPa)	Extensibility (%)	Toughness (MJm ⁻³)
Araneus diadematus dragline silk	6	0.7	30	150
Bombyx mori cocoon silk	7	0.6	18	70
Nylon fiber	5	0.95	18	80
Kevlar 49 fiber	130	3.6	2.7	50
High-tensile steel	200	1.5	0.8	6

Spider silk architecture...

UNIVERSITÄT Bayreuth

Heidebrecht, A. & Scheibel, T. (2013). Adv. Appl. Microbiol. 82, 115-153.

...allowing outstanding toughness

BioMat

- spiders are cannibals
- silk quality depends on nutrition
- male spiders are hard to raise

\rightarrow farming of spiders is NOT feasible!

\rightarrow use a biotechnological approach for silk production

Engineered spider silk origin

Engineered spider silk

M. Heim, D. Keerl, T. Scheibel, *Angew Chem Int Edit* **2009**, *48*, 3584-3596 D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, T. Scheibel, *Biochemistry-Us* **2004**, *43*, 13604-13612

Biotechnological silk production

D. Huemmerich, C. W. Helsen, S. Quedzuweit, J. Oschmann, R. Rudolph, T. Scheibel, *Biochemistry-Us* **2004**, *43*, 13604-13612

Engineered spider silk morphologies

Spider silk fibers

Image by: A. Heidebrecht

Wet-spun silk fibers

4-8 µm

post-stretching

diameter

Image by: G. Lang

Heidebrecht, A.; Eisoldt, L.; Diehl, J.; Schmidt, A.; Geffers, M.; Lang, G.; Scheibel, T., Adv Mater 2015, 27, 2189 Keerl, D. & Scheibel, T. (2012). Bioinspired, Biomimetic Nanobiomater. 1, 83-94.

15-60 µm

Polarized FTIR and tensile testing

 \rightarrow poly-Ala stretches in recombinant fibers are aligned along fiber axis

 \rightarrow toughness of biomimetic spider silk competes with that of natural ones

Spider silk non-wovens

Image by: E. DeSimone

Preparation of non-wovens – e-spinning

Image by: G. Lang

Non-woven diameter

Parameters:

- concentration
- applied voltage
- spinning distance
- needle diameter
- humidity
- temperature
- → Increasing protein concentration increases fiber diameter
- → larger fiber diameter promote cell proliferation

Balb/3T3 fibroblasts

G. Lang, S. Jokisch, T. Scheibel, *Journal of visualized experiments : JoVE* **2013**, e50492 A. Leal-Egana, G. Lang, C. Mauerer, J. Wickinghoff, M. Weber, S. Geimer, T. Scheibel, *Adv Eng Mater* **2012**, *14*, B67-B75

16 | 20/06/17

Cell interaction with non-wovens

SEM & TEM: Balb/3T3 fibroblasts

\rightarrow fibroblasts spread on and migrate into non-woven meshes

A. Leal-Egana, G. Lang, C. Mauerer, J. Wickinghoff, M. Weber, S. Geimer, T. Scheibel, Adv Eng Mater 2012, 14, B67-B75

Spider silk hydrogels

Image by: K. Schacht/T. Jüngst

Hydrogel preparation

Spider silk variation

\rightarrow weak cell adhesion on eADF4(C16) hydrogels

→ introduction of adhesion motif RGD leads to enhanced cell adhesion

S. Wohlrab, S. Muller, A. Schmidt, S. Neubauer, H. Kessler, A. Leal-Egana, T. Scheibel, *Biomaterials* **2012**, 33, 6650 Schacht, K.; Jüngst, T.; Schweinlin, M.; Ewald, A.; Groll, J.; Scheibel, T., *Angewandte Chemie* **2015**, *54*, 5

Different cell lines on spider silk hydrogels

→ cell adhesion on eADF4(C16)-RGD hydrogels was significantly improved also on other cell types

10 | 24-09-2015

Hydrogel preparation

Modified after: Schacht, K.; Jüngst, T.; Schweinlin, M.; Ewald, A.; Groll, J.; Scheibel, T., *Angewandte Chemie* **2015**, *54*, 5

22 | 20/06/17

DeSimone, E.; Schacht, K.; Scheibel, T.; Mater Lett 2016, 183, 101-104.

23 | 2016-12-07

Rheology – stress-strain

DeSimone, E.; Schacht, K.; Scheibel, T.; Mater Lett 2016, 183, 101-104.

24 | 2016-12-07

Rheology – shear-rate dependent viscosity

DeSimone, E.; Schacht, K.; Scheibel, T.; *Mater Lett* 2016, 183, 101-104.

UNIVERSITÄT Bayreuth 25 | 2016-12-07

Hydrogel preparation + printing

Scheibel, T., Angewandte Chemie 2015, 54, 5

20/06/17 26

BioMat

Cells on & encapsulated in printed constructs

human fibroblasts - live/dead staining

- → fibroblasts adhere well on printed eADF4(C16)-RGD hydrogels → robotic dispensing doesn't disturb cell-material interaction
- → fibroblasts encapsulated in eADF4(C16) hydrogels survive 7 d in situ

Thank you for your attention

Deutsche Forschungsgemeinschaft DFG

SCHE 603/4-4

Bayerisches Staatsministerium für Umwelt und Gesundheit U8793-2012/6-2

UNIVERSITÄT BAYREUTH