Engineering Conferences International ECI Digital Archives

Biochar: Production, Characterization and Applications

Proceedings

8-20-2017

Biochar from microwave pyrolysis of selected feedstocks

Tanisha M. Dreise University of New Brunswick, Canada

Daya R. Nhuchhen University of New Brunswick, Canada

Muhammad T. Afzal University of New Brunswick, Canada

Follow this and additional works at: http://dc.engconfintl.org/biochar Part of the <u>Engineering Commons</u>

Recommended Citation

Tanisha M. Dreise, Daya R. Nhuchhen, and Muhammad T. Afzal, "Biochar from microwave pyrolysis of selected feedstocks" in "Biochar: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada Raffaella Ocone, Heriot-Watt University, Edinburgh, UK Ondrej Masek, University of Edinburgh, Edinburgh, UK Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biochar/77

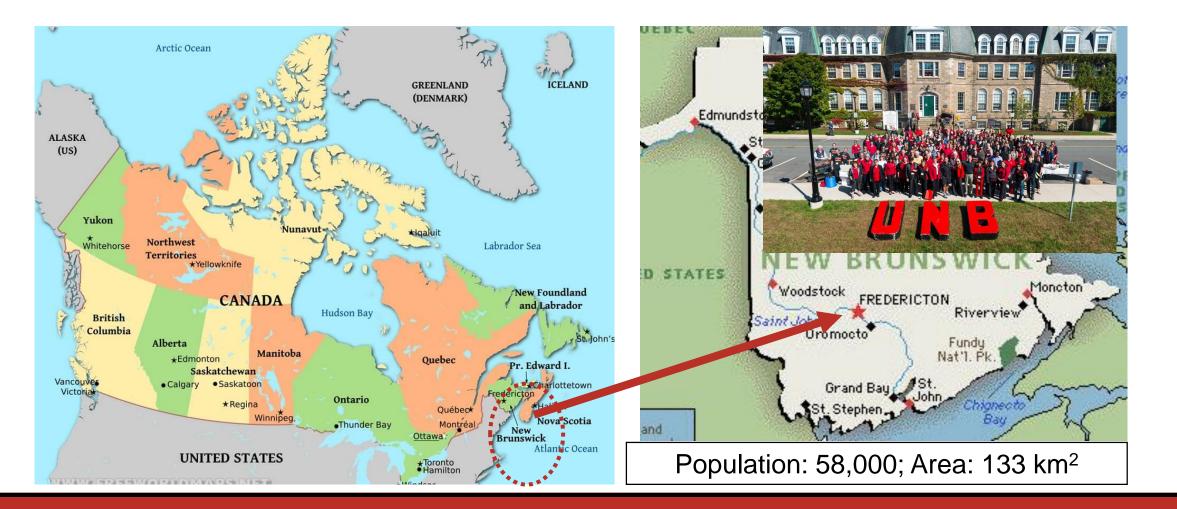
This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Biochar from Microwave Pyrolysis of Selected Feedstocks

Tanisha Dreise, Daya Nhuchhen, Muhammad T. Afzal (mafzal@unb.ca)

Bioenergy, Bioproducts Research Lab (BBRL)

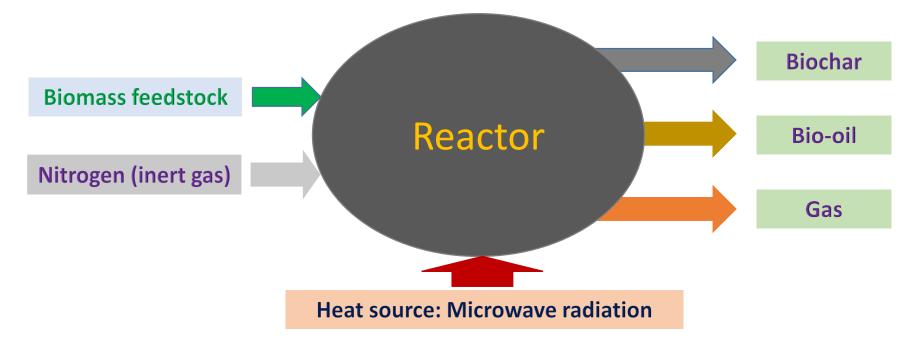
Department of Mechanical Engineering, University of New Brunswick, Fredericton, Canada


Biochar: Production, Characterization and Applications

An ECI Conference

August 20-25, 2017, Alba, Italy

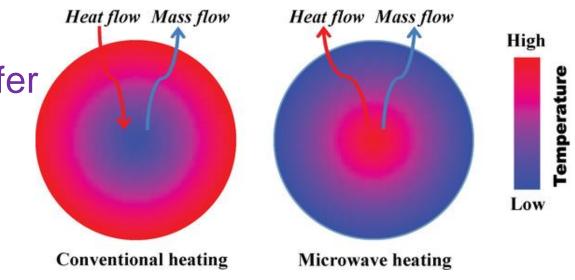
Where is UNB located?



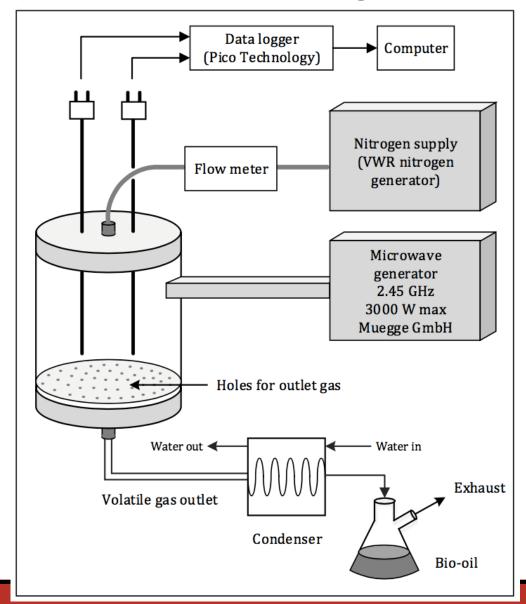
Summary of Microwave Pyrolysis Work Conducted at Bioenergy and Bioproducts Research Lab (BBRL), Mechanical Engineering, UNB, Canada

What is microwave pyrolysis?

- Thermal degradation of biomass in the absence of oxygen
- Results in solid biochar, liquid bio-oil, and gas
- Uses microwave heating to accomplish pyrolysis



Advantages to using microwaveassisted pyrolysis (MAP)


- Higher energy efficiency
- Energy transfer rather than heat transfer
- Non-contact and rapid heating
- Quick startup and shutdown
- Fast heating rate
- Volumetric heating

Microwave pyrolysis system at BBRL, UNB

Process layout describing MAP

Work 1: Corn stalk briquettes (CSB)

Preprocessing

- ✓ Corn stalk chopped, shredded, dried
- ✓Hydraulic briquetting machine
- ✓ Constant Pressure:100 MPa; Holding time: 5 s
- ✓ Briquette dimension: diameter of 0.04 m, length of 0.02 m, and weight around 30 g
- Microwave pyrolysis using briquettes

Salema A A., M.T. Afzal, and L. Bennamoun. 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology 233: 353-362.

Proximate and ultimate analysis of corn stalk

Proximate analysis	Weight %	Ultimate analysis	Weight %
	<u> </u>	Carbon	46.67
Moisture content	6.8	Hydrogen	6.01
Volatile matter	76.2	Nitrogen	0.02
Fixed carbon	170	Sulphur	0.02
Fixed carbon	17.0	Oxygen	47.28

Salema A A., M.T. Afzal, and L. Bennamoun. 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology 233: 353-362.

Experimental procedure

- Microwave power input: 900 W, 1200 W, and 1500 W
- Biomass loading: 0.5 kg and 1 kg
- 75 g of biochar used as a microwave absorber (fixed amount)
- Duration: 1 hour

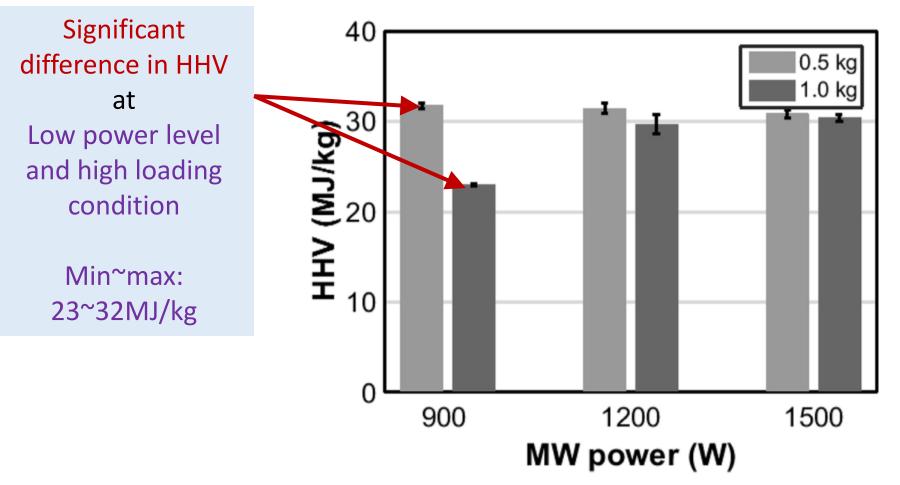
Product yield from CSB pyrolysis

Product yield	Weight %
Bio-oil	13.4 – 19.6
Biochar	30.9 – 41.1
Gas	41.6 – 54.0

• Most briquettes retained their original shape after pyrolysis

Salema A A., M.T. Afzal, and L. Bennamoun. 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology 233: 353-362.

Elemental analysis of CSB biochar



Biochar	Weight %
Carbon	63.05 - 74.33 (raw 47%)
Hydrogen	1.49 – 2.91
Nitrogen	0.14 – 0.48
Oxygen	23.45 - 35.31

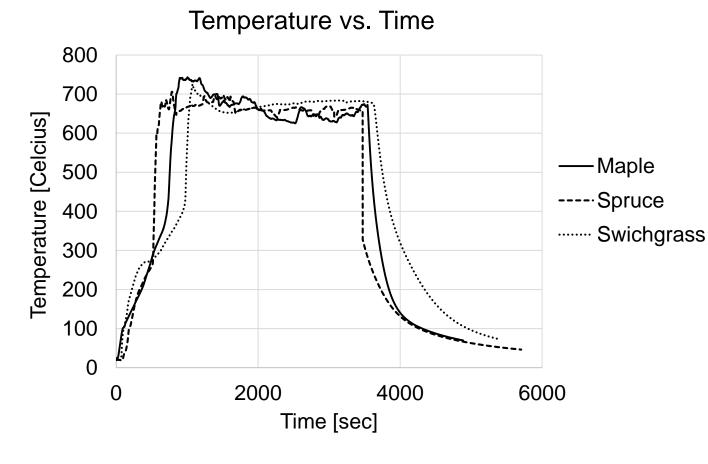
Salema A A., M.T. Afzal, and L. Bennamoun. 2017. Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology. Bioresource Technology 233: 353-362.

Higher heating value (HHV) of biochar

Work 2: MAP of spruce, maple and switchgrass

Maple

Spruce



Experimental conditions

- Microwave power input: 500 W
- Biomass loading: 100 g
- 10 g of biochar used as a microwave absorber
- Time: 1 hour

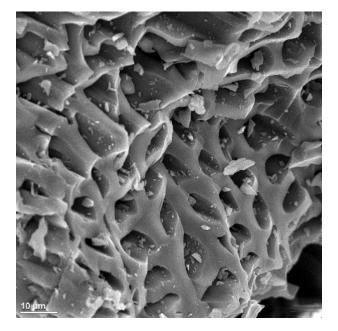
Reaction temperature

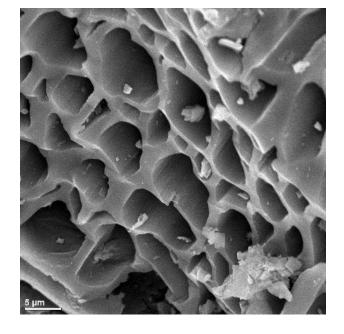
EST. 1785 UNIVERSITY OF NEW BRUNSWICK

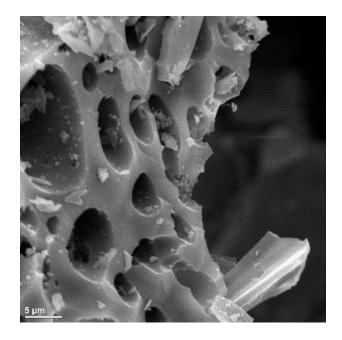
 Reaction temperatures in the vicinity of 700°C, maintained for the duration of the conversion process

Reaction temperature and biochar yield

Biochar Feedstock	Reaction Temperature (°C)	Avg. Biochar Yield (wt.%)
Spruce	670	22.2
Maple	680	22.0
Switchgrass	690	24.4


Elemental analysis of biochar

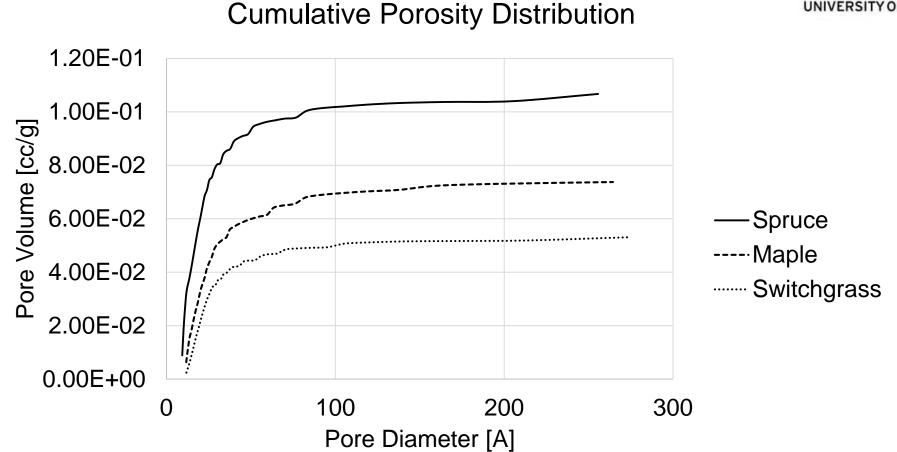

Biochar Feedstock	Carbon (wt.%)	Hydrogen (wt.%)	Nitrogen (wt.%)	Oxygen (wt.%)	Ash content (wt.%)
Spruce	80.1	2.90	0.03	16.0	0.98
Maple	79.5	3.37	0.04	15.5	1.56
Switchgrass	69.6	2.36	0.05	18.5	9.50


SEM analysis of biochar

Spruce

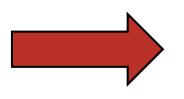
Maple

Switchgrass


BET analysis

Biochar feedstock	Pore volume (x10 ⁻² cc/g)	BET surface area (m²/g)
Spruce	12.12	203.9
Maple	7.712	155.7
Switchgrass	5.394	116.5

Porosity distribution



Work 3: MAP of wood pellets

Wood pellets

Microwave Pyrolysis

Biochar

Wood pellets

- Eastern Embers Premium Wood Pellets used as feedstock
- 100% softwood
- Manufactured from spruce sawdust

Experimental procedure

- Microwave power input: 2000 W, 2500 W, and 3000 W
- Biomass loading: 1.5 kg, 2.5 kg, and 3.5 kg
- 10% biochar used as a microwave absorber
- Time: 1 hour

Product yield distribution

Test conditions	Biochar (%)	Bio-oil (%)	Gas (%)	
2500 W, 1.5 kg	26.03	44.33	29.64	
2500 W, 2.5 kg	27.56	40.25	32.18	BC and gas yield
2500 W, 3.5 kg	28.26	38.57	33.17	Increasing biomass
2000 W, 2.5 kg	32.36	36.54	31.10	loading Biooil yield
2500 W, 2.5 kg	28.55	41.25	30.20	Increasing power level
3000 W, 2.5 kg	26.19	46.01	27.80	

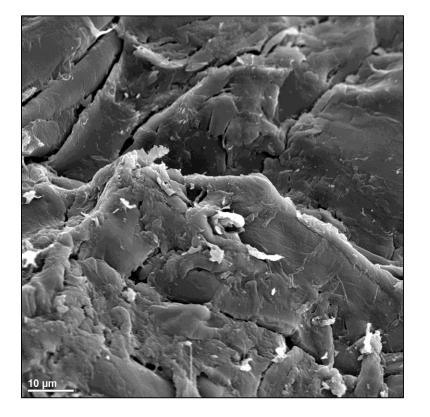
Elemental analysis

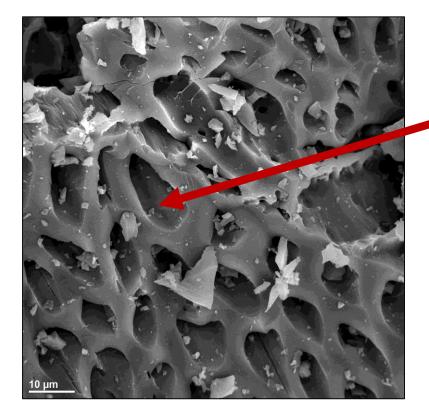
Weight %	Wood pellets	Biochar
Carbon	41.19	69.58 - 85.66
Hydrogen	5.01	2.44 - 3.28
Nitrogen	0.02	0.04 - 0.05
Ash	0.29	0.97 – 1.44
Oxygen	53.49	10.44 – 26.32

Bulk density of biochar and wood pellets

Test conditions	Bulk density (kg/m ³)
Raw wood pellets	650.1
2500 W, 1.5 kg	359.7
2500 W, 2.5 kg	373.1
2500 W, 3.5 kg	384.5
2000 W, 2.5 kg	386.7
2500 W, 2.5 kg	373.3
3000 W, 2.5 kg	371.2

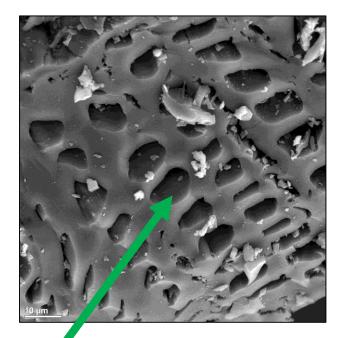
Higher heating value (HHV) of biochar

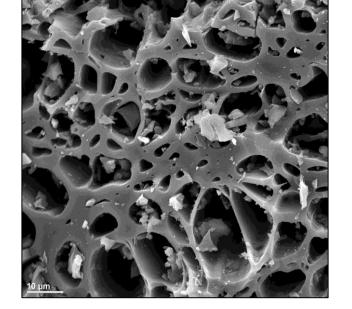



Test conditions	HHV of biochar (MJ/kg)
2500 W, 1.5 kg	30.8911
2500 W, 2.5 kg	31.2055
2500 W, 3.5 kg	31.8091
2000 W, 2.5 kg	30.5528
2500 W, 2.5 kg	31.8411
3000 W, 2.5 kg	31.5416

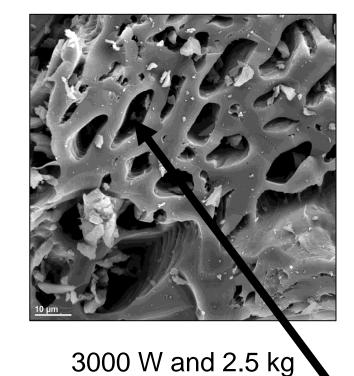
HHV increased by 54-60% compared that to raw wood pellets (raw 20 MJ/kg)

SEM analysis




Wood pellets

Biochar

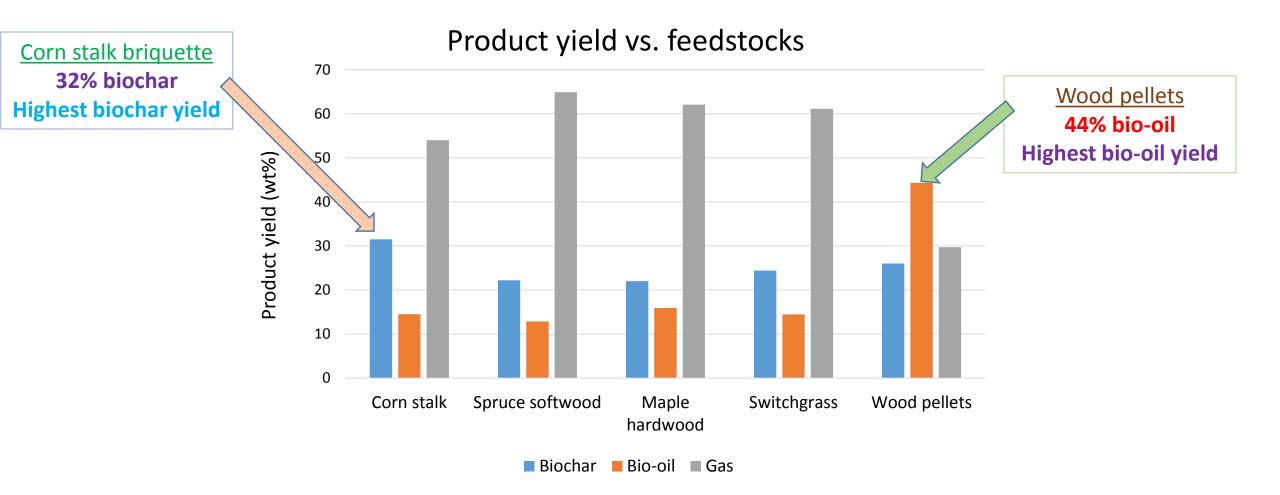

SEM analysis of biochar

2500 W and 2.5 kg

Circular, uniformly distributed pores

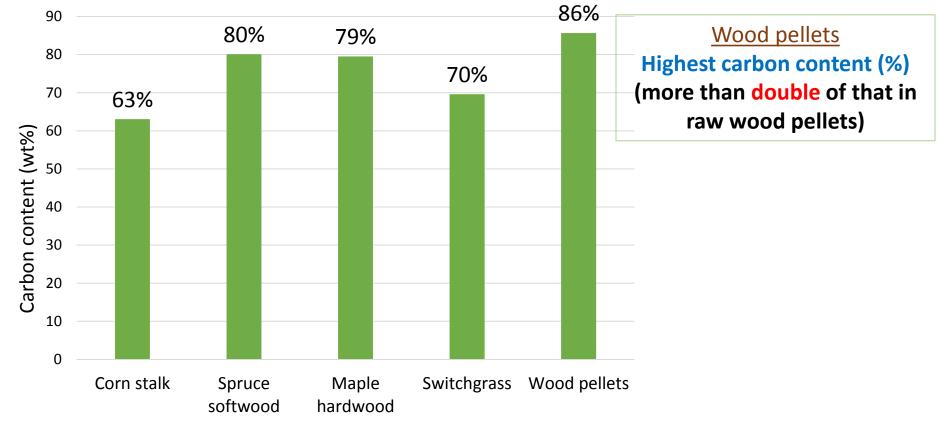
2000 W and 2.5 kg

Narrow, less structured pores

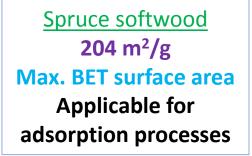


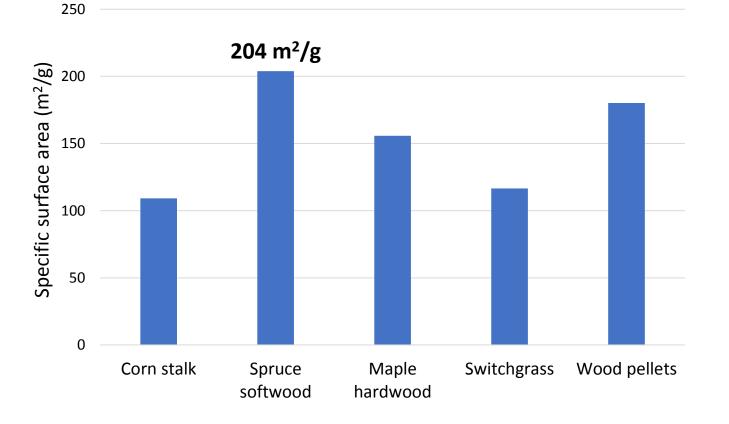
BET analysis of biochar

Test conditions	Surface area (m ² /g)	Mean pore size (nm)
2500 W, 1.5 kg	180.12	0.69
2500 W, 2.5 kg	122.65	0.71
2500 W, 3.5 kg	129.35	0.71
2000 W, 2.5 kg	366.51	0.94
2500 W, 2.5 kg	108.91	0.74
3000 W, 2.5 kg	131.77	0.81



Summary of results


Summary of results


Carbon content vs. feedstocks

Summary of results

Specific surface area vs. feedstocks

Conclusions

- Product yield depends on the process conditions and the type of feedstocks
- Biochar produced has high porosity that could potentially be used in different adsorption processes
- Further work on biomass loading and reactor design is needed
- Additional research on the effect of scaling up microwave reactor technology on product distribution and qualities

Acknowledgements

- Bioenergy, Bioproduct Research Lab (BBRL), Mechanical Engineering, UNB
 - ✓ Current and Past Research Team
 - Dr. Muhammad T. Afzal (Professor, Team Leader)
 - Dr. Daya R. Nhuchhen, Dr. Arshad Salema, Dr. Lyes Bennamoun (Postdoctoral fellows)
 - Tanisha Dreise (Research Assistant)
 - Lucas Bowlby, Noorfidza Harun (Graduate students)

Financial Support

- ✓ New Brunswick Department of Agriculture, Aquaculture and Fisheries (NBDAAF)
- ✓ Natural Science and Engineering Council of Canada (NSERC)
- ✓ New Brunswick Innovation Foundation (NBIF)

Thank you!

Interested in collaboration, please contact:

mafzal@unb.ca