Engineering Conferences International ECI Digital Archives

Biochar: Production, Characterization and Applications

Proceedings

8-20-2017

Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions

Joan J. Manyà Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain

Manuel Azuara Institute of Nanoscience of Aragón (INA), University of Zaragoza, Spain

José A. Manso Technological College of Huesca, University of Zaragoza, Spain

Follow this and additional works at: http://dc.engconfintl.org/biochar Part of the <u>Engineering Commons</u>

Recommended Citation

Joan J. Manyà, Manuel Azuara, and José A. Manso, "Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions" in "Biochar: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada Raffaella Ocone, Heriot-Watt University, Edinburgh, UK Ondrej Masek, University of Edinburgh, Edinburgh, UK Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biochar/76

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Biochar production through slow pyrolysis of different biomass materials: seeking the best operating conditions

Joan J. Manyà*, Manuel Azuara, José A. Manso

(*) Aragón Institute of Engineering Research (I3A), University of Zaragoza, Technological College of Huesca, Spain joanjoma@unizar.es

GPT Grupo de Procesos Termoquímicos Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

Motivation Experimental Results Conclusions Darameters affecting blochar yield and properties Conclusions Conclusions

Parameters affecting biochar yield and properties

Pressure (P)

Its effect is usually confounded with that of gas residence time (τ)

In packed-bed reactors, pressure can be raised:

1) By the carrier gas at **constant mass flow rate** (an increase in *P* leads to an increase in τ)

2) By the carrier gas at **constant gas residence time** (by adjusting the mass flow rate as a function of *P*).

Key properties in terms of potential biochar stability

- ✓ Proximate analysis: **Fixed-C content** (x_{FC}) and **Fixed-C yield** (y_{FC}) in a daf basis
- ✓ Elemental analysis: molar ratios H:C and O:C (Van Krevelen)
- ✓ Temperature programmed oxidation (TPO): R₅₀ index proposed by Harvey et al. (*Environ. Sci. Technol.* 2012, 46, 1415–1421) to estimate thermal recalcitrance.
- ✓ Direct oxidation of biochars with H₂O₂: Edinburgh stability tool (Cross, A.; Sohi, S. P. GCB Bioenergy 2013, 5, 215–220) to estimate the stable C fraction.
- ✓ Percentage of **aromatic C**: estimated from solid-state ¹³C NMR spectra.

Specific aim

- To analyze and compare the outcomes from previous studies, which were focused on determining the effects of certain operating conditions on the properties of the biochar produced from three different sources: corn stover (CS), two-phase olive mill waste (TPOMW), and vine shoots (VS).
- To analyze correlations among the properties related to the potential stability and suggest a suitable stability indicator.
- > To analyze effects of operating conditions on the **produced gas**.

Experimental

Biomass sources

Corn stover (CS) corncob (15.5%), leaf (4.3%) and stalk (80.2%) Particle size: as received

Dried two-phase olive mill waste (TPOMW) Particle size: in the range of 0.32–3.0 mm

Vine shoots(VS) Particle size: in the range of 0.1–1.0 cm diameter and 1.0–3.5 cm long

Effect of T_{peak} and P At constant gas residence time Effect of *P* and the addition of inorganics (AAEMs) At constant gas residence time

Effect of T_{peak}, P, and carrier gas (N₂ or CO₂) At constant gas residence time

Motivation	Experimental	Results	Conclusions

Pyrolysis device

(1) fixed-bed pyrolysis reactor, (2) pyrolysis liquid condensation system, (3) volumetric gas meter and (4) micro-GC.

Universidad Zaragoza

	Motivation			Ехре	rimental			R	esults		Conclusions	
				H:C	O:C	xFC		yFC	Aromatic C (%)	R50	Stable C (%)	
	H·C	Pearson C	orr.	1	0.49618	-0.6776	64	0.83056	-0.74437	-0.65205	-0.79995]
	11.0	Sig.			0.2574	0.0943	8	0.02067	0.05499	0.11249	0.03077	
	O.C	Pearson C	orr.	0.49618	1	-0.9620	5	0.32706	0.08333	0.24481	-0.03472]
	0.0	Sig.		0.2574		52,810	4	0.47398	0.85902	0.59675	0.94109]
	vEC	Pearson C	orr.	-0.67764	-0.96205	1		-0.46483	0.16769	-0.02733	0.29944	
	XI C	Sig.		0.09438	52,8104			0.29329	0.71931	0.95361	0.51413	
	VEC	Pearson C	orr.	0.83056	0.32706	-0.4648	3	1	-0.667	-0.53537	-0.6202	
	yı C	Sig.		0.02067	0.47398	0.2932	9		0.10171	0.21557	0.13732	
	Aromatic C (%)	Pearson C	orr.	-0.74437	0.08333	0.1676	9	-0.667	1	0.92885	0.92388	
	Aromatic C (%)	Sig.		0.05499	0.85902	0.7193	1	0.10171		0.0025	0.00295	
	R50	Pearson C	orr.	-0.65205	0.24481	-0.0273	3	-0.53537	0.92885	1	0.80626	
		Sig.		0.11249	0.59675	0.9536	1	0.21557	0.0025		0.0285	
	Stable C (%)	Pearson C	orr.	-0.79995	-0.03472	0.2994	4	-0.6202	0.92388	0.80626	1	
		Sig.		0.03077	0.94109	0.5141	3	0.13732	0.00295	0.0285		

Potential stability for TPOMW-derived biochars

	H:C	O:C	X _{FC}	Y FC	Aromatic C (%)	R ₅₀	Stable C (%)
OW at 0.1 MPa	0.3398	0.0324	0.616	0.231	85.8	0.564	89.4
OW at 1.0 MPa	0.2985	0.0166	0.946	0.305	86.6	0.605	86.3
OW+A at 0.1 MPa	0.308	0.0921	0.946	0.269	85.3	0.506	82.9
OW+A at 1.0 MPa	0.335	0.0919	0.947	0.283	86.7	0.559	81.9
OW+RC at 0.1 MPa	0.2524	0.083	0.906	0.286	85.4	0.634	94.6
OW+RC at 1.0 MPa	0.3979	0.0332	0.926	0.289	85.4	0.635	95.1

$T_{peak} = 600$ °C. Carrier gas : N₂

OW: TPOMW; OW+A: 5% K₂CO₃ + 5% CaO; OW+RC: 10% Rejected Material from Municipal Waste Composting

60% ash (Ca, K, Na)

		H:C	O:C	xFC	yFC	Aromatic C (%)	R50	Stable C (%)
H:C Pear	Pearson Corr.	1	-0,38246	-0,14557	-0,16147	-0,01364	0,02446	0,09676
	Sig.		0,45428	0,78319	0,75991	0,97954	0,96332	0,85531
0.0	Pearson Corr.	-0,38246	1	0,36319	-0,02178	-0,17738	-0,44698	-0,36889
0.0	Sig.	0,45428		0,47917	0,96733	0,73672	0,37418	0,47176
VEC	Pearson Corr.	- 0,14557	0,36319	1	0,88139	0,123	0,10601	-0,1968
XI U	Sig.	0,78319	0,47917		0,02027	0,81643	0,84158	0,70861
VEC	Pearson Corr.	-0,16147	-0,02178	0,88139	1	0,29103	0,4766	0,05053
yı O	Sig.	0,75991	0,96733	0,02027		0,57578	0,33923	0,92427
Aromatic C (%)	Pearson Corr.	-0,01364	-0,17738	0,123	0,29103	1	-0,04429	-0,55371
	Sig.	0,97954	0,73672	0,81643	0,57578		0,93361	0,25431
R50	Pearson Corr.	0,02446	-0,44698	0,10601	0,4766	-0,04429	1	0,82557
	Sig.	0,96332	0,37418	0,84158	0,33923	0,93361		0,04299
Stable C (%)	Pearson Corr.	0,09676	-0,36889	-0,1968	0,05053	-0,55371	0,82557	1
	Sig.	0,85531	0,47176	0,70861	0,92427	0,25431	0,04299	

1,5 -

1,0

0,5 -

0,0

H C H yFC --

ö

xFC -

Stable C (%) –

Distance

H:C

0:0

xF

yF(

R5

Aromatic

Stable (

Potential stability for vine shoots-derived biochars

		-					
	H:C	O:C	X _{FC}	Y FC	Aromatic C (%)	R 50	Stable C (%)
VS at 400 °C, 0.1 MPa, N2	0.74	0.16	0.709	0.269	56,0	0.513	64.2
VS at 400 °C, 1.0 MPa, N2	0.689	0.123	0.726	0.274	57.2	0.516	63.8
VS at 600 °C, 0.1 MPa, N2	0.401	0.068	0.855	0.277	69.5	0.528	81.8
VS at 600 °C, 1.0 MPa, N2	0.306	0.061	0.856	0.261	78.9	0.536	79.5
VS at 600 °C, 0.1 MPa, CO2	0.376	0.054	0.861	0.257	66.7	0.518	80.7
VS at 600 °C, 1.0 MPa, CO2	0.29	0.057	0.864	0.262	73.9	0.533	81.2

$T_{peak} = 600 \,^{\circ}{\rm C}$

Effect vromatic C (%) -0,94561 0,00436 -0,85686 0,02927 0,88589 0,01879 -0,46845 0,34872 1 1 --

Aromatic C (%) -

Effects of *Tpeak* and *P* (minor)

vromatic C (%)	R50	Stable C (%)
-0,94561	-0,848	-0,95953
0,00436	0,0329	0,00242
-0,85686	-0,73453	-0,94718
0,02927	0,09636	0,00411
0,88589	0,76455	0,9919
0,01879	0,07663	9,81148E-5
-0,46845	-0,24969	-0,42527
0,34872	0,63325	0,40055
1	0,95305	0,85986
	0,00325	0,02808
0,95305	1	0,74345
0,00325		0,09029
0,85986	0,74345	1
0,02808	0,09029	

Universidad Zaragoza

m

Biochar: Production, Characterization and Applications Alba, Italy, 20-25 August 2017

R50-

Universidad Zaragoza

- The *R₅₀ index* and the *stable C fraction* (after oxidation with H₂O₂) appear as useful indicators of the potential stability of biochar. Both techniques are relatively fast and inexpensive compared to e.g. ¹³C NMR.
- Pressure has a little effect on potential stability compared to Peak Temperature. However, working at moderate pressure (1.0–1.5 MPa) leads to higher yields of produced gas as well as an improvement of its composition.
- By adding a relatively small amount of **high-ash RDF (RC)**, it is possible to obtain biochars with higher potential stabilities. At the same time, the properties of the produced gas are improved.
- Using a pyrolysis environment of CO₂ did not significantly affect neither the yield nor the potential stability of biochar. At moderate pressure, using CO₂ instead of N₂ can lead to a producer gas with very high heating value.

The authors gratefully acknowledge financial support from the Spanish MINECO-DGI funds (Project ENE2013-47880-C3-1-R)

