Engineering Conferences International ECI Digital Archives

Biochar: Production, Characterization and **Applications**

Proceedings

8-20-2017

Biochar production through hydrothermal carbonization: Energy efficiency and cost analysis of an industrial-scale plant

Michela Lucian, University of Trento, Italy

Fabio Merzari University of Trento, Italy

Luca Fiori University of Trento, Italy

Follow this and additional works at: http://dc.engconfintl.org/biochar

Part of the Engineering Commons

Recommended Citation

Michela Lucian,; Fabio Merzari; and Luca Fiori, "Biochar production through hydrothermal carbonization: Energy efficiency and cost analysis of an industrial-scale plant" in "Biochar: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada Raffaella Ocone, Heriot-Watt University, Edinburgh, UK Ondrej Masek, University of Edinburgh, Edinburgh, UK Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biochar/73

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Biochar production through Hydrothermal Carbonization (HTC): Energy efficiency and cost analysis of an industrial-scale plant

Speaker:

Fabio Merzari

Authors:

Michela Lucian Fabio Merzari Maurizio Volpe prof. Luca Fiori

Outline

INTRODUCTION

- Hydrothermal Carbonization (HTC)
- 2) Operative conditions of HTC process
- 3) Application
- 4) Aim of the work

MATERIAL AND METHODS

- 1) Experimental data
- 2) Operative conditions
- 3) Plant scheme
- 4) Process parameters

RESULTS AND DISCUSSIONS

- 1) Thermal and electric energy consumption
- 2) Thermal efficiency
- 3) Plant efficiency
- 4) Economic feasibility

CONCLUSIONS

Introduction

HYDROTHERMAL CARBONIZATION:	Coalification process that converts raw wet biomass into a coal like product High carbon content High calorific value
OPERATIVE CONDITIONS:	 Substrates: organic waste (OFMSW, sewage sludge, wet agricultural residues, algae, etc) Moisture: > 75% Temperature: 180 - 250 °C Pressure: 10 -50 bar (autogenous) Residence time: 0.5 - 8 h
APPLICATIONS OF OBTAINED BIOCHAR:	 Biofuels: co-firing in coal handling infrastructure Feedstock for supercritical water gasification Soil amendment Production of advanced materials (activated carbon) Modelling of a semi-continuous industrial-scale
AIM OF THE WORK:	 process on the basis of experimental data of grape marc (GM) and off-specification compost (OSC); The model estimates: thermal energy and power consumption of the HTC plant; thermal and plant energy efficiencies; biochar production costs.

Material and methods

The model is based on HTC experimental results performed in a stainless steel batch reactor (V = 50 mL)

EXPERIMENTAL DATA:

Experimental parameters used in the model:

- Ultimate analysis and experimental HHV of feedstock and biochar.
- Yields of biochar and gas.
- Total organic content (TOC) of the liquid phase.
- Gaseous composition (CO2, CO, H₂, and CH₄).

FEEDSTOCK USED: —

Off-specification compost (OSC): published data Grape marc (GM): published data

OPERATIVE CONDITIONS:

Dry biomass to water ratio DB/W = 0.07 for OSC,
 DB/W = 0.19 for GM

Temperature: T = 180, 220, 250 °C

• Residence time: $\theta = 1, 3, 8 \text{ h}$

Material and methods: plant scheme

Material and methods

PROCESS PARAMETERS:

- 8000 h/year of operating time
- 20000 ton/year of treatment capacity (2500kg/h)

	OSC	GM
Biomass as received (ton/y)	20,000	20,000
DB = Biomass db (ton/y)	14,000	7,000
Water added (ton/y)	200,000	23,840
W = Total water (ton/y)	206,000	36,840
Total flow rate (ton/y)	220,000	43,840
DB/W (-)	0.07	0.19
Biomass moisture content (%)	30	65

MODEL ASSUMPTIONS:

- Each piece of equipment stationary and adiabatic
- Heat losses simplified with 2 heat exchangers
- No material losses
- Pressure drops concentrated in the equipment

$$Thermal\ efficiency = \frac{Energy_{HC,HHV}}{Energy_{th}}$$

$$Plant \ efficiency = \frac{Energy_{HC,HHV}}{Energy_{biomass,HHV} + Energy_e + Energy_{th}}$$

Results:

thermal energy consumption

OFF SPECIFICATION COMPOST

GRAPE MARC

Thermal energy:

OSC: 2.79-6.28 kWh/kg_{biochar}

Most of thermal energy (81.1%-91.7%) is required by burner B1

GM:1.17-1.50 kWh/kg_{biochar}

No trend is evident. The lowest thermal energy is recorded at 220 °C.

Results:

electric energy consumption

Electrical energy:

< 0.30 kWh/kg_{biochar} for GM and OSC.

Results: thermal efficiency

OFF SPECIFICATION COMPOST

GRAPE MARC

- Values are lower when using OSC with respect to GM due to the different DB/W (DB/W=0.07 for OSC and DB/W=0.19 for GM).
- At T>180 °C, the energy content of OSC-derived biochar cannot provide sufficient thermal energy to compensate for the thermal energy of the process.
- Thermal efficiency for GM ranges between 4.67 and 5.64: the relatively high DB/W chosen (=0.19) allows for significantly improved HTC thermal performance

Results: plant efficiency

Plant efficiency decreases with temperature.

Results: plant efficiency

GM: plant efficiency is notably higher than for OSC values. This is due to the highest value of HHV of GM and also to the higher DB/W value used.

Results: economic feasibility

Best results from GM at T=220 °C, θ =1h and DB/W=0.19

Type of Unit	Cost (€)
Heat exchangers (H1, H2, H3)	32,983
Agitator	5110
Direct fired heaters	354,063
Reactor	436,051
Flash tanks	145,276
Pumps	57,237
Centrifuge	55,028
Crusher	10,739
Dryer	131,535
Filter	1359
Pelletizer	30,907
Total cost for on-site equipment	1,260,288

Cost linked to the capital	Annual Cost (€)
Average loan interest rate 5% (10 years)	229,717

Type of Unit	Cost (€)
Total depreciable capital (TDC)	1,260,288
On-site equipment	21,526
Utility plants	230,727
Contractor's fee and contingencies	30,251
Land	30,251
Plant start up	151,254
Working capital	79,765
Total capital investment (TCI)	1,773,811

Operating costs	Annual Cost (€)
Electricity	1,260,288
Methane	21,526
Labor related operations	230,727
Maintenance	30,251
Property taxes and insurance	30,251
General expenses	151,254
Waste water treatment	79,765
Total production costs	832,984

Results: economic feasibility

Best results from GM at T=220 °C, θ =1h and DB/W=0.19

Biochar production of 5317 ton/years

Break-even point is 200€/ton

Break-even point of wood pellets is 150 - 200€/ton: biochar is competitive

Conclusions:

In the most favorable conditions, i.e. GM at DB/W = 0.19, T = 220 °C and Θ = 1 h:

- plant efficiency: 78%
- specific thermal energy consumption: 1.17 kWh/kg_{biochar} (0.31 kWh/kg_{feedstock});
- specific electric energy consumption: 0.16 kWh/kg_{biochar} (0.04 kWh/kg_{feedstock});
- the production cost of pelletized biochar: 157 €/ton_{biochar};
- the biochar break-even value for a plant repayment period of 10 years: 200
 €/ton_{biochar}, (competitive with price of wood pellets, 150-200 €/ton_{wood}).