Engineering Conferences International ECI Digital Archives

Biochar: Production, Characterization and Applications

Proceedings

8-20-2017

Microwave characterization and shielding properties of biochar based polymers and cements

Patrizia Savi Politecnico di Torino, Italy

Follow this and additional works at: http://dc.engconfintl.org/biochar Part of the <u>Engineering Commons</u>

Recommended Citation

Patrizia Savi, "Microwave characterization and shielding properties of biochar based polymers and cements" in "Biochar: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada Raffaella Ocone, Heriot-Watt University, Edinburgh, UK Ondrej Masek, University of Edinburgh, Edinburgh, UK Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biochar/33

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Microwave characterization and shielding properties of biochar based polymers and cements

Patrizia Savi

Electronic and Telecommunications Department (DET) Politecnico di Torino, Torino, Italy, patrizia.savi@polito.it

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017 Patrizia Savi, Electronic and Telecom. Dept. (DET) Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: patrizia.savi@polito.it

DET Department of Electronics and Telecommunications

Multi disciplinary Team

Rao Arsalan, Sajjad, Aamer Khan, Mauro Giorcelli, Alberto Tagliaferro, **Dept. of Applied Science and Technology (DISAT),** Politecnico di Torino, Italy.

Patrizia Savi, Suneeth Puthor Josè, Ahmad Bayat, Gianluca Dassano, **Dept. of Electronics and Telecommunication (DET)**, Politecnico di Torino, Italy.

Carlo Rosso, Raffaella Sesana, Eugenio Brusa,

Dept. of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Italy.

Mario Miscuglio, Istituto Italiano di Tecnologia, IIT, Genova, Italy.

Simone Quaranta

Univ. of Ontario Institute of Technology (UOIT): Faculty of Science, Oshawa, ON, Canada

Land soil moisture

Global Navigation Satellite System Reflectometry (GNSS-R)

Time Domain Reflectometry Measurements (TDR)

Three-rod sensor

DET Department of Electronics and Telecommunications

Outline

- 1. Introduction and Motivation
- 2. Biochar and polymers (bulk)
- 3. Biochar and cement
- 4. Biochar and polymers thick films
- 5. Conclusions

DET Department of Electronics and Telecommunications

BIOCHAR

It is a by-product of thermochemical biomass pyrolysis

[1] Nanocyl NC7000 Industrial grade

[2] Marousek, J.: Significant breakthrough in biochar cost reduction. Clean Technol. Environ. Policy 16, 1821–1825 (2014)

DET Department of Electronics and Telecommunications

BIOCHAR applications

Removal of pollutants

Biochar in soil ...

р парагат, кож. мулонут, накоми и нар и н

H. Lu et al., Water Research, 2012

... and in construction material

DET Department of

Department of Electronics and Telecommunications

POLITECNICO DET DI TORINO Department

DET Department of Electronics and Telecommunications

Radiofrequency SHIELDING

Shielded measurements enviroments

Electronic equipment

Space applications (grounding rail tracks)

Wireless frequency 2.5GHz and 5GHz

Copper or new materials ?

DET Department of Electronics and Telecommunications

Shielding effectiveness (SE) definition

$$SE_{dB} = 20 \ Log \frac{E_{inc}}{E_{trans}}$$

$$SE_{dB} = R_{dB} + A_{dB} + M_{dB}$$

R_{dB}	Reflection loss
----------	-----------------

- Absorption loss A_{dB}
- M_{dB} Multiple reflection loss

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Shielding effectiveness (SE) definition

10⁻⁶ V/m smallest detectable field strengths 10⁶ V/m largest realizable field strengths

Maximum dynamic range of test equipment around 80 - 120 dB

Complex permittivity definition

It is the measure of resistance that is encountered by an electric field in a particular medium

It is the measure of a material's ability to resist an electric field

Lowest value

 $\epsilon_0 = 8.857 \ 10^{-12} \text{ F/m}$ vacuum permettivity or dielectric constant

Relative permettivity

$$\varepsilon_r = \frac{\varepsilon}{\varepsilon_o}$$

ε"

Complex permittivity definition

E = *E*'+ *j E*''

Conductivity S/m

 $\sigma = \infty$ perfect conductor

$$\sigma$$
 = 0 perfect dielectric

σ

 $2\pi f \varepsilon_o$

DET

Department of Electronics and Telecommunications

Complex Permittivity Measurements Setup

Open-ended coax sensor (Agilent 85070D) + NA (E8361A)

Diameter 30mm Thickness 20mm

- Frequency band 200 MHz 20 GHz
- Easy calibration: air/short/water
- Fast response

Advantages:

Drawback:

- Flat and smooth surface required
- Minimum sample thickness

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Biochar and polymers

Pristine Biochar (BC)

+

Epoxy resin (LPL)

University of Toronto (UofT), Canada

Cores Ocean

	Weight %	Resin (g)	Hardener (g)	Filler (g)
1	Owt.%	66.67	33.33	0
2	2wt.%.	65.33	32.67	2
3	4wt.%	64	32	4
4	20wt.%.	53.33	26.67	20

A. Khan, P. Savi, S. Quaranta, M. Rovere, M. Giorcelli, A. Tagliaferro, C. Rosso, Low-cost carbon filler to improve mechanical and electrical properties of polymers, submitted to Polymers

Biochar and polymers: preparation

Biochar and polymers: characterization

P. Savi, S. Puthoor Josè, A.A. Khan, A. Tagliaferro, Biochar and Carbon Nanotubes as fillers in polymers: a comparison, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP), Pavia, September 20-22, 2017

Biochar and polymers: comparison with CNTs

P. Savi, S. Puthoor Josè, A.A. Khan, A. Tagliaferro, Biochar and Carbon Nanotubes as fillers in polymers: a comparison, IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes (IMWS-AMP), Pavia, September 20-22, 2017

DET Department of Electronics and Telecommunications

Oxides	CaO	SiO ₂	Al ₂ O ₃	Fe ₃ O ₄	SO ₃	MgO	K ₂ O
Content (% by mass of cement)	44	9.50	26.5	2.5	12	1.3	0.60

Portland cement Type-1 (Buzzi Unicem 52.5R)

Peanuts shells

CPS

Hazelnuts shells CHS

After carbonization and grinding

	D 50 (nm)	D 90 (nm)	BET surface area (m²/g)	Density (g/cm ³)
Carbonized peanuts shells (CPS)	600	1200	19.4	2.20
Carbonized hazelnuts shells (CHS)	750	1300	14.5	2.35

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Biochar and cement preparation

- i. Mixing speed was increased to 660 rpm and mixing went on for 150 s
- ii. Fresh cement paste was transferred into plastic molds 65 mm in diameter and 10 mm thick.
- iii. Molds were stored for 24 hours in drying chambers at 90% relative humidity.
- iv. After drying the specimens were removed from molds and immersed water curing for 7 days.
- v. Finally the specimens were dried at 50 ± 5 C for 72 hours in an oven.

	D 50 (nm)	D 90 (nm)	BET surface area (m²/g)	Density (g/cm³)
Carbonized peanuts shells (CPS)	600	1200	19.4	2.20
Carbonized hazelnuts shells (CHS)	750	1300	14.5	2.35

Cement composite samples

R. A. Khushnood, S. Ahmad, P. Savi, J.-M. Tulliani, M. Giorcelli, G.A. Ferro, Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts, *Construction and Building Materials*, vol. 85, pp. 208-216, April 2015.

Raman analysis

CPS 0.5wt.%

CHS 0.5wt.%

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

FE-SEM micrographs in cement matrix

CPS 0.5wt.%

CHS 0.5wt.%

Department of Electronics and Telecommunications

Permettivity measurements

Frequency (GHz)

DET

Department of Electronics and Telecommunications

An example: wireless sensors

Resonance frequency shift of 100 MHz

Thick film, screen printing technique

Gas sensor, bio sensors ?

P. Savi, K. Naishadham, A. Bayat, M. Giorcelli, S. Quaranta, "Multi-Walled Carbon Nanotube Thin Film Loading for Tuning Microstrip Patch Antennas," 10th European Conference on Antennas (EuCAP), Davos, Switzerland, 10-15 April 2016.

Conclusions and Future work

Biochar seems to be a good candidate for shielding applications

- Modeling: oblique incidence
- Modeling: multilayer structure
- Modeling: new types of biochar
- (Paola: heavy metal, Franco: miscanthus)
- Measurements of SE
 - Thick films and wireless sensors

Inset-feed antenna

Thanks for your attention !

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Biochar and cements: a comparison with MWCNT

S. Ahmad, R.A. Khushnood, P. Savi, M. Giorcelli, G.A. Ferro, A. Tagliaferro, Effects of Multiwalled Carbon Nanotubes on the Complex Permittivity of Cement Composites, *IET Brunei International Conference on Engineering and Technology*, Brunei, Darussalam, November 1-3. pp. 1-5, 2014.

Biochar and polymer (bulk) articolo Pavia e Polymer, qual è l'applicazione ???

Biochar and cement articolo Rao, calcolo SE con formule Paul (stiamo aspettandobiochar Berruti todo similar analysis)

SOLO POSTER Biochar and polymer (thick film), screen printing, caratterizzazione Mario, come usare thick film nei circuiti elettronici, copertura di componenti o scatole?

Controllare bioohm and bioohmHt sono biochar di Jia o di Franco Berruti ???

DET Department of Electronics and Telecommunications

$$SE_{dB} = R_{dB} + A_{dB} + M_{dB}$$

$$R_{dB} = 20 * \log_{10} \left| \frac{(Z_0 + Z_m)^2}{4 * Z_0 Z_m} \right| \qquad \sigma = \varepsilon'' \omega \varepsilon_0$$
$$\mu = \mu' \mu_0$$
$$\varepsilon = \varepsilon' \varepsilon_0$$

$$M_{dB} = 20 * \log_{10} \left| 1 - \left[\left(\frac{Z_0 - Z_m}{Z_0 + Z_m} \right)^2 * e^{-\frac{2t}{\delta}} * e^{-i * 2 * \beta * t} \right] \right| \qquad Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}}$$

Biochar and polymers – thick films

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Thick films preparation

Manual screen printing

"The process of forcing ink through a porous fabric and the open areas of a stencil to produce an image".

"Hot pink Marilyn Monroe print from Andy Warhol".

DET

Department of Electronics and Telecommunications

Inserire foto di esempi screen printing

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Thick films characterization

Optical Images 20 x Magnification

POLITECNICO DI TORINO

DET Department of Electronics and Telecommunications

Thick films characterization

DET Department of Electronics and Telecommunications

Thick films - applications

BIOCHAR

25% Graphene

AFM Characterization

DET Department of Electronics and Telecommunications

Ha senso usare film sopra i componenti elettronici?

O come protezione di scatole ?

Controllare cosa ho come antenne con biochar. Potrebbe funzionare meglio come sensore essendo molto più grotoluto

DET Department of Electronics and Telecommunications