Engineering Conferences International ECI Digital Archives

Biochar: Production, Characterization and Applications

Proceedings

8-20-2017

Effect of biochar addition on carbon dioxide and nitrous oxide emissions from a temperate agricultural soil

Maren Oelbermann University of Waterloo, Canada

Follow this and additional works at: http://dc.engconfintl.org/biochar

Part of the Engineering Commons

Recommended Citation

Maren Oelbermann, "Effect of biochar addition on carbon dioxide and nitrous oxide emissions from a temperate agricultural soil" in "Biochar: Production, Characterization and Applications", Franco Berruti, Western University, London, Ontario, Canada Raffaella Ocone, Heriot-Watt University, Edinburgh, UK Ondrej Masek, University of Edinburgh, Edinburgh, UK Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biochar/30

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Effect of biochar addition on carbon dioxide and nitrous oxide emissions from a temperate agricultural soil

M. Mechler, M. Oelbermann*: University of Waterloo

R.P. Voroney: University of Guelph

K. Reid: Agriculture and AgriFood Canada

C. Brown: Ontario Ministry of Agriculture, Food & Rural Affairs

INTRODUCTION

- Amending agricultural soils in temperate locations with bichar is a more recent approach
- Research still in its infancy
- Knowledge gap remains on the effect of biochar on GHG emissions
- Most GHG emissions studies to date conducted over the short term (4 months or less)
 - Field and laboratory
- Short-term studies do not capture temporal variation in GHG emissions

OBJECTIVES

To evaluate soil CO₂ and N₂O emissions in a conventional agricultural production system amended with biochar and under a maize (*Zea mays*) crop in southern Ontario

STUDY SITE

- Bayfield, ON
 - 43°34'45"N, 81°39'48"W
- Commercial poultry farm
- Maize-soybean rotation
 - Addition of poultry manure on 3-year rotation
 - Poultry bedding: switchgrass
 - Addition of 135 kg N/ha in years maize is produced

Soil

Grey-brown Luvisol (Light) loam texture

Site

247 masl 1.5 % slope

Experimental Design

Randomized complete block design with three treatments and three replications.

Treatment 1 (M+N): 6t/ha poultry manure plus 150 kg/ha N fertilizer.

Treatment 2 (M+B): 3t/ha poultry manure plus 3 t/ha biochar.

Treatment 3 (M+N+B): 3t/ha poultry manure, 3 t/ha biochar, 150 kg/ha N

METHODS

- Bi-weekly GHG collection
 - May to November 2016
 - Static chamber (2 chambers per treatment replicate)
 - T=0, 15 & 30 mins
- Bi-weekly
 - Soil temperature
 - Soil moisture
 - Soil samples (NH₄ & NO₃)
- GHG analysis on Agilent gas chromatograph
- Soil moisture & temperature using WET sensor
- N-fraction analysis using UV-Vis Spectrophotometry

BIOCHAR USED IN THIS STUDY

- Mayan Gold Biochar
 - Titan Carbon Smart Technologies
 - Spruce-Pine mix

Biochar Composition

Carbon Content 80%

Ash Content 12%

pH 7.2

Nitrogen 1500 ug/g

Phosphorus 500 ug/g

Potassium 7000 ug/g

Non-toxic, neutral pH, high carbon content, high surface area, low nutrients, trace metals and micro-nutrients, user friendly (low dust).

Results: CO₂ Emissions

Soil N₂O Emissions

Mean CO₂ and N₂O emissions from May to November 2016

Treatment	CO ₂ Emissions (mg CO ₂ -C/m ² /h)	N ₂ O Emissions (μg N ₂ O-N/m ² /h)
M+N	113	76
M+B	111	57
M+B+N	95	71

No significant differences among treatments

Correlations

	Moisture	Temperature	NH ₄	NO ₃
CO ₂	-0.240**	0.482**		
N ₂ O	0.433*	0.364*	0.386**	0.360**

^{*}Significant at p=0.05

^{**}Significant at p=0=0.01

Conclusions

- Biochar addition did affect GHG emissions
 - Treatments containing biochar showed a trend of lower GHG emissions (but was not significant)
- Significant correlation for all treatments
 - Very strong correlation between CO₂ emissions and soil moisture for all treatments
 - Strong correlation between N₂O emissions and soil moisture for all treatments
 - Very strong correlation between N₂O emissions and soil NH₄ and NO₃ content
- Further sampling (second season) currently underway
 - This study will have three years of GHG data once completed (2016 under corn, 2017 under soybean and 2018 under corn)
- Long-term studies necessary to determine temporal variation in GHG and how this correlates to fluctuations in soil temperature and N

Acknowledgements

Ministry of Agriculture, Food and Rural Affairs

