ATOMIC LAYER DEPOSITION: LOW TEMPERATURE PROCESS WELL ADAPTED TO ULSI AND TFT TECHNOLOGIES

Ahmad Chaker, Univ. Grenoble Alpes, CNRS, France. Ahmad.chaker@cea.fr Pierre Szkutnik, Univ. Grenoble Alpes, CNRS, France. Patrice Gonon, Univ. Grenoble Alpes, CNRS, France. Christophe Vallée, Univ. Grenoble Alpes, CNRS, France. Ahmad Bsiesy, Univ. Grenoble Alpes, CNRS, France.

Key Words: High k, Titanium dioxide (TiO₂), Atomic Layer Deposition (ALD), Ultra Large Scale Integration (ULSI)

The high k dielectrics is an important materials to be integrate in future Ultra Large Scale Integration (ULSI) and future TFT technology. Indeed, to keep on the Moore's Law curve, the reduction of silicon oxide (SiO₂) thickness still required, but this reduction is hindered by tunneling current leakage limit. Consequently, it is important to replace SiO₂ by another materials with high dielectric constant. The use of this material in manufacturing of gate dielectric in Thin-film transistor (TFT) and in Complementary Metal Oxide Semiconductor (CMOS) will increase gate capacitance with maintaining a low leakage current. Titanium dioxide is a good candidate due to its high dielectric constant in its rutile crystalline phase (180). This rutile structure is obtained at low temperature (250°C) by ALD deposition when TiO_2 is deposited on ruthenium dioxide (RuO₂) layer thanks to the small lattice mismatch between these two materials.

The major difficulty to get high TiO₂ dielectric constant is to find the optimized deposition conditions. In this paper, we report a study on the dependence of TiO₂ crystalline phase on the oxidant species used in ALD. Indeed, figure 1 show that using H₂O as oxygen source, anatase TiO₂ phase is obtained even when deposited on RuO₂ layer, while rutile phase is obtained when O₂ plasma is used as oxidant. Based on X-ray Photoelectron Spectroscopy (XPS) results, a chemical reaction scheme is proposed to explain the influence of oxidant species on TiO₂ phase. Moreover, in this paper another study will focus on the TiO₂ grain size and its influence on dielectric constant. Indeed, as shown in figure 2, two rutile structures were obtained with different dielectric constant that can be correlated to the average grain size. The influence of grain size will be discussed based on TiO₂ electrical characterization.

Figure 1. Raman spectra of TiO₂ grown by ALD at 250 °C using (a) O₂ plasma or (b) H_2O as oxygen source.

Figure 2. Influence of TiO₂ grain size on its dielectric constant