LOW-TEMPERATURE PROCESSED InGaZnO MES-FET FOR FLEXIBLE DEVICE APPLICATIONS

Mamoru Furuta^{1,2)}, Shinsuke Hashimoto¹⁾, Kenichiro Hamada¹⁾, Yusaku Magari¹⁾ 1) Environmental Science and Engineering, Kochi University of Technology, Japan 2) Center for Nanotechnology, Research Institute, Kochi University of Technology, Japan

Key Words: InGaZnO, AgOx, MES-FET, Low-temperature process, Flexible devices.

Amorphous oxide semiconductor (AOSs) of an In-Ga-Zn-O (IGZO)¹) is expected to be used as a channel material for thin-film transistors (TFTs) because the IGZO TFTs exhibit field-effect motility (μ_{FE}) of over 10 cm²/Vs and good uniformity even fabricate at room temperature. The oxide TFTs with metal-insulator-semiconductor (MIS) structure have been employed widely; however, maximum processing temperature of 300-400 °C is required to guarantee the performance and reliability of the TFTs. In contrast, metal-semiconductor field effect transistor (MES-FET) has several advantages especially for flexible devices since a Schottky gate can be formed at low temperature with AOSs. There are a few reports of AOSs based MES-FET^{2, 3}; however, it has remained an issue to form stable and good Schottky contact on the AOSs. We reported the top-gated MES-FET with the IGZO channel, which was deposited by mist chemical vapour deposition at 350 °C, and sputtered silver oxide (AgOx) Schottky gate⁴). The μ_{FE} of 3.2 cm²/Vs and subthreshold swing (SS) of 356 mV/decade were achieved. However, a maximum processing temperature of the MES-FET was 350 °C, which was not suitable for flexible device applications.

In this presentation, the IGZO MES-FET with AgOx Schottky gate was fabricated at a maximum processing temperature of 150 °C. We investigated the influences of deposition conditions and post-deposition annealing on electrical properties of the low-temperature processed IGZO MES-FET.

Figure 1 shows a cross sectional view of the IGZO MES-FET. First, a 100 nm-thick IGZO film was deposited on glass substrate by DC magnetron sputtering without intentional substrate heating from InGaZnO

(In:Ga:Zn=1:1:1 mol.%) target. Deposition pressure was kept at 1.0 Pa, while the O₂ gas ratio $[R(O_2)=O_2/(Ar+O_2)]$ was varied at 0.66, 0.80, and 1.00%. The IGZO film was patterned into an active channel by conventional photolithography and wet etching. The IGZO channel was then annealed at 100 or 150 °C for 1h in ambient air. A 120 nm-thick AgOx was deposited by DC reactive sputtering, and Au was deposited on the AgOx by thermal evaporation. The AgOx/Au stacked Schottky gate was patterned by lift-off. Finally, Mo source and drain electrodes was formed by lift-off. Channel width/length of the MES-FET was 100/10 μ m.

Figure 2 shows the (a) forward and reverse currents of the IGZO/AgOx Schottky diode and (b) on and off current of the IGZO MES-FET, as a function of the Hall carrier concentration (N_{Hall}) in the IGZO channel. The diode properties were well correlated with the N_{Hall} ; however, on-current of the MES-FET depended on not only N_{Hall} but also the R[O₂] of the IGZO deposition.

Carrier transport mechanism of the IGZO MES-FET and control methods of electrical properties will be discussed at the conference.

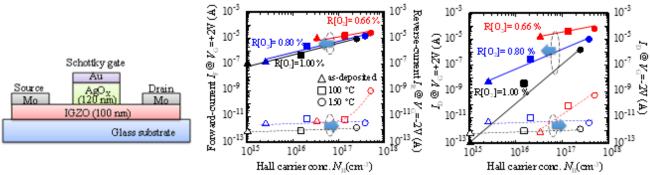
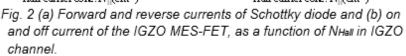



Fig. 1 Cross sectional view of the IGZO MES-FET.

References:

1) K. Nomura et. al, Nature, vol. 432, no. 25, pp. 488-492, (2004).

2) M. Lorenz et. al, Appl. Phys. Lett., 97, 243506 (2010)

3) D-H. Lee et al., ECS Solid State Lett., 1, 8–10 (2012)

4) G-T. Dang et al., IEEE Electron Device Lett., 36, 463-465 (2015