Engineering Conferences International ECI Digital Archives

Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications

Proceedings

5-8-2017

Influence of γ -irradiated biopharmaceutical films

Samuel Dorey Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, France, samuel.dorey@sartorius.com

Fanny Gaston Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, France

Magali Barbaroux, Sartorius Stedim FMT S.A.S, Z.I. Les Paluds, France

Nathalie Dupuy Aix Marseille Université, CNRS, IRD, Avignon Université, France

Sylvain R.A. Marque Aix Marseille Université, CNRS, France ; orozhtsov Novosibirsk Institute of organic chemistry Office 312, Russia

Follow this and additional works at: http://dc.engconfintl.org/biopoly_ii Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Samuel Dorey; Fanny Gaston; Magali Barbaroux,; Nathalie Dupuy; and Sylvain R.A. Marque, "Influence of γ -irradiated biopharmaceutical films" in "Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications", kta Mahajan (Genentech, Inc., USA) Gary Lye (University College London, UK) Regine Eibl-Schindler (Zurich University of Applied Science, Switzerland) Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biopoly_ii/57

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Influence of y-irradiation on biopharmaceutical films

Sartorius : Dr S. Dorey, Dr F.Gaston | ECI - May 2017

Aix-Marseille University : Prof. N.Dupuy, Prof. S.Marque

Contents

1	
2	
3	
4	

Purpose and Scope

Materials & Methods

Approach and Results

Conclusion and Perspectives

Contents

Purpose and scope

- Sterilization of Single use plastic bags made of multilayer films with PE, EVA, EVOH, etc. is achieved by γ irradiation
- Sterilization purpose : to kill micro-organisms
- 25-40|45 kGy : common dose range
- γ rays generated with a ⁶⁰Co source
- Norms (ISO 11137, ISO 11737) only deal with microbiological aspect

Purpose and scope

Unexpected phenomena could be observed even with in-purpose selected "γ-irradiatable" materials :

- Material color change
- Peptide oxidation
- pH shift
- Cell culture inhibition
- Gamma irradiation necessarily leads to the creation of radicals, small molecules, and unsaturations in alkane chains
 - > are there any other impacts ?
 - if yes, what is the extent ?

Contents

Materials and methods

Multilayer PE based film (S80)

- 3 lots investigated
- Irradiated with a constant dose rate
- Several γ-doses investigated : 0, 30, 50, 115, 270 kGy
- Monitoring of the effects overtime

Materials and methods

Emphasis of chemical modifications	Emphasis of radicals
ATR – FTIR	ESR Spectroscopy (electron spin resonance)
 Raman spectroscopy 	
Emphasis of extreme surface modifications	Structural modifications
XPS (X-Ray Photoelectron Spectroscopy)	 Tensile strength
	 Gas permeability : WVTR

Chemometrics

- The data set size is huge → chemometric methods used (data in matrix)
 - PCA (Principal Component Analysis), AComDim (ANOVA in Common Dimension), SIMPLISMA (SIMPLe-to-use Interactive Selfmodeling Mixture Analysis)

Contents

Discoloration

Yellowing – Photography of S80 films after different irradiation doses

→ Yellowing of films increases with irradiation doses

ESR signal in films irradiated at 30-50-115-270 kGy

Emphasis of radicals

Problematics : coloration | oxidation of protein | acid release
 Hypothesis : oxidation due to the presence of hydroperoxydes (ROOH) and thus

- No ESR signal in non sterile films
- S80 film irradiated
 PE film irradiated
 Field (G)
 EVOH films irradiated

3300

3400

Field (G)

3500

Yellowing

Emphasis of radicals

Radical detection by electron spin resonance (ESR) in S80 film:

- Same signal for all irradiation doses
- Radicals in S80 should be :
- Stable radical: persistant over ~10-13 weeks
- Migration weakly probable
- > This radical cannot be responsible of protein oxidation
- Protein oxidation is certainly due to hydroperoxydes issued from non observable radicals R*

ĊH₂

ĊΗ₂

Ċ–OH

sartorius stedim

PE

EVOH

 The presence of radicals leads necessarily to structural and chemical changes of the film surface

Modification on film surface

Radicals

Yellowing >

- The presence of radicals leads necessarily to structural and chemical changes of the film surface
- ATR-FTIR spectra of non-sterile PE (i.e. 0 kGy) and γ-irradiated PE
 - Global PCA → no evidence of impact of irradiation and ageing
 - Unchanged PE peak positions | intensity
 - The PE is not impacted globally
 - Need to scrutinize zone by zone

Surface changes

Modification on film surface

Chemometrics (PCA) outputs on the 1760-1680 cm⁻¹ range:

- Overlapping 0/30/50
 kGy = minor impact
 below 115 kGy
- Acids and unsaturated products 7 with the gamma dose

PE EVOH

PE

sartorius stedim

Modification on film surface

One possible mechanism

biotech

Modification on film surface

ATR-FTIR analysis and chemometric analysis emphasize :

- The polyethylene is globally weakly impacted
- Modifications taking place essentially > 115 kGy
- Modifications deal with chemical moieties having a high ε (coefficient of absorption)
- γ dose ⇒ impact on carboxylic acid generation and unsaturation

XPS analysis confirms:

- Oxidation occurs
- No trace of hydroperoxide detected

Modification in film core

Material core chemical change on sample cross section by Raman spectroscopy – S80

Conditions :

- 5µm step
- Spot of 1.3µm

Radicals > Surface ch

Modification in film core

Material core chemical change on sample cross section by Raman spectroscopy:

 \rightarrow No modification observable by Raman spectroscopy of the PE and EVOH

Structural modifications

- Radicals could lead to :
 - Cross-linking or/and scission \rightarrow changes in tensile features and thermal properties

Yellowing

Surface changes

Changes in core > Structural modif

sartorius stedim

Structural modifications

Radicals

Tensile properties of S80 film :

Identical observations with film/film welding

Modification on film core

Radicals

Water permeability

Measured via the water vapor transmission rate (WVTR) (cm³/m²/24h):

- WVTR constant in the 0-270 kGy range
- PE thus slightly modified :
 - no scission or cross-linking took place in a way to influence the WVTR

By-products formation

Contents

Purpose and Scope

Materials & Methods

Approach and Results

Conclusion and Perspectives

What is the impact of the $\gamma\mbox{-}irradiation$ on the S80 film ?

> The S80 globally not impacted by the γ-irradiation

What is the impact of the $\gamma\mbox{-}irradiation$ on the S80 film ?

> The S80 globally not impacted by the γ -irradiation

Gamma irradiation is the starting point of the modifications

Interactions of films with environment should be evaluated

Perspectives

The principal plastic materials used for the fluid contact are mainly made up of semi crystalline polymers:

- Polyolefins (PE, PP & EVA)
- PVC
- Silicone (Siloxane, PDMS)
- PA(X,Y)
- Polyesters (PET, etc.)
- Thermoplastic elastomer (TPE)
- Other materials are used to bring special features:
 - EVOH
 - Binding agents

→ Material behavior to gamma irradiation will be different

Acknowledgments

- Sylvain Marque, Prof.
- Nathalie Dupuy, Prof.
- Fanny Gaston, PhD
- Magali Barbaroux, PhD
- All Sartorius lab teams
- All persons from Aix Marseille University involved in several analysis and discussions

