Engineering Conferences International ECI Digital Archives

Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications

Proceedings

5-9-2017

Of SUT and stainless

Manuel Carrondo Instituto de Biologia Experimental e Tecnológica, Portugal

Follow this and additional works at: http://dc.engconfintl.org/biopoly_ii Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Manuel Carrondo, "Of SUT and stainless" in "Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications", kta Mahajan (Genentech, Inc., USA) Gary Lye (University College London, UK) Regine Eibl-Schindler (Zurich University of Applied Science, Switzerland) Eds, ECI Symposium Series, (2017). http://dc.engconfintl.org/biopoly_ii/47

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-use Technologies II: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

OF SUT and Stainless

Manuel Carrondo

Vice President

Prof. Chem & Biochem Engrg, FCT/UNL iBET – Instituto de Biologia Experimental e Tecnológica

www.ibet.pt

ECI Single-Use Technologies II May 7-10, 2017 (Hotel dos Templários, Tomar – PORTUGAL)

iBET Single use devices: Ready to Process

Higher upstream titers (reducing volume)

Shorter turn around times

Reduce water & buffer consumptions

Reduce foot print

Reduce maintenance

Reduce CAPEX & OPEX (?)

Assure Sterility (fool proof)

Facilitate technology transfer

Faster facility completion

Reduce hazardous cleaning solutions

Regulatory encouragement (?)

 \bigcirc

Reduce risk for cross contamination

Higher upstream titers

Continuous processes

Integrated processes

Need for production in emerging countries

Improved process robustness (PAT, QbD)

Increase in Non-platform processes

Increase in use of CDMO (diversity)

Need for "fail-proof" processes (autologous CT)

Often single source supply

No interoperability ("protect" suppliers control)

Non "inert" contact materials (Extractables|leachables|particulates|adsorption)

Full product validation/testing difficult (BPSA)

Still costly - non "disposable" SU? (eg. membranes)

Sensors – disposable/reusable...

Low nº of ports

Limited to 2KL scale (? Sets options...)

Material changes/logistics in "plastics" suppliers

Aeration/agitation (Ex., microbial ferment.)

Some Systems currently on the market

Supplier/model	Lab scale (200L)	Pilot scale (2000L)
GE/Xcellerex		
Sartorius/ BIOSTAT STR	STR 200L	5TE 2000L
Merck Millipore		
Thermo/Hyclone		

Mareike Harmsen (LICB

Advantages and Disadvantages of single-use technologies in biopharmaceutical manufacturing

•	Flexible modular design-> replication in many locations	•	Current processes are developed in/for non-single use
•	No cleaning (-validation)	•	New contact materials (see cell growth issues related to extrusion components)
•	Fast product change-over	•	Dependence on consumable supply from one source
•	Easy tech transfer	•	Harvest solutions currently limited
•	Reduces risk of cross contamination	•	Currently DSP solutions not fully available for SUS
•	Smaller footprint-> cheaper facility ("Ball room" concept)	•	Consumable costs
		•	Limited to 2kL scale currently

Environmental Considerations

Missing: Energy to incinerate the plastic waste

Ref: Sinclair A, et al. BioPharm Int. (2008), Rawlings B, Pora H. BioProcess Int. (2009), Noe, W, Antibody Development and Production (2011)

Glass Stirred Tank Reactor (STR) versus disposable Mobius® CellReady (CR)

<u>STR Conditions</u>: Sf9 cells (Life technologies) SF900II medium (Life technologies) 27° C, $pO_2 = 30\%$ Agitation = 70-250 rpm Aeration rate: 0.01 vvm Working volume = 2 L CCI = 1 x 10⁶ cells/ml; MOI 2 for each baculovirus

<u>CR Conditions</u>: Sf9 cells (Life technologies) SF900II medium (Life technologies) 27° C, pO₂ = 30% Agitation = 150 rpm Aeration rate: 0.01 vvm Working volume = 2 L CCI = 1 x 10⁶ cells/mI; MOI 2 for each baculovirus

Infected Sf9 cells in STR

• Sf9 cells have similar growth profile in the two types of bioreactors

iBET Production of RetroVLP-HCV in bioreactor using Sf9 cells

Glass Stirred Tank Reactor (STR) versus disposable Mobius® CellReady (CR)

Gag-MLV titer (P30) in the bioreactors harvested bulk

Baculovirus replication kinetics in the bioreactors

• Similar production kinetics for VLP-HCV in the two bioreactors

• Similar final Gag productivity and baculovirus replication kinectis

IBET Scale-up of RetroVLP-HCV production: 2 L to 50 L

Mobius® CellReady 3L versus Mobius® CellReady 50L

<u>Mobius® 3L Conditions</u>: Sf9 cells (Life technologies) SF900II medium (Life technologies) 27° C, pO₂ = 30% Agitation = 150 rpm Aeration rate: 0.01 vvm Working volume = 2 L CCI = 1 x 10⁶ cells/mI; MOI 2 for each baculovirus

<u>Mobius® 50L Conditions</u>: Sf9 cells (Life technologies) SF900II medium (Life technologies) 27° C, pO₂ = 30% Agitation = 110 rpm Aeration rate: 0.01 vvm Working volume = 50 L CCI = 1 x 10⁶ cells/ml; MOI 2 for each baculovirus

Infected Sf9 cells in M3L

Infected Sf9 cells in M50L

• Sf9 cells have similar growth profile in the Mobius® 3L and Mobius® 50L Bioreactors

iBET Scale-up of RetroVLP-HCV production: 2 L to 50 L

Mobius® CellReady 3L versus Mobius® CellReady 50L

VLP-HCV production kinetics in the bioreactors

Gag-MLV titer (P30) in the bioreactors harvested bulk

- Similar production kinetics for VLP-HCV in the Mobius® 3L and Mobius® 50L Bioreactors
- Similar final Gag productivity

iBET Coping with the complexity of baculoviruses (rBVs)

iBET Ion-exchange chromatography: an interaction-driven

- Measuring adsorption/electrostatics of the components of the bulk
- Predicting the behavior of both the product of interest and the main impurities
- Surface plasmon resonance (SPR) and dynamic light scattering (DLS) as potential tools

Baculovirus bulk divided into three cuts:

- Product:
 - Baculovirus, intact, purified, infective
- Product-derived impurities:
 - Baculovirus, naked envelope
 - Baculovirus capsid
 - gp64 protein isolated
 - Baculovirus, empty-capsids
- Process-derived impurities:
 - Host cell protein: BSA as model
 - DNA: cell nuclei DNA
 - Endotoxin: Lipopolysaccharide

- SPR used as a tool to obtain realtime adsorption kinetics onto a customized DEAE anion-exchange sensor chip surface
- Opportunities:
- ✓ >1200-fold scale-down;
- adsorption isotherms at varied salt concentration
- \checkmark product and impurities
- model needed to express the readout into adsorption isotherms

Vicente *et al.* 2010, *Journal of Chromatography A*, 1217:2032-41.

Surface Plasmon Resonance (SPR)

- Obtain real-time adsorption kinetics
- Measurement of adsorption isotherms at various load conditions
- Modeling IEX chromatography

Vicente et al. 2010, Journal of Biotechnology, 148:171-181

80.4 пт

iBET SPR (III): deconvoluting SPR data into adsorption isotherms

• Proof of concept: predicting adsorption isotherms for a model complex biological system: rBVs and impurities

IBET SPR (IV): comparing product and major impurities

 Prediction of binding capacity for product and impurities at broad salt concentration range

iBET DLS (I): ...yet another scaled-down tool

- Evaluation of the ζ -potential as a function of pH of the buffer
- Estimation of hydrodynamic size distributions of rBVs (in buffer conditions)
- Opportunities:
- ✓ prediction of interaction energies at varied salt concentration and pH;
- ✓ the above for the various components of the system: product and impurities
- ✗ not spherical-like
- charge density is not homogenous (gp64 localized in the baculovirus "head")

Vicente et al. 2010, Journal of Chromatography A, 1217:3754-3764

Dynamic light scattering (DLS)

- Evaluation of the ζ-potential as a function of pH of the buffer
- Estimation of hydrodynamic size distributions of rBVs (in buffer conditions)
- Prediction of electro kinetic properties of the different BV component

Baculovirus

www.ibet.pt

iBET DLS (III): from ζ-potential data to a predictive model

U_{interaction}

- Prediction of the interaction energies due to electric double layer at different conditions
- 6 < pH < 10
- rBV stability does matter!

Vicente *et al.* 2010, *Journal of Chromatography A*, 1217:3754-3764

X

ξθ

bottom view

25

Improving purification performance: assessing ligand density

а

www.ibet.pt

iBET

iBET Improving purification performance: assessing membrane prototypes

Table 1. Results of DoE-based study of the impact of ligand density (LD, μmol/cm²), salt equilibration (SE, mM), and gradient length (GL, MV) on binding and elution of rBVs, measured in terms of recovery of infective viruses (IP, %), TV/IV ratio[†], dsDNA (ng/10⁸ IP), and total protein (HCP, mg/10⁸ IP)

LD	SE	GL	IP	TP/IP	dsDNA	HCP	
2.2	30	40	73 47	4	5	61 121	
2.2	30	40	82	4	8	35	
22	45	40	/ <u>3</u>	45		<u>00</u>	
2.2	60	40	03	5	<u> </u>	37	
2.2	60	120	75	5	/	31	
5.0	50	40	70	6	8	55	
5.0	50	80	64	6	4	35	
5.0	50	80	56	9	14	51	
5.0	50	120	59	8	8	45	
6.1	30	40	52	24	120	101	
6.1	30	120	28	11	168	231	
6.1	60	40	59	2	105	101	
6.1	60	120	50	6	143	151	

*An outlier experiment.

[†]The total to infective virus particle ratio, TP/IP, provides a means for estimating virus quality.

- SPR strategy set exploratory adsorption studies
- ✓ DLS strategy set operating conditions, pH 7.2, I = 30 60 mM NaCl

- 65% to 85% recovery yield improvement
- Lower TP/IP, HCP, dsDNA

Product recovery yield

a synergistic strategy

iBET

SCANNING ELECTRON MICROSCOPY & CONFOCAL MICROSCOPY (DAY 9 – BEFORE PURIFICATION)

WAVE-INDUCED AGITATION ACCELERATES DIFFERENTIATION OF iPS CELLS INTO CMS

✓ HIGHER DEPOSITION OF COLLAGEN TYPE I

³Correia et al 2014, Stem Cell Rev Rep

MURINE *iPSC* – EB-BASED DIFFERENTIATION

The use of environmentally controlled bioreactors is critical to ensure *Efficient* and *Scalable* production of iPSC-derived CMs

cð1reia et al 2014, Stem Cell Rev Rep

6

Stem Cell Rev and Rep (2014) 10:786-801 DOI 10.1007/s12015-014-9533-0

Cardiomyocytes

Combining Hypoxia and Bioreactor Hydrodynamics Boosts Induced Pluripotent Stem Cell Differentiation Towards Production of hMSCS (different sources: bone marrow, adipose tissue, umbilical cord tissue) (for Autologous and Allogeneic Therapies)

UPSTREAM BIOPROCESSING

AIM: Increase cell <u>volumetric productivities</u> (cell/mL) without compromising cell quality (viability, identity and potency)

Bioprocess Development:

- Microcarrier type and concentration
- Culture operation mode (fed-batch, perfusion)
- Environmental conditions (e.g. pO₂)
- -Establishment of cGMP compatible processes
- Process scale-up (from 100mL to 2L)

Cunha B et al 2015, Journal of Biotechnology Sousa et al 2015, Biotechnology Progress

BET SINGLE USE AND CELL THERAPY

Develop and prove <u>scalability</u> of an <u>integrated</u> and streamlined (and cGMPcompatible) bioprocess comprising cell <u>expansion</u>, <u>harvesting</u>, <u>clarification</u> and <u>volume reduction</u> operations for hMSCs (hMSC-BM and hMSC-AT)

Evaluate the impact of critical process parameters on cell's viability, recovery and purity

Establish a proteomics workflow based on <u>Mass Spectrometry tools</u> to characterize the impact of processing on cells' CQA

Cell detachment from microcarriers in bioreactors : short periods of intense agitation in the presence of a detaching reagent *Protocol adapted from Nienow et al 2014*

$$P_1 = P_2 \Leftrightarrow \left(\frac{N_p \rho N^3 D_l^5}{V}\right)_1 = \left(\frac{N_p \rho N^3 D_l^5}{V}\right)_2 \Leftrightarrow N_2 = \sqrt[3]{\left(\frac{N_p \rho N^3 D_l^5}{V}\right)_1 \left(\frac{V}{N_p \rho D_l^5}\right)_2}$$

hMSC-BM: similar cell recoveries were achieved after scale-up (cell viability > 90%) hMSC-AT: lower cell recovery after scale-up

iBET CELL CLARIFICATION: (3) SCALE-UP

Evaluation of scalable strategies for microcarrier removal

OptiCap[®] XL 1 Capsules (EMD Millipore) (polypropylene, 100 μm pore size)

	Process Scale	Cell Recovery (%)	Cell Viability (%)
BM-MSC	0.2 L	> 90%	> 95%
	2 L	94%	98%
AT-MSC		95%	98%

✓ Cell recovery yields and viability were maintained after scale-up

iBET VOLUME REDUCTION: AIMS

ENSURE HIGH VOLUME REDUCTION FACTORS (up to 50X)

In Cunha et al (2015) Journal of Membrane Science:

TFF device: Hollow fibers

Applicability of TFF to concentrate hMSC and hPSC (up to a VRF of 20);
 Impact of TFF's parameters on cell recovery yield and characteristics;

- Membrane's material Polysulfone
- Pore size
 - > 0.45 µm
- Initial cell concentration
 2 x 10⁵ cell/mL
- Shear rate
 3000 s⁻¹
- Permeate flux 250 LMH
- Operation mode
 Discontinuous TFF

Cunha B et al, Journal of Membrane Science, 478:117-129, 2015

iBET PROCESS INTEGRATION

Integration: Closed system, resulting in the elimination of hold steps and decreasing the equip. footprint

38

Cunha B et al 2015, Journal of Biotechnology, 213:97-108; Cunha B et al 2017, Journal of Biotechnology, in press

www.ibet.pt

iBET PROCESS INTEGRATION- CELL CHARACTERIZATION

Cells maintain their quality attributes after DSP

Apoptosis, adhesion, viability

 hMSC maintained their immunophenotype and metabolic activity after processing;
 Ability to adhere to plastic surfaces and proliferative capacity after re-plating

www.ibet.pt

BET PROCESS INTEGRATION- CELL CHARACTERIZATION

Cells maintain their critical quality attributes after DSP

Morphology and adhesion: hMSC successfully re-acquire their typical spindle-like morphology with organized actin fibers

hMSC maintained their multilineage differentiation potential

Features of the Micro-bioreactor

Pall 24SIM Cell	HTBR	A	mbr (TAP)		μBR	
Capabilities	Pall 24	SIM Cell	HTBR	Ambr	μBR	
Comprehensive online sensors	No	No	No	No	Yes	ĺ
Completely independent	No	No	No	No	Yes	
Compatible with existing analysis	tools Yes	No	Yes	Yes	Yes	
Independently sterile	No	No	Yes	No	Yes	
Automated feeding	No	No	No	No	Yes	

Micro-bioreactor features:

Mimics environments of larger bioreactors Online monitoring of 4 parameters: pH, DO, DCO2 and OD

Sufficient Volume for offline analysis & complete protein characterization

iBET Fluorescence-based bioprocess monitoring

42 Teixeira et al. (2011) J Biotech 151:255-260

mAb-producing CHO cell cultures

iBET Fluorescence-based predictors

Model predictions

Relevant $\lambda_{\text{ex/em}}$ pairs

2D fluorometry suitable for real-time monitoring of cell and mAb concentration

Teixeira et al. (2011) Biotech Bioeng 108: 1852v1&64ibet.pt

IBET - THE ANIMAL CELL TECHNOLOGY UNIT

OEIRAS, PORTUGAL

12

A.C.

E E E

h

Thank you

www.ibet.pt

Manuel Carrondo mjtc@ibet.pt