Engineering Conferences International ECI Digital Archives

Advanced Membrane Technology VII

Proceedings

9-14-2016

Salinity gradient energy: Assessment of pressure retarded osmosis and osmotic heat engines for energy generation from low-grade heat sources

Tzahi Y. Cath Colorado School of Mines, tcath@mines.edu

Johan Vanneste Colorado School of Mines

Michael B. Heeley Colorado School of Mines

Kerri L. Hickenbottom Humboldt State University

Follow this and additional works at: http://dc.engconfintl.org/membrane_technology_vii

Recommended Citation

Tzahi Y. Cath, Johan Vanneste, Michael B. Heeley, and Kerri L. Hickenbottom, "Salinity gradient energy: Assessment of pressure retarded osmosis and osmotic heat engines for energy generation from low-grade heat sources" in "Advanced Membrane Technology VII", Isabel C. Escobar, Professor, University of Kentucky, USA Jamie Hestekin, Associate Professor, University of Arkansas, USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/membrane_technology_vii/27

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Advanced Membrane Technology VII by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Salinity gradient energy: Assessment of pressure retarded osmosis and osmotic heat engines for energy generation from low-grade heat sources

Johan Vanneste, Kerri L. Hickenbottom, Tzahi Y. Cath Colorado School of Mines

Dept. of Civil and Environmental Engineering

ECI, Advanced Membrane Technology VII September 14th, 2016

Cork, Ireland

Structure of the Presentation

Pressure Retarded Osmosis (PRO): Utilizing Energy from the Ocean

Applied Pressure < Osmotic Pressure

Water Flux $(J_w) = A(\Delta \pi - \Delta P)$ (simplistic!)

Power Density (W) = $J_w \Delta P$ (power output per membrane area)

Open-Loop PRO

- Applications
 - Seawater River water
 - RO concentrate freshwater
 - Dead Sea and Great Salt Lake
- Limitations of open loop PRO
 - Extensive pretreatment needed
 - Potential irreversible membrane fouling
 - Solution chemistry and temperature are fixed

Membrane Distillation (MD): Utilizing LGH for Draw Solution and Feed Stream Regeneration

Water Flux
$$(J_w) = A_w(\Delta P_v^*)$$
 (simplistic!)

Can utilize low-grade heat to simultaneously separate and concentrate mixed streams

PRO MEMBRANE AND SPACER ASSESSMENT

PRO: An Energy Generating Membrane Process

- PRO membranes are not yet commercially available and FO membranes are used
- PRO membranes must:
 - Exhibit high power density
 & low reverse solute flux
 - Withstand high operating pressures
- PRO membrane spacers must provide good mixing and adequate support

Operating Conditions: PRO

- Source water
 - Draw solution (DS):
 - 1, 2, & 3 M NaCl
 - Feed: deionized water
- Bench scale testing
 - SCADA system controls temperatures, and collect data to calculate water flux, batch recovery, and salt rejection
- Flat sheet FO membranes
 - Hydration Technologies Innovations (HTI) thin-film composite (TFC)
 - HTI cellulose triacetate (CTA)
 - Oasys Water TFC
 - X company TFC

PRO Bench-Scale System

Membrane module

PRO Membrane Evaluation:

1 M NaCl draw solution (DS): 2x - 20 channel tricot on feed
 ✓ Low specific reverse solute flux
 ✓ Good mechanical stability

Spacer Orientation

Feed spacer orientations

Membrane Deformation

OHE WORKING FLUID SELECTION

Reverse Solute Flux in PRO and Implications for OHE Process Performance

 Non-idealities in PRO gives rise to reverse solute flux (RSF, J_s):

$$J_{S} = B \left\{ \frac{\pi_{D,b} \exp\left(-\frac{J_{w}}{k}\right) - \pi_{F,b} \exp\left(J_{w}\frac{S}{D}\right)}{1 + \frac{B}{J_{w}} \left[\exp\left(J_{w}\frac{S}{D}\right) - \exp\left[\frac{J_{w}}{k}\right]\right]} \right\}$$
$$J_{w} = A \left\{ \frac{\pi_{D,b} \exp\left(-\frac{J_{w}}{k}\right) - \pi_{F,b} \exp\left(J_{w}\frac{S}{D}\right)}{1 + \frac{B}{J_{w}} \left[\exp\left(J_{w}\frac{S}{D}\right) - \exp\left[\frac{J_{w}}{k}\right]\right]} - \Delta P \right\}$$

- To sustain osmotic driving force, must bleed a portion of the PRO feed stream to the MD feed
- Impacts of RSF on net power outputs and generation costs are unknown!

Legend:

- π = osmotic driving force
- k = mass transfer coefficient (DS side)
- S = membrane structural parameter
- B = solute permeability coefficient
- D = draw solution diffusivity

Draw Solution Screening and Selection

• Eight salts met screening criteria ($\pi > \pi_{NaCl} \&$ non-hazardous)

 Tested at concentrations equivalent to 17.4 MPa osmotic pressure (osmotic pressure of 3 M NaCl)

Operating Conditions: PRO

- Source water
 - Draw solution: varied, 30 °C
 - Feed: deionized water, 30 °C
- Membrane: HTI TFC
- Draw solution hydraulic pressure kept constant at 2 MPa (300 psi)

Operating Conditions: MD

- Source water
 - Feed solution: varied Distillate: deionized water
- Stream temperatures
 Feed solution: 55 °C
 Distillate: 25 °C
- Flat sheet, hydrophobic, microporous (0.2 µm) membranes from 3M

PRO Performance

 Difference in power densities is because of the difference in diffusivity and solute permeability coefficient (B)

PRO Performance

- Higher diffusivities lead to higher reverse salt fluxes
- Salts with high reverse salt fluxes can be detrimental to system costs

MD Performance

- Distillate conductivity decreased over time, indicating 100% rejection of salts
- Water flux decreases with decreased partial vapor pressure difference

Preliminary Economic Evaluation of Draw Solutions

- Experimental PRO and MD results were used in the model
- Design constraint: PRO feed concentration of 4 g/L (DS specific)
- Specific membrane and module costs for PRO and MD were referenced from RO and MF literature, respectively

System operating parameters					
System size	1,000	kW			
PRO operating inputs					
PRO water recovery	15%				
Applied hydraulic pressure (DS)	2 (300)	MPa (psi)			
PRO module pressure drop	35 (5)	kPa (psi)			
Feed temperature	30	°C			
Draw solution temperature	30	°C			
Draw solution concentration	Salt specific	g L⁻¹			
Water flux	Salt specific	L m ⁻² hr ⁻¹			
Salt flux	Salt specific	g m ⁻² hr ⁻¹			
MD operating	inputs				
Water recovery	6%				
PRO module pressure drop	14 (2)	kPa (psi)			
Feed temperature	56 ± 2	°C			
Distillate temperature	25 ± 1.5	°C			
Draw solution concentration	Salt specific	g L⁻¹			
Water flux	Salt specific	L m ⁻² hr ⁻¹			
Rejection	Salt specific	%			
Specific costs					
Specific PRO membrane cost	28	\$ m⁻²			
Specific MD membrane cost	38	\$ m⁻²			
Equipment efficiencies					
ERD efficiency	95%				
Pump efficiency	70%				
Design Constraint					
PRO feed solution concentration	4	g L⁻¹or less			

Impact of Draw Solutions on System Costing

- CaCl₂ and MgCl₂ were the salts that performed best in MD and had the lowest specific reverse solute fluxes
- Electricity generation costs are higher than expected because of low PRO operating pressures (low power densities)

System Costing and Net Energy (1 MW gross)

MD membranes are the highest costs

Salts with high RSF result in more bleeding, subsequently decreasing net energy and increasing MD membrane area

Mixed draw solutions: best of both worlds?

 With addition of MgCl₂, high water flux of NaCl can be maintained while RSF drops significantly

OHE TECHNO-ECONOMIC ASSESSMENT

OHE System Model and Cost Assumptions

- Daga agaa gaanaria			
Dase case scenario	Equipment efficiencies		
$\sim 2.5 \text{ MW}$ (not nower) system	Pump efficiency	7	
	Turbine efficiency	9	
Draw solution: 3 M NaCl	Pressure exchanger efficiency	9	
	Generator efficiency	9	
PRO operating pressure:	Heat exchanger efficiency	6	
	Data and other assumptions		
3.4 MPa (~500 psi)	Plant life	2	
- MD tomporatura a	Plant availability	9	
Ind temperatures.	PRO membrane replacement	10	
70 °C feed. 30 °C distillate	MD membrane replacement	10	
	Interest (discount) rate, I	8	
Assumptions	Inflation rate, n		
	Amortization factor		
Low grade heat and cooling is free	Labor cost	0.03	
	Specific membrane costs*		
Membrane costs referenced from	PRO membrane element cost	11	
commercially available membranes	MD membrane element cost	24	
PRO costs referenced from RO	PRO membrane housing cost	17	
	MD membrane housing cost	14	
MD costs referenced from MF	*Assumed 35% mark-down from		
	QUOLED DISTRIBUTOR COST		

70 %

90 % 95 %

95 % 60 %

20 yr 90 %

10 %/yr 10 %/yr

8%

3 % 0.1 0.03 \$/m³

> 11 \$/m² 24 \$/m²

> 17 \$/m²

14 \$/m²

OHE Power Generation

- Power outputs
 - Gross Power: 4.9 MW
 - Net Power: 2.5 MW
- About 20 % of capital costs due to bleeding
- Process efficiency
 - Theoretical efficiency¹ 4%
 - System efficiency 0.1%
- System costs: \$0.48 per kWh
 →Benchmark <\$0.20 per kWh

¹Lin et al., ES&T 2014 Hickenbottom et. al, in Prep.

Cost Sensitivity: PRO Power Density and solute permeability(B)

Assumptions and Model Outputs: Ideal Case OHE

- 25 MW (net power) system (economy of scale)
- Draw solution: 3 M NaCl
- PRO operating pressure: 7.6 MPa (1,100 psi), corresponding to a PRO power density of 76 W/m²
- MD temperatures:
 85 ° C feed, 15 ° C distillate

OHE Sensitivities					
	Base	Ideal	Unit		
System size					
(net power)	2.5	25	MW		
Electricity generation cost	0.48	0.10	\$/kWh		
PRO operating pressures	4	7.6	MPa		
PRO power density	45	76	W/m ²		
PRO recoveries	15	40	%		
MD feed (LGH)					
temperature	70	85 (95)	°C		
MD distillate (cooling)					
temperature	30	15 (5)	°C		
MD recoveries	6	30	%		
MD water flux	27	38	L/m²-h		
Membrane replacement	10	5	%/yr		

Costs of Competing Energy Generation Technologies

Conclusions

The future of osmotic power and the OHE?

Greenlee et al., Water Ressarce 43 (2009) 2317-2348.

Acknowledgements

Industry partners

Hydration Technologies

3M

Academic collaborators

Yale University

Funding agencies

ARPA-E

EPA-STAR

Research Group

Ryan Holloway

Mike Veres

Tani Cath

Estefani Bustos-Dena

William Porter

Katie Shumacher

Curtis Weller

35

Thank you!

