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E. Ma
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Lattice Reconstruction in Mg: 

Boundary Motion Coupled w/ Deformation



Boundary-motion-based plasticity mechanism 



Q#1:  Typical plasticity mechanisms in Mg ?



Basal: (0001)

HCP Mg:  only one set of hexagonal close packed flat planes for easy slip

ABABAB……

What about strain in the c direction ?

c



Need “actions” on non-close packed, corrugated (pyramidal or prismatic) planes

ABABAB……

What about strain in the c direction ?

c+a displacements are “very long” 
to restore crystal registry



Reorientation of the crystal to accommodate/produce plastic strain
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A common way of doing this is deformation twinning
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Deformation twinning (DT) reorients the crystal lattice

During plastic deformation, stress reorients part of the crystal to a new orientation

in which the lattice structure is identical to that in matrix, and atoms in the two parts
keep a mirror relationship through an invariant low-index crystal plane.

“Twining partials” 
shear, 
layer-by-layer



(1102)
[1101]

In Mg, extension DT
on {10-12} type twinning plane
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Twinning orientational relationship extending all the way to (10-12) twin boundary



But, the DT mechanism in Mg is quite involved: 

a twin shear (twinning dislocation) 

on a specific 

twinning plane (invariant, mirror) ?

For (10-12) DT, the twin shear via a disconnection can only move 
¼ of the atoms to the correct locations

(10-12) is not a flat plane, but double layered (corrugated), w/ small spacing



Q#2: Something else could also be happening ?

TEM suggests that something unusual is happening with this DT mode in Mg
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We used TEM to look at the deforming Mg



Migrating (twin) boundary, producing strains (in axial and transverse directions)



Cs-corrected STEM image of
a Nano-milled  (<90 nm) sample

Terrace-like interface



(10-12) DT could involve, 

or proceed side-by-side with, 

“another” mechanism during boundary migration?



Q#3:  Detailed features unexpected

from deformation twinning ?

Let’s compare the details w/ DT, under TEM, post mortem 
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86.3o

zone axis <2-1-10>

If it is pure {10-12} twinning, the lattice will have a mirror symmetry, by 
86.3o across the twinning plane.
In diffraction pattern, {10-12} spots overlap with the original ones, as the 
twin boundary {10-12} is shared by both the 
matrix and the twin (the parent (1-102) plane 
is parallel to the twin (-1102) plane).

{10-10}

{0002}

{0002}

{10-10}

43o w/r to c axis 



M

N
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Angle can be  52o, not the expected 43o

• {10-12} are not 

shared by twin 

and matrix

zone axis <11-20>

{10-12} spots are separated

•90o reoriented
basal/prismatic

400 nm





Cs-corrected STEM image of
a Nano-milled  <90 nm sample

Terrace-like interface



At atomic resolution: STEM image of the boundary

prismatic
{10-10}

basal
{0001}

BP

20

1nm

1nm

Local interfaces 
are often not {10-12},
but basal/prismatic

(Twin)basal/prismatic(Matrix) interface:  

BP interface

Bo-Yu Liu et al., Nature Communications (2014)



Many segments of the boundary 
is not TB (b), but steps composed of
alternating basal/prismatic interfaces
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So, accompanying (10-12) DT, there are many interface regions undergoing the ~90o

reorientation; there the interface is not (10-12), nor a mirror invariant twinning plane!
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Prismatic/Basal

Blow-up of the previous 2 images:



Q#4:  Could also happen in larger samples ?

Seen also in large grains of conventional Mg alloys …
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40 nm

Larger grains in AZ31 Mg alloy sheet (30 mm × 30 mm × 22 mm) w/ equi-axed 
and strongly textured grains (average grain size ~34 μm). The compression 
loading was applied perpendicular to [0001] at a strain rate of 103s-1 and a total 
strain of ~7%. 



AZ31 Mg alloy sheet (30 mm × 30 mm × 22 mm) w/ equi-axed and strongly 
textured grains (average grain size ~34 μm). The compression loading was 
applied perpendicular to [0001] at a strain rate of 103s-1 and a total strain of ~7%. 
Note the orthogonal steps. This morphology is more obvious near twin tips.

4 nm

e



Q#5: Why so many basal-prismatic boundaries?

Just twin boundary relaxed into steps ?

Or, 

action not on (10-12) plane in the first place? 

no twinning plane (invariant, mirror)? 

no well-defined twin shear (twinning dislocations)?

involving other processes ……



MD simulation shows basal-prismatic conversion at the B-P interface



We notice that 
across the (10-12) plane (purple), 
the original bottom basal plane
and the front prismatic plane form
a 90o angle.

If the front (prismatic) plane can 
be re-configured into a flat basal 
plane (of the twin lattice), it
approaches a mirror relationship
across (10-12) with the bottom basal 
plane.

Proposal: basal-prismatic transformation

red (standing-up) => green (lying-down)

In other words, such a 90o “lattice 
reconstruction” is close to what the 
twinning action produces!

If we achieve this prismatic-basal 
conversion, not via action on (10-
12), the net result can still be close 
to that of (10-12) twinning.



Like DT, the resulting strain along <c> is 6.7% for Mg

For Mg, g =c/a=1.633, very close to “ideal” (Co is similar, but g=1.58 for Ti)



This is not just deformation twinning, although it accompanies the latter: 
there is no mirror relationship at the moving boundary, nor uniform twinning shear

The far-field parent 
and “twin” lattices 
still mimic the (10-
12) DT orientational
relationship, 
approaching ~90o ;
So it is a “(10-12) 
twinning-like lattice 
reorientation, but
the action is not on 
the crystallographic 
(10-12) plane !

parent

In MD simulation, 
conversion can be 
accomplished via 
atomic shuffling



Q#6: Why is the basal-prismatic conversion “easy” ?



This B-P conversion only requires short-

distance collective atomic rearrangements:

shuffle distances are relatively small (0.02 

to 0.09 nm); 

Maybe, atomic shuffling for the most part, 

+  minor/no help from pre-existing 

interfacial defects (dislocations) ?

For Mg, a lateral HCP embryo is 

already “waiting” to take shape 

in the stand-up HCP



Q#7:  Different from “stress coupling with GB”?

Not just shear strain



“Shear stresses coupled to a GB can induce its normal motion”



zone axis
<2-1-10>
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400 nm

“ 
   

”

Not shear (twinning dislocation creating shear 
step on one side), 

but shortening in z direction and swelling 
sideways on both sides

Bo-Yu Liu et al., 
Nature Communications (2014)



Why would the boundary look straight (from a distance),

but can have an unexpected angle (when zoomed in)? 

Q#8:  Can we explain the 52
o

(or any other) inclination angle ?



The angle seen at lower mag is due to a combination of alternating BP and PB interfaces

The “mixed” boundary can be of any angle; if BP-PB is 50-50,  => ~45o, close to {10-12} 
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“        ”



The B-P action (under high stresses) appears to be an alternative route 

to quickly produce strain, especially when TB motion becomes sluggish.

Q#9:  Why would this B-P conversion 

accompany (10-12) twinning?
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“Flexible”: BP interfaces intermixed w/ {10-12} twin boundary

• Only slightly less favorable interface energy (~150 mJ/m2, < those of other interfaces)

• Kinetically favorable (helps boundary mobility) and alternative pathway in energy 
landscape
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• Only slightly less favorable interface energy (~150 mJ/m2)

• Kinetically more favorable to switch to B-P action 
(flexible kinetic pathways in energy landscape)

• The stress for {10-12} twinning increases with decreasing sample size due to limited 
mobility or availability of twinning dislocations (disconnections)



Q#10:  What are the take-home messages ?



Take-home messages:

The “reconstruction at BP interface” mechanism may become more
active when stresses are high (high strain rate, small sample, …); a high 
stress (or strain rate) forces faster “twin” boundary movement, which 
may be enabled by BP transformation.

Akin to normal (10-12) DT, basal-prismatic conversion reorients the 
lattice, migrates the boundary interface and produces the same plastic 
strain. But it is not straight DT per se, providing an alternative and 
sometimes accompanying pathway for plastic deformation in Mg
(especially when DT on that plane encounters difficulties).

A mixture of this local twinning-like lattice reconstruction together 
with DT is a reason why the “twin boundary” observed in previous 
experiments can deviate significantly from 43o, while the global 
orientational relationship is always consistent with (10-12) twinning.
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