Engineering Conferences International ECI Digital Archives

Nanomechanical Testing in Materials Research and Development V

Proceedings

Fall 10-5-2015

High-temperature fracture test using chevronnotched tungsten microcantilevers

Bo-Shiuan Li University of Oxford, bo-shiuan.li@materials.ox.ac.uk

David Armstrong University of Oxford

James Marrow University of Oxford

Steve Roberts University of Oxford

Follow this and additional works at: http://dc.engconfintl.org/nanomechtest_v Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Bo-Shiuan Li, David Armstrong, James Marrow, and Steve Roberts, "High-temperature fracture test using chevron-notched tungsten microcantilevers" in "Nanomechanical Testing in Materials Research and Development V", Dr. Marc Legros, CEMES-CNRS, France Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/nanomechtest_v/114

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nanomechanical Testing in Materials Research and Development V by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

bo-shiuan.li@materials.ox.ac.uk

High-Temperature Fracture Test Using Chevron-Notched Tungsten Microcantilevers B.S. Li¹, D.E.J. Armstrong¹, T.J. Marrow¹, S.G. Roberts¹

¹Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK

Introduction

Tungsten alloy, due to it's superior high-temperature strength, is currently the primary candidate material for the plasma facing components (PFCs) of the fusion divertor. Fusion reaction creates energetic neutron & helium, which bombards the tungsten PFCs and induces severe embrittlement. Ion-irradiation is often used as surrogates for the neutron damage, as it doesn't activate specimen and accumulates damage faster. However, the major drawback is the shallow damage layer. The goal of this work is to develop micro-scale fracture tests to measure the fracture behaviour of tungsten from the irradiated layer, in a fusion-relevant temperature.

Cross-sectional view of the Joint European Torus at the Culham Centre of Fusion Energy

Micro-Fracture Testing

Combination of FIB-based sample preparation and nanoindentation allows fracture tests to be conducted at the micro-scale. Successful tests using linear-elastic fracture mechanics (LEFM) analysis had been done on brittle materials, where the

plastic zone at the crack tip is small with respect to sample dimensions.

 $r_{\rm w}$: plastic zone radius

However, in semi-brittle tungsten, the plastic zone size is comparable with

sample dimensions, LEFM is no longer applicable and elastic-plastic fracture

mechanics (EPFM) analysis is necessary to evaluate the true fracture toughness.

Ion-irradiation at the University of Surrey. The damaged layer is often in the micro-metre regime, depending on the type of ions and energy used

This work introduces a novel chevron notch design to the microcantilever to promote stable crack growth, which is a prerequisite for the EPFM approach.

Chevron-Notched Microcantilever

High-Temperature Nanoindentation

MicroMaterials[®] NanoTest Xtreme, a variable temperature nanoindenter (-100 to 950 °C) was used to conduct high-temperature micro-fracture tests under high vacuum environment. The temperature of the tip and sample were matched carefully to minimise the thermal drift issue (drift rate < 0.08 nm/s), which can cause great inaccuracy in tests with long contact time.

The indenter was first operated in imaging mode to generate a high-resolution surface scan, so the loading point can be precisely positioned. A partial load/unload method with a hold dwell period

Finite element modelling is used to optimise chevron notch design

- Finds chevron geometry with longest stable crack growth
- Cantilever stiffness can be plotted against crack length

at each peak load was applied to measure the cantilever stiffness until unstable fracture occurs.

termocounte

Experimental Results

Conclusions

- Chevron notch microcantilever promotes stable crack growth
- Crack length is measured via partial load/unload method
- EPFM analysis reveal the crack resistance curve of tungsten at 25 °C is flat, but a clear rising trend at 560 °C

 $J_{i} = J_{(i)}^{el} + J_{(i)}^{pl} = \frac{K_{IQ}^{2}(1-\nu^{2})}{E} + \frac{\eta \left(A_{(i)}^{pl} - A_{(i-1)}^{pl}\right)}{C_{(i)} - C_{(i-1)}}$

Acknowledgements

The authors would like to thank the EPSRC grant "Materials for Fusion & Fission Power" and Dr. James Gibson for the help on the hotnanoindentation.