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ABSTRACT 
 

A nonlinear transport model for single-phase gas through 

tight rocks, is combined with a fractional calculus method, 

to produce a new time-fractional advection-diffusion 

transport model for the pressure field, 𝑝 = 𝑝(𝑥, 𝑡) in the 

flow of gas through tight porous reservoirs. Solutions for 

different fractional order, 0 <∝< 1, and for different 

nonlinear models with different apparent diffusivity 𝐾 and 

apparent velocity 𝑈 are compared. These systems could 

represent the gas transport in porous media where the 

representative control volumes are small but not 

infinitesimal. Applications are possible in many areas, 

such to shale gas recovery, and also aquifers. 

 

INTRODUCTION 
 

Modelling the flow of fluid through tight porous media, 

such as unconventional hydrocarbon reservoirs, is very 

challenging [1,2,3]. It is a growing sector and urgently 

needs to be addressed. Shale gas is found in tight porous 

rocks which are characterized by nanoscale porous 

networks with ultra-low permeability [4]. A small volume 

of rock contains heterogeneous structure – mostly a pore 

network of high complexity, and solid rock material. A 

conventional infinitesimal approach to balance equation is 

likely therefore to be of limited use; but a fractional 

approach which can model, at least in principle, such 

heterogeneity at the small but finite scales may offer a 

significant advantage is modeling such transport systems 

[5]. 

 

Conventional transport models incorporating varying 

degrees of realism have been proposed [6,7,8], but there 

still remains a significant gap between model predictions 

and the actual data. However, significant progress has 

been made recently in a new transport model proposed by 

Ali & Malik [1,2,3], which incorporates a greater degree 

of realism than previous model. A key aspect of their 

model is to retain all model parameters to be fully pressure 

dependent at all times. The model also incorporates 

multiple flow regimes, such as Knudsen diffusion, and 

also includes a nonlinear term for fast flowing gas regions 

in the porous media. The model was demonstrated to 

predict rock properties in shale rock core samples much 

more accurately than any previous models. 

 

Here, we take a step further and explore nonlinear 

fractional transport models for single-phase gas in 

homogeneous tight rocks [1] which combines the 

conventional transport models with a fractional calculus 

method. We thus pose a time-fractional advection-

diffusion transport model [1,9,10] for the pressure field, 

𝑝(𝑥, 𝑡); 

 
𝜕∝𝑝

𝜕𝑡∝
=

𝜕

𝜕𝑥
(−𝑈𝑝 + 𝐾

𝜕𝑝

𝜕𝑥
) + 𝑅(𝑥, 𝑡),

𝑡 > 0,    𝑎 ≤ 𝑥 ≤ 𝑏;   0 <∝< 1,   (1) 
 

with suitable initial and  boundary conditions (see below), 

where 
𝜕∝

𝜕𝑡∝ is the Caputo fractional derivative or order ∝, 𝑅 

is a source term, and 𝑏 − 𝑎 is the length of the reservoir 

(which could be infinite). In these models, the apparent 

diffusivity is 𝐾 = 𝐾(𝑝), and the apparent convective 

velocity is 𝑈 = 𝑈(𝑝, 𝑝𝑥); thus either or both of 𝐾 and 𝑈 

can be nonlinear.  

 

The model in equation (1) is the fractional version of the 

new model proposed by Ali & Malik [1,3]. It is important 

to note that fractional models have been shown to 

conserve properties, such as mass [11], for optimal choice 

of fractional order ∝ for a given system. 

 

The aim here is to explore the solutions of the pressure 

field over a period of time in a 1-dimensional domain, for 

different types of non-linear fractional transport models, 

and for different fractional orders. A key question is to 

compare the solutions between them, and also with the 

conventional cases, i.e. with ∝= 1. In the following 

sections, we compare models with specific choices of  𝐾 

and 𝑈 based upon the type of functional forms that were 
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derived in [1,2] – although not exactly the same, at this 

exploratory stage we simplify these functions a little. 

 

NOMENCLATURE 

 
p = Pressure field 

x = Spatial variable 

t = Time variable 

K = Apparent diffusivity 

U = Apparent velocity 

R = External forcing 

α = Fractional order 

 

 

1 Nonlinear Transport Systems  
 

1.1 Mathematical Problem 

 

We consider solutions of the fractional system in equation 

(1) in an infinite domain, (−∞, ∞). In this work we 

consider only unforced systems, i.e. 𝑅 = 0.  

 

The boundary conditions are: 

 

lim
𝑥→− ∞

𝑝(𝑥, 𝑡) = 1, lim
𝑥→∓ ∞

𝑝(𝑥, 𝑡) = 1,  

 

 

And the initial condition is: 

 

𝑝(𝑥, 0) = 1 − 𝑒−𝑥2
. 

 

We consider several different nonlinearities for the pair of 

apparent diffusivity 𝐾 and apparent velocity 𝑈, in most 

cases they are strongly pressure dependent:  

 

Case A: 𝐾(𝑝) = 𝑝,  𝑈(𝑝, 𝑝𝑥) = 𝑝 

 

Case B: 𝐾(𝑝) = 𝑝,  𝑈(𝑝, 𝑝𝑥) = 𝑝𝐾 

 

Case C: 𝐾(𝑝) = 𝑝,  𝑈(𝑝, 𝑝𝑥) = 𝑝
𝜕𝑝

𝜕𝑥
 

 

The advection term in each of these cases can be further 

simplified to: 

 

In Case A, 
𝜕

𝜕𝑥
(𝑈𝑝) =

𝜕

𝜕𝑥
(𝑝2). 

In Case B, 
𝜕

𝜕𝑥
(𝑈𝑝) =

𝜕

𝜕𝑥
(𝑝3).  

In Case C, 
𝜕

𝜕𝑥
(𝑈𝑝) =

𝜕

𝜕𝑥
(𝑝2 𝜕𝑝

𝜕𝑥
) =

1

3

𝜕2(𝑝3)

𝜕𝑥2   

 

Case C involves a second order derivative, and we expect 

that this system may behave closer to a diffusive system. 

 

In each of the 3 Cases, we simulate solutions for different 

fractional order, namely for, 

 

∝= 0.25, 0.5, 0.75, 1.0. 

1.2 Numerical Method 

 

The systems in equation (1) are nonlinear, and therefore 

needs special consideration in a numerical solver. A finite 

volume method was adopted, these methods readily 

integrate the divergence terms exactly across each control 

volume. The discretized system produces a tri-diagonal 

system of nonlinear algebraic equations, which is written, 

 

                         𝑨(𝒑)𝒑 = 𝑺(𝒑)   (2) 

 

where 𝑨 is the coefficient matrix, 𝑺 is the source vector, 

and 𝒑 is the pressure vector for which we are solving. 

Equation (2) is nonlinear and must be linearized at each 

time step, 𝑡𝑛, such that 𝑨𝝊 = 𝑨(𝒑𝝊(𝑥, 𝑡𝑛−1)) and 

𝑺𝝊 = 𝑺(𝒑𝝊(𝑥, 𝑡𝑛−1)), where 𝜐 is the iteration counter,   

 

                         𝑨𝝊𝒑𝝊+𝟏 = 𝑺𝝊           (3) 

 

This is solved iteratively for the pressure vector, to 

convergence, lim
𝝊→∞

𝑝𝝊 → 𝑝(𝑥, 𝑡𝑛), before proceeding to 

the next time step at 𝑡𝑛+1. See [1] for details. 

 

 

2 RESULTS  
 

2.1 Nonlinear diffusion, 𝑲 = 𝒑, 𝑼 = 𝟎 

 

We start with a simple nonlinear diffusion system. The 

diffusivity is 𝐾 = 𝑝. Figures 1(a)-1(c) show the 

simulations at different times, 0 ≤ 𝑡 ≤ 1, for different 

fractional orders as shown. The case ∝= 1 corresponds to 

the conventional case. 

 

For all cases, we observe the initial spike in pressure at 

𝑥 = 0, diffuse and smoothen out in time, as we would 

expect. For higher fractional orders, ∝= 1, and 0.75, 

there does not appear to be a great deal of difference in the 

profiles at different times; but there is a marked 

acceleration in the smoothening out process in the case 

with ∝= 0.5. Thus fractional systems viewed as a as a 

function of the fractional order do not necessarily display 

a continuous and linear transition – this echoes the 

findings by Malik et al.  [12]. 

 

2.2 A: Nonlinear advection-diffusion, 𝑲 = 𝒑, 𝑼 = 𝒑 

 

We consider Case A, 𝐾(𝑝) = 𝑝,  𝑈(𝑝, 𝑝𝑥) = 𝑝, yielding: 

 
𝜕∝𝑝

𝜕𝑡∝
=

𝜕

𝜕𝑥
(−𝑝2 + 𝑝

𝜕𝑝

𝜕𝑥
) , 𝑡 > 0,     (4) 

 

Figures 2(a)-2(d) show the simulations at different times, 

0 ≤ 𝑡 ≤ 1, for different fractional orders as shown. The 

figures are shown as 3D plots of 𝑝(𝑥, 𝑡) against 𝑥 and 𝑡. 

This is a genuine advective and diffusive system, and the  

effects of both advection and diffusion appear to increase 



 

 

 
Figure 1: (a), ∝= 1; (b)  ∝= 0.75; (c)  ∝= 0.5 

 

 

rapidly  with decreasing fractional order ∝ -- in the limit of 

small ∝, the diffusion rapidly smoothens out the gradients in 𝑝, 

and at the same time, the spike in the pressure is transported 

more rapidly to the left. 

 

 

2.3 Nonlinear advection-diffusion, 𝑲 = 𝒑, 𝑼 = 𝒑𝑲 

 

We consider Case B, 𝐾(𝑝) = 𝑝,  𝑈(𝑝, 𝑝𝑥) = 𝑝𝐾, yielding: 

 
𝜕∝𝑝

𝜕𝑡∝
=

𝜕

𝜕𝑥
(−𝑝3 + 𝑝

𝜕𝑝

𝜕𝑥
) , 𝑡 > 0,        (5) 

 

Qualitatively this appears to be a similar type power-law 

advective system to the previous Case A, 2.2. Figures 

3(a)-3(d) show the simulations at different times, 0 ≤ 𝑡 ≤
1, for different fractional orders as shown. The figures are 

shown as 3D plots of 𝑝(𝑥, 𝑡) against 𝑥 and 𝑡. There are 

striking similarities to Case A: both the advection and the 

 

 

 

 

Figure 2: Case A. (a), ∝= 𝟏; (b)  ∝= 𝟎. 𝟕𝟓; (c)  ∝= 𝟎. 𝟓,  

(d) ∝= 𝟎. 𝟐𝟓 

 

 

diffusion accelerate with decreasing fractional order ∝, and 

even quantitatively the plots looks similar. 
 

 

 



 

 

 

 
Figure 3: Case B. (a), ∝= 𝟏; (b)  ∝= 𝟎. 𝟕𝟓; (c)  ∝= 𝟎. 𝟓, (d) 

∝= 𝟎. 𝟐𝟓 

2.4 Nonlinear advection-diffusion, 𝑲 = 𝒑, 𝑼 = 𝒑
𝝏𝒑

𝝏𝒙
 

 

We consider Case C, 𝐾(𝑝) = 𝑝,  𝑈(𝑝, 𝑝𝑥) = 𝑝𝐾, yielding: 

 

𝜕∝𝑝

𝜕𝑡∝
=

𝜕2

𝜕𝑥2
(−𝑝3/3 + 𝑝2/2), 𝑡 > 0,        (6) 

 

 

 

 
Figure 4: Case C. (a), ∝= 𝟏; (b)  ∝= 𝟎. 𝟕𝟓; (c)  ∝= 𝟎. 𝟓, (d) 

∝= 𝟎. 𝟐𝟓 

This appears to be a diffusion-like system. Figures 4(a)-

4(d) show the simulations at different times, 0 ≤ 𝑡 ≤ 1, 

for different fractional orders as shown. The figures are 

shown as 3D plots of 𝑝(𝑥, 𝑡) against 𝑥 and 𝑡, and indeed 

we se that the advection has disappeared and see what 

looks qualitatively like a purely diffusive process, similar 



to Figure 1. The rate of spread increases with decreasing 

fractional order. 

 

 

2.5 Summary of different cases 

 

Figure 5 summaries the main results from fractional 

systems in Cases A, B, and C in this work. The Cases A 

and B are very similar because the advection term is not 

proportional to the pressure gradient. Case C is close a 

genuine diffusion system because the advection term is 

proportional to the pressure gradient. 

 

 

 

 
Figure 5: (a) Case A; (b) Case B; (c) Case C. 

CONCLUSIONS 
 

Nonlinear fractional advection-diffusion systems have 

been investigated. Such systems form a simplified models 

for transport of gas through tight porous media such as 

shale gas in unconventional reservoirs. Fractional 

methods may be more effective at representing the flow in 

small but finite control volumes inside rocks, somewhat 

like a sub-grid scale model. The pressure distributions 

from such models over a period of time depends strongly 

upon the nonlinear models for the apparent diffusivity 𝐾 

and apparent velocity 𝑈, while the quantitative strength of 

the advective and diffusive effects depends upon the 

fractional order.  

 

Critical issues to addressed in future is, firstly to identify 

the correct physical models for 𝐾 and 𝑈, and secondly  

how to calculate or measure the correct fractional order 

for a given physical system and given scale. 
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