Engineering Conferences International ECI Digital Archives

Nonstoichiometric Compounds VI

Proceedings

9-7-2016

Order, disorder and stability in Be intermetallics for fusion applications

Robin Grimes Imperial College London, r.grimes@ic.ac.uk

Matthew Jackson Imperial College London

Patrick Burr University of New South Wales

Simon Middleburgh Westinghouse

Follow this and additional works at: http://dc.engconfintl.org/nonstoichiometric vi

Recommended Citation

Robin Grimes, Matthew Jackson, Patrick Burr, and Simon Middleburgh, "Order, disorder and stability in Be intermetallics for fusion applications" in "Nonstoichiometric Compounds VI", ECI Symposium Series, (2016). http://dc.engconfintl.org/ nonstoichiometric_vi/33

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nonstoichiometric Compounds VI by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Imperial College London

Ansto

Order, Disorder & Stability in Be Intermetallics for Fusion Applications

Patrick Burr, Simon Middleburgh, Matt Jackson & Robin Grimes

The issues addressed

- The Results
 - Finding the structure of the binary Fe-Be ϵ phase
 - Revisiting the binary Fe-Be system:
 Temperature effects and anharmonic contributions
 - Effect of Al additions (ternary Al-Fe-Be system)
 - Order/disorder in Fe-Al-Be intermetallics
 - The structure of $Be_{12}Ti$
 - Non-stoichiometry and defect association in $Be_{12}Ti$ and $Be_{12}V$
- Summary: what has all this atomic scale stuff told us or could tell us?

Introduction: Be applications

 Uses: fusion reactors^[1], satellite component^[2], radiation windows^[4], neutron multipliers & reflectors^[3].

• Be alloys often contain impurities. Typical alloy composition (in *wt*%):

0	ΑΙ	Fe	C	Mg	Si	Tr Met (each)
0.5-2.2	0.07	0.12	0.12	0.07	0.07	0.04

 Be₁₂Ti and Be₁₂V are alternatives to Be for fusion applications, having adequate neutronic properties but lower tritium retention and swelling, better rad tolerance and improved embrittlement behaviour.

Introduction: Fe-Be system

Methodology

- All results from Density Functional Theory (DFT)
- Planewave code (Castep)
- PBE exchange-correlation functional
- Cut-off energy 400 eV (550 eV for extrinsic defects)
- k-point spacing < 0.03 Å⁻¹
- Supercell size 192-216 atoms
- OTF generated Pseudo-potentials from Castep library

Literature on ϵ phase

Composition	Crystal class	Prototype structure	Space group	Atoms per unit cell	a (Å)	c (Å)	Reference
FeBe ₉							†
FeBe_{11}	Hex			18	4.13	10.71	[4]
FeBe_{12}	Tetr	$\mathrm{Mn}_{12}\mathrm{Th}$	I_4mmm	13	4.323	7.253	[5]
FeBe_{11}	Hex		_	—	4.13	10.71	[12]
FeBe_x	Hex	$\mathrm{RhBe}_{6.6}$	$Par{6}m2$	19^{*}	4.137	10.72	[6]
FeBe_{11}	Hex				4.13	10.72	[22]
FeBe ₇	Hex				7.13	10.99	[7]
FeBe_{11}	Hex				7.15	10.72	[8]

- [4] Teitel and Cohen, Trans. Am. Inst. Mining, Metall. Pet. Eng. **185** (1949) 285–296.
- [5] von Batchelder and Raeuchele, Acta Crystallogr. **10** (1957) 648–649.
- [12] Rooksby, J. Nucl. Mater. 2 (1962) 205–211.
- [6] Johnson et al. Acta Crystalogr. **B26** (1970) 109-113.
- [22] Levine and Luetjering, J. Less common Met. 23 (1971) 343–357.
- [7] Aldinger and Petzow, p.267 in Beryllium Sci. Technol. Vol. 1, Webster and London (Eds.), Plenum, London, 1979
- [8] Jönsson, Kaltenbach and Petzow, Z. für Met. **73** (1982) 534–539.

Simulated structures of ϵ

Composition	Crystal	Prototype	Space	Atoms per	a	С	H_{f}
	class	structure	group	unit cell	(Å)	(Å)	(eV)
$\mathrm{Fe_2Be_{17}}$	Hex	$\mathrm{RhBe}_{6.6}$	$P\bar{6}m2$	19	4.10	10.63	-0.97
$FeBe_8$ (1)	Hex	$\mathrm{RhBe}_{6.6}$	$P\bar{6}m2$	18	4.09	10.72	-0.13
$FeBe_8$ (2)	Hex	$\mathrm{RhBe}_{6.6}$	$P\bar{6}m2$	18	4.10	10.63	-0.20
$\mathrm{Fe_2Be_{15}}$	Hex	$\mathrm{RhBe}_{6.6}$	$P\bar{6}m2$	17	4.15	10.45	0.71
FeBe_{17}	Hex	$\mathrm{RhBe}_{6.6}$	P3m1	18	4.11	10.64	1.20
FeBe ₁₂	Tetr	$Mn_{12}Th$	I_4mmm	13	7.16	4.09	-0.30
FeBe_{12}	Hex	${\rm Fe_6Ge_6Mg}$	P6/mmm	13	4.15	7.16	0.56
FeBe ₁₃	Cubic	NaZn ₁₃	$Fmar{3}c$	28	6.98		2.66
$\mathrm{Fe_2Be_{17}}$	Hex	Th_2Zn_{17}	$R\bar{3}m$	57	5.41		-0.20
$\mathrm{Fe_2Be_{17}}$	Hex	$\rm Ni_{17}Th_2$	$P6_3/mmc$	38	7.11	7.04	-0.15
$\mathrm{Fe_{3}Be_{17}}$	Cubic	$\mathrm{Be_{17}Ru_3}$	$Im\bar{3}$	160	10.99		-0.82
$Be_{22}Fe$	Cubic	$\mathrm{Al}_{18}\mathrm{Cr}_{2}\mathrm{Mg}_{3}$	$Fd\bar{3}m$	176	11.43		0.10

Simulated structures of ϵ

Confirming the ϵ **structure**

Binary Fe-Be system: ground state

Binary Fe-Be system: temperature effects

Role of anharmonicity

Ternary Al-Fe-Be

Note: Al is insoluble in Be (as is Si)

Dilute Al defects stabilise δ -FeBe₅ over other phases

	FeBe ₅	FeBe ₂	Fe ₂ Be ₁₇	
Al _{Be}	-0.73	0.79	-0.50	
Al _{Fe}	-0.67	-0.31	0.27	

Higher Al concentration cause the formation of AlFeBe₄

	FeBe ₅	FeBe ₂	Fe ₂ Be ₁₇	
AlFeBe ₄	-0.85	-0.49	-0.33	

Ternary Al-Fe-Be

Order-disorder in AlFeBe₄

(AIFe)₂Be₄

AlFeBe₄

Order-disorder in AlFeBe₄

Bragg-Williams approach for disorder in solids is applied by considering the anti-site formation energy

enthalpy (eV)	AIFeBe ₄	FeBe ₅	FeBe ₂	1.0			*******	********	
1nn	-0.06	0.67	1.99	0.8	-		λ		-
2nn	-0.06	0.65	2.13	rder (S) 0.6	_			FeBe ₂	_
3nn	-0.07	0.64	2.22	e of do .4			ł	 → FeBe₅ → AIFeBe₄ 	
4nn	-0.11	0.66	2.14	Degre			ţ		
unbound	0.00	-1.09	2.18	0.2	-				-
		1		0.0					
		Only stabl	е		0	500	1000	1500	2000
		above ~100	OK				lemperature (к)	

The structure of Be₁₂Ti

- Two phases reported I₄/mmm (tetragonal) & P₆/mmm (hexagonal) very similar aside from position of Ti
- Quasi-harmonic approximation used to evaluate high(er) temperature properties
- Tetragonal shown to be stable over all temperatures investigated

The structure of Be₁₂Ti (Continued)

Defects in Be₁₂Ti,V,W,Mo

- 1 transition metal site, 3 Be sites
- 4 interstitial sites one of which is only stable for the transition metal
- V_{be}, V_{Ti}, Be_i Ti_i, Be_X, Ti_{Be} and bound defects investigated

Intrinsic concentrations of defects

- Defect concentrations dominated by V_{Be}, V_{2Be}, V_{BeTi}
- Binding of defects
 favourable in some cases
 for V_{Be}V_{Be}, Be_iBe_i & Ti_{BeBe}
- Implications for behaviour in reactor – extended defects?

Non-stochiometry

- Very limited nonstochiometry accommodated in Be₁₂Ti
- Should manufacture with excess Be
- Varying behaviour for other materials

at% X

Summary

- ε-Fe₂Be₁₇ is stable only below ~1000K.
- FeBe₅ is stabilised by vibrational terms and by Al additions.
- Al is insoluble in Be but readily accommodated in Fe-Be phases (same for Si) and can form <u>disordered</u> (AlFe)₂Be₄.
- FeBe₅ exhibits an order/disorder transition around 900 K.
- Of the two structures for Be₁₂Ti reported in the literature the tetragonal is more stable up to at least 1800 K.
- Be₁₂Ti & Be₁₂V exhibit very limited non-stoichiometry.
- Defects can bind readily: implications for radiation tolerance?
- Anharmonic contributions are important when investigating lattice expansion and thermal conductivity, but not for the relative stability of these intermetallic phases.