Engineering Conferences International ECI Digital Archives

Nonstoichiometric Compounds VI

Proceedings

9-7-2016

Leveraging off-stoichiometry to defeat n-type degeneracy in zinc tin nitride

Angela N. Fioretti Angela N. Fioretti, Colorado School of Mines/National Renewable Energy Lab, afiorett@mines.edu

Andriy Zakutayev National Renewable Energy Lab

Eric S. Toberer Colorado School of Mines/National Renewable Energy Lab

Adele Tamboli National Renewable Energy Lab/Colorado School of Mines

Follow this and additional works at: http://dc.engconfintl.org/nonstoichiometric_vi

Recommended Citation

Angela N. Fioretti, Andriy Zakutayev, Eric S. Toberer, and Adele Tamboli, "Leveraging off-stoichiometry to defeat n-type degeneracy in zinc tin nitride" in "Nonstoichiometric Compounds VI", ECI Symposium Series, (2016). http://dc.engconfintl.org/ nonstoichiometric_vi/29

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nonstoichiometric Compounds VI by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

COLORADOSCHOOLOFMINES. EARTH • ENERGY • ENVIRONMENT

Leveraging Off-Stoichiometry to Defeat N-Type Degeneracy in Zinc Tin Nitride

<u>Angela N. Fioretti</u>, Andriy Zakutayev, Eric S. Toberer, Stephan Lany, and Adele C. Tamboli

Non-Stoichiometric Compounds VI September 7th, 2016

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Introduction: Zn-IV-N₂ Materials

- Part of II-IV-V₂ class
 - Analogs of III-Vs
- Could fill gaps in III-N functionality
 - Bandgaps convenient for visible light applications (solar, three-color LEDs)
 - Small lattice mismatch between members = opportunity for alloys
- Properties similar to III-Ns
 - Wurtzite structure
 - Ionic character = possible defect tolerance

ZnSnN₂ in particular is a promising candidate for solar absorber applications

Prior work on ZnSnN₂:

2008: First computational work on ZnSnN₂ [Paudel et al., PRB, 2008]

2013: First synthesis of ZnSnN₂ – degenerate doping [Lahourcade *et al., Adv. Mat.,* 2013]

COLORADOSCHOOLOFMINES

Introduction: ZnSnN₂

The Challenge:

Degenerate n-type carrier density ~ 10^{20} cm⁻³ Must suppress donor defect formation: V_N and O_N

Combinatorial RF Co-Sputtering

- High throughput synthesis and characterization
- V_N → nitrogen plasma source
- O_N → fast deposition rate and reactive nitrogen
- Off-Stoichiometric → defect compensation

Courtesy of Chris Caskey, PhD

afiorett@mines.edu

Doping Control with Off-stoichiometry

COLORADOSCHOOLOF**MINES**. Earth • Energy • Environment

A. Fioretti et al J. Mater. Chem. C, 2015, 3, 11017

- Disordered Zn_{1+x}Sn_{1-x}N₂ mobility increases with increased offstoichiometry
- Mobility and carrier density inversely proportional as a function of zinc at%
- Suggests defect compensation or complexing leads to carrier density reduction

Reduction in carrier density with higher zinc content likely due to defect compensation

Going Further

Playing Tricks with Hydrogen...

20 ^e, 10²⁰ Carrier Density / cm³ 10¹⁸ 10¹⁷ N_2 Stoichiometri Anneal H_2/N_2 10¹⁷ Anneal 3 x 10¹⁶ cm⁻³ 0.45 0.55 0.65 0.75 Zn/(Zn+Sn) / at.%

A. N. Fioretti et al, submitted to Advanced Materials

Defeating Compensation in Wide Gap Semiconductors by Growing in H that is Removed

James A. Van VECHTEN^{*}, J. David ZOOK¹, Robert D. HORNING¹ and Barbara GOLDENBERG¹ Center for Advanced Materials Research, Oregon State University, Corvallis, Oregon 97331-3211, USA ¹Sensor and System Development Center, Honeywell Inc., Bloomington, Minnesota 55420, USA

(Received April 27, 1992; accepted for publication July 18, 1992)

Role of hydrogen in doping of GaN

Jörg Neugebauer^{a)} and Chris G. Van de Walle^{b)} Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304

(Received 30 November 1995; accepted for publication 23 January 1996)

Hole Compensation Mechanism of P-Type GaN Films

Shuji NAKAMURA, Naruhito IWASA, Masayuki SENOH and Takashi MUKAI

Nichia Chemical Industries, Ltd., 491 Oka, Kaminaka, Anan, Tokushima 774 (Received January 13, 1992; accepted for publication February 15, 1992)

Lowest carrier density yet reported for zinc tin nitride films

Hydrogen in ZTN: Proposed Mechanism

A. N. Fioretti et al, submitted to Advanced Materials

Zn_{1+x}Sn_{1-x}N₂: Minority Carrier Lifetime

Minority carrier lifetime > 1 ns measured by TRPL.

afiorett@mines.edu

Energy Efficiency & Renewable Energy

Thank you!

afiorett@mines.edu

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

afiorett@mines.edu

