Engineering Conferences International ECI Digital Archives

Nonstoichiometric Compounds VI

Proceedings

9-7-2016

Detection and relevance of ion conduction in hybrid organic-inorganic halide perovskites for photovoltaic applications

Alessandro Senocrate

Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany ; École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, a.senocrate@fkf.mpg.de

Tae-Youl Yang Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

Giuliano Gregori Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

Norman Pellet

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

Michael Grätzel École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/nonstoichiometric_vi

Recommended Citation

Alessandro Senocrate, Tae-Youl Yang, Giuliano Gregori, Norman Pellet, Michael Grätzel, and Joachim Maier, "Detection and relevance of ion conduction in hybrid organic-inorganic halide perovskites for photovoltaic applications" in "Nonstoichiometric Compounds VI", ECI Symposium Series, (2016). http://dc.engconfintl.org/nonstoichiometric_vi/27

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Nonstoichiometric Compounds VI by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

Alessandro Senocrate, Tae-Youl Yang, Giuliano Gregori, Norman Pellet, Michael Grätzel, and Joachim Maier

Detection and relevance of ion conduction in CH₃NH₃PbI₃ for photovoltaic applications

Alessandro Senocrate, Tae-Youl Yang, Giuliano Gregori, Gee Yeong Kim, Michael Grätzel and Joachim Maier

Non Stoichiometric Compound VI Santa Fe (NM) 5-8 Sept. 2016 ⊠a.senocrate@fkf.mpg.de

1/15

CH₃NH₃PbI₃ and Perovskite Solar Cells

Eames et al., Nat. Commun., 2015

- Direct $E_G = 1.5 \text{ eV}$
- High absorption
- Low exciton bind. energy
- $\sim 100 \ \mu m$ diffusion lenghts¹
- High PCE of > 22 %²

¹Dong et al., Science, 2015, 347, 967-970.

Li et al., Nature Chem., 2015

- Anomalous behaviours
- Degradation (T, P(H₂O))
- Low stability of devices
- Low reproducibility
- ²NREL National Center for Photovoltaics.

Why study ion migration in CH₃NH₃PbI₃?

- 1 Expected concentration of ionic defect is high
- 2 Ionic defects related to stability
- It can explains "anomalous" low frequency behaviours
- Ionic defects influence on photovoltaic properties

	Outline			
In	troduction	Results	Conclusions	

1 Evidences of ionic transport in CH₃NH₃Pbl₃:

- DC-galvanostatic polarisation
- EMF measurements
- 2 Identification of the mobile defects:
 - Conductivity as f(exchangeable components)
 - Chemical modifications (doping)
- 3 Concluding remarks

Stoichiometric polarisation of CH₃NH₃PbI₃

5/15

Stoichiometric polarisation of CH₃NH₃PbI₃

Extracted values:

- $\sigma_{ion} = 7.7 \cdot 10^{-9} \text{ S} \cdot \text{cm}^{-1}$
- $\sigma_{eon} = 1.9 \cdot 10^{-9} \text{ S} \cdot \text{cm}^{-1}$ $D^{\delta} = 2.4 \cdot 10^{-8} \text{ cm}^2 \cdot \text{s}^{-1}$

Since $\mu_{ion} << \mu_{eon}$, we expect ionic defects dominating.

EMF measurements

$$V_{OC} = t_{ion} \frac{\Delta_f G_{(PbI_2)} - 2\Delta_f G_{(CuI/AgI)}}{2F}$$

- EMF experiments show a clear ionic contribution.
- t_{ion} values in agreement with DC-galvanostatic data.

Identification of the moving ion

Further characterisations:

EDS and XRD confirmed the presence of PbI_2 on the interface B.

Yang et al., Angew. Chemie Int. Ed. 2015

We can conclude that:

lodine is the moving ion in CH₃NH₃Pbl₃.

Kröger-Vink diagrams

Assumptions:

- Vacancies are more easily formed¹⁻²
- No Pb defects (high ΔH_f and E_A)³⁻⁴ I'_i found in literature with low E_A^5

- [1] Walsh et al., Angew. Chemie Int. Ed., 2015, 54, 1791.
- [2] Kim et al., J. Phys. Chem. Lett., 2015, 5, 1312.
- [3] Eames et al., Nat. Commun., 2015, 6, 7497.
- [4] Azpiroz et al., Energy Environ. Sci., 2015, 8, 2118.
- [5] Haruyama et al., J. Am. Chem. Soc., 2015, 137, 10048.

Pure CH₃NH₃PbI₃: I₂ partial pressure

Pure MAPI P(I₂) :

- Semi-quantitative agreement
- σ_{eon} is p-type
- V_{I}^{\bullet} is the mobile defect.

Pure CH₃NH₃PbI₃: I₂ partial pressure

Pure MAPI P(I₂) :

- Semi-quantitative agreement
- σ_{eon} is p-type
- V_{I}^{\bullet} is the mobile defect.

Na-doped CH₃NH₃Pbl₃

- \bullet $\mathsf{Na}_{\mathsf{Pb}}^{'}$ compensated by V^{\bullet}_{I} and h^{\bullet}
- $\sigma_{\rm eon}$ and $\sigma_{\rm ion}$ increase with doping
- Doping concentration is only nominal!

Na-doped CH₃NH₃PbI₃: P(I₂)

CH₃NH₃Na_{0.01}Pb_{0.99}I_{2.99}:

- No decrease in σ_{ion}
- Significant increase in σ_{eon}
- V_{I}^{\bullet} is the mobile defect.

Pure CH₃NH₃Pbl₃: O₂ partial pressure

Conductivity equilibration: I_2 and O_2

- O₂ exposure has fast equilibration.
- I₂ equilibration is \sim 40x slower.
- Surface nature of O₂ interaction.

1 CH₃NH₃Pbl₃ is p-type electronic conductor.

- **2** I^- is the mobile ion and V_1^{\bullet} are mobile defects.
- **3** O_2 appears to only affect I_2 activity.
- 4 Electrical properties can be significantly tuned.

Effect of I_2 , O_2 treatments under light has yet to be investigated.

THANK YOU FOR YOUR KIND ATTENTION!

Acknowledgments: Florian Kaiser Dr. Rotraut Merkle