Engineering Conferences International ECI Digital Archives

Life Cycle Assessment and Other Assessment Tools for Waste Management and Resource Optimization

Proceedings

6-9-2016

The challenges of nuclear waste management from a life cycle perspective

Andrea Paulillo Department of Chemical Engineering, University College London, UK, andrea.paulillo.14@ucl.ac.uk

Stephen Palethorpe National Nuclear Laboratory, UK

Andrew M. illiken Sellafield Ltd., UK

Roland VClift Centre for Environmental Strategy, University of Surrey, UK

Paola Lettieri Department of Chemical Engineering, University College London, UK

Follow this and additional works at: http://dc.engconfintl.org/lca_waste Part of the <u>Engineering Commons</u>

Recommended Citation

Andrea Paulillo, Stephen Palethorpe, Andrew M. illiken, Roland VClift, and Paola Lettieri, "The challenges of nuclear waste management from a life cycle perspective" in "Life Cycle Assessment and Other Assessment Tools for Waste Management and Resource Optimization", Professor Umberto Arena, Second University of Naples, Italy Professor Thomas Astrup, Denmark Technical University, Denmark Professor Paola Lettieri, University College London, United Kingdom Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/lca_waste/53

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Life Cycle Assessment and Other Assessment Tools for Waste Management and Resource Optimization by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

UCL

The challenges of Nuclear Waste Management from a Life Cycle perspective

Andrea Paulillo¹, Dr. Stephen Palethorpe², Mr. Andrew Milliken³, Prof. Roland Clift⁴, Prof. Paola Lettieri¹

¹ Department of Chemical Engineering, University College London ² National Nuclear Laboratory ³ Sellafield Ltd. ⁴ Centre for Environmental Strategy, The University of Surrey

Presentation outline

□ Introduction

- Nuclear industry in the UK
- Project objectives
- Radiological Impact Assessment framework
 - Critical Group methodology
 - Compartment-type methodology
 - Qualitative comparison
- □ LCA scenario
- Conclusions and future work

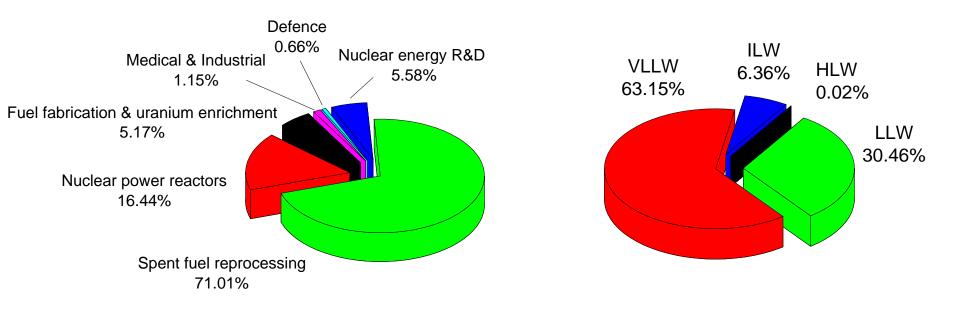
UCL

Nuclear Industry in the UK

- Share of electricity generation:
- □ 20% at 2013 → 40-50% by 2050

Some numbers:

- □ 8 Operating Power Plants (9.5 TWe)
- □ 5 Planned Power Plants (15.6 TWe)
- □ 11 Power Plants Under Decommissioning
- 2 Operating Reprocessing Plants (*due to be closed by 2018/20*)


UK nuclear power generation reactors' map

Nuclear Waste in the UK

Waste proportion by activity

Waste proportion by type

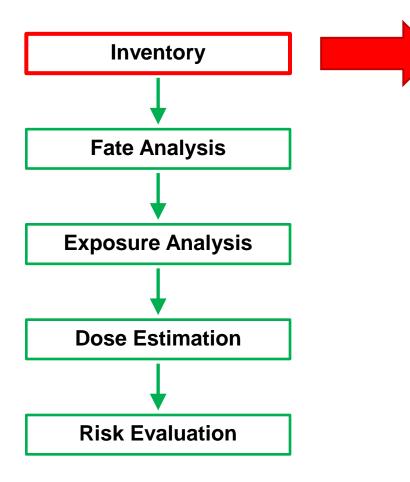
Key questions:

- How to deal with Spent Nuclear Fuel: Direct Disposal or Reprocessing?
- What to do with the end-process Solid Nuclear Waste? How to dispose of it?

Life Cycle Assessment

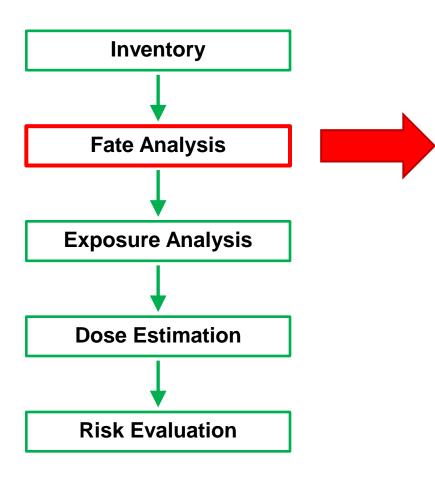
The issue....

Standard impact categories	Unit Equivalent
Abiotic Depletion	Kg Sb / MJ
Acidification Potential	Kg SO ₂
Eutrophication Potential	Kg PO ₄
Freshwater Aquatic Toxicity	Kg DCB
Global Warming Potential	Kg CO ₂
Human Toxicity Potential	Kg DCB
Ozone Layer Depletion Potential	Kg R11 eq
Photochemical Ozone Creation Potential	Kg Ethene
Terrestric Ecotoxicity Potential	Kg DCB


Where are radionuclides included?

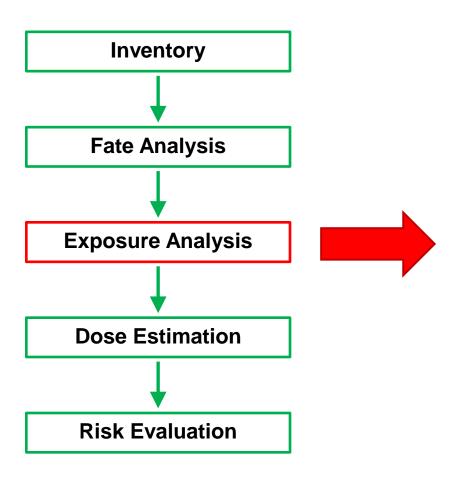
Nowhere!

Project objectives


- Develop a high-level Life Cycle Assessment approach for assessing the environmental impact performance of radioactive releases and nuclear waste.
- > Develop a Life Cycle Assessment scenario to demonstrate the approach.
- > Analyse alternative strategic options for nuclear waste management.

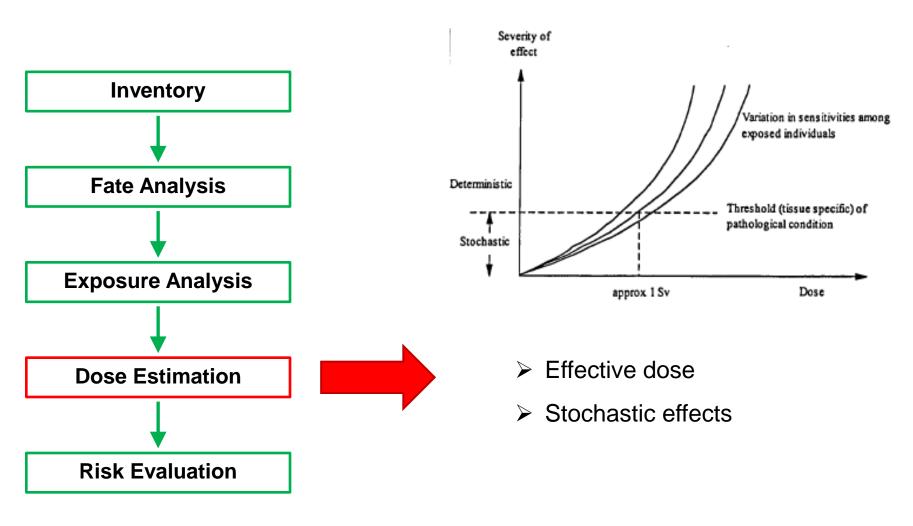
Radionuclide	Source	Emission	Unit	Amount
Am241	Central off Gas - THORP	Air	Bq/y	
Am241	Low Active Effluent - THORP	Sea water	Bq/y	
C14	Central off Gas - THORP	Air	Bq/y	
C14	Low Active Effluent - THORP	Sea water	Bq/y	
Ce144	Central off Gas - THORP	Air	Bq/y	
Ce144	Low Active Effluent - THORP	Sea water	Bq/y	
Cm244	Central off Gas - THORP	Air	Bq/y	
Co60	Central off Gas - THORP	Air	Bq/y	
Co60	Low Active Effluent - THORP	Sea water	Bq/y	
Cs134	Central off Gas - THORP	Air	Bq/y	
Cs134	Low Active Effluent - THORP	Sea water	Bq/y	
Cs137	Central off Gas - THORP	Air	Bq/y	
Cs37	Low Active Effluent - THORP	Sea water	Bq/y	
H3	Central off Gas - THORP	Air	Bq/y	
H3	Low Active Effluent - THORP	Sea water	Bq/y	
1129	Central off Gas - THORP	Air	Bq/y	
1129	Low Active Effluent - THORP	Sea water	Bq/y	
Kr85	Central off Gas - THORP	Air	Bq/y	
Mn54	Low Active Effluent - THORP	Sea water	Bq/y	
Np237	Central off Gas - THORP	Air	Bq/y	
Pm147	Central off Gas - THORP	Air	Bq/y	
Pu241	Central off Gas - THORP	Air	Bq/y	
Ru106	Central off Gas - THORP	Air	Bq/y	
Ru106	Low Active Effluent - THORP	Sea water	Bq/y	
Sr90	Central off Gas - THORP	Air	Bq/y	
Sr90	Low Active Effluent - THORP	Sea water	Bq/y	
Tc99	Central off Gas - THORP	Air	Bq/y	
Tc99	Low Active Effluent - THORP	Sea water	Bq/y	
Zr95	Low Active Effluent - THORP	Sea water	Bq/y	

UC



- Environmental concentration
 - E.g. Air, freshwater, Sea water, Soil

➢ Models


- 1. Numerical
- 2. Analytical
- 3. Compartment-type

- Human exposure to radionuclides and ionising radiation
- Pathways
 - Inhalation
 - Ingestion
 - Plume immersion
 - Ground deposition

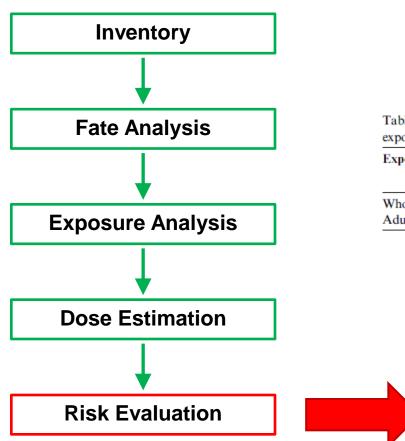
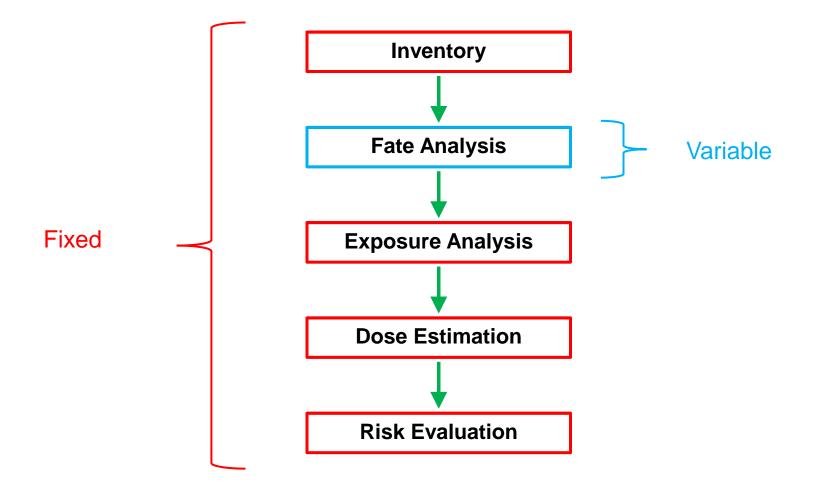
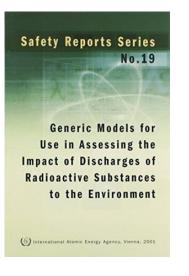



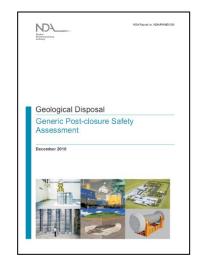
Table 1. Detriment-adjusted nominal risk coefficients $(10^{-2} \text{ Sv}^{-1})$ for stochastic effects after exposure to radiation at low dose rate.

Exposed population	Cancer		Heritable effects		Total	
	Present ¹	Publ. 60	Present ¹	Publ. 60	Present ¹	Publ. 60
Whole	5.5	6.0	0.2	1.3	5.7	7.3
Adult	4.1	4.8	0.1	0.8	4.2	5.6

Risk of detrimental effect (i.e. cancer)



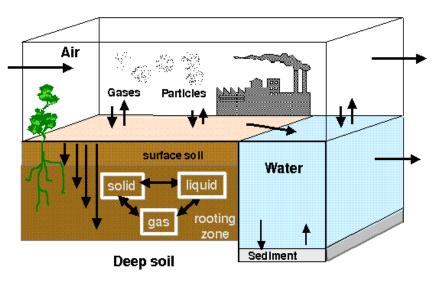
Critical Group methodology


Direct discharges

Solid waste

IAEA Generic models... (2002)

RWM Ltd. Post-Closure Safety Assessment (2010)



Compartment-type methodology

Key features

o USErad

- o Level III Mackay models
 - Fugacity concept for material transfers
 - Homogenously mixed compartments
 - Steady-state conditions
- o 8 compartments
 - Air, fresh and sea water, natural and agricultural soil
 - Freshwater and marine sediments, and groundwater (under development)
- 2 Spatial scales
 - Continental and global
- Only element/radionuclide-specific parameters are used (no predictive equation)

Picture taken from CalTox website

Qualitative discussion

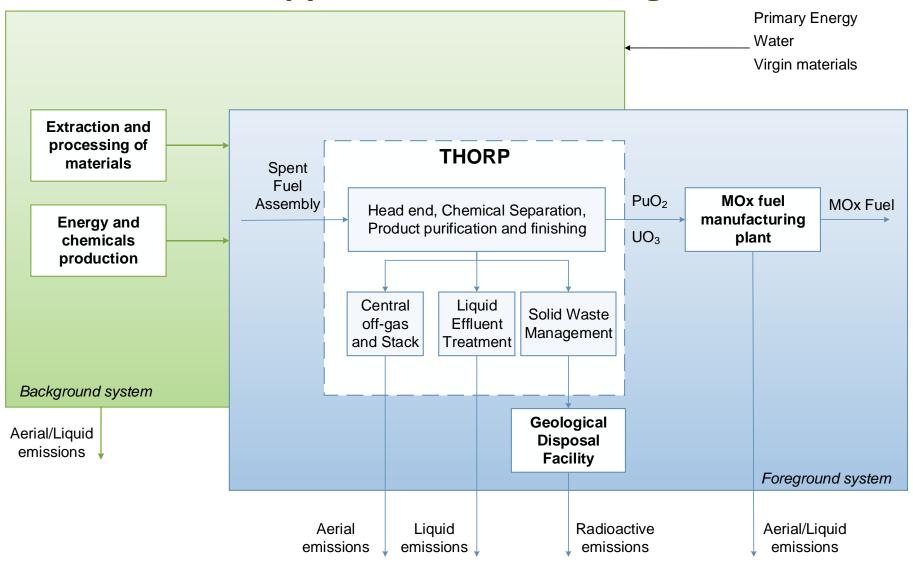
Critical Group methodology

	Risk per Bq released				
	Air	Sea water			
l129	2.16E-07	2.10E-14			

- + Results accuracy
- Largely established in the nuclear industry
- Worst case scenario
- Location-dependent results
- Poor knowledge on GDF behaviour

Compartment-type methodology

Risk per Bq released


	Air	Sea water
1129	1.35E-19	1.34E-10

- + Average impact
- + Consistent with toxicity potential methodologies
- Results accuracy
- Partition factors
- Poor knowledge on GDF

behaviour

UCL

Scenario – UK approach for the management of SNFs

Functional unit: Amount of AGR spent fuels that produced 1 TJ of electricity

Conclusions

- There is a need to develop a standard framework for assessing radionuclide impact.
- A new framework has been developed, and two methodologies have been derived.
- ➤ A qualitative comparison has been presented.

Current challenges

- Complete the groundwater compartment in the compartmental model.
- Compare quantitatively the two developed methodologies.
- Time factor (solid waste vs direct discharges).

Future work

- Real-data collection on site (Sellafield).
- Apply the LCA to the reference scenario (UK approach to Nuclear Waste Management).

Acknowledgements

Nuclear Decommissioning Authority

Thanks