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The Application of Life-Cycle Assessment 
to Solid Waste Management:  Applications, 

Challenges and Modeling Techniques 

James W. Levis 
Morton A. Barlaz 

North Carolina State University 



Introduction and Objectives 
§  Perspective on accomplishments to date 

l  Observations on tools 
l  Range of applications to illustrate methods 
l  Methodologies 

•  Uncertainties 
•  Tradeoffs 

l  Challenges 
§  Somewhat focused on U.S and very focused on waste 

l  hope will stimulate dialog 
§  Municipal solid waste (MSW) 

l  Residential, multifamily, commercial 
l  Not industrial, biosolids 



Introduction and Objectives 
§  The application of life-cycle assessment to solid 

waste management has been discussed for about 25 
years 
l  Integrated Solid Waste Management: A Life-Cycle 

Inventory (McDougall, White, Franke and Hindle, 
1994) 

 



The Solid Waste System is Complex 
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Levis, J. W.; Barlaz, M. A; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to Manage Solid Waste in 
U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). Environ. Sci. Technol. 2014. 
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The Solid Waste System 
§  The beneficial use of products is included 

l  Energy from anaerobic digestion, landfill, 
combustion 

l  Land application of compost 
l  Offsets from recyclable materials 



The Solid Waste System and Study Objectives 

§  Defining the study objective is essential and the 
system definition may vary 
l  We understand the solid waste system very well 
l  We can help with product LCAs with rigorous 

evaluations of the waste management component 
l  We need to do a better job of integrating our 

expertise with others working on product and 
process LCAs 
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Functional Units 
§  1000 kg (1 Mg) of MSW at the curb 

l  Neglects what happens in the house, backyard 
composting 

l  Focus on what the local solid waste authority can 
influence which is useful for decision support at the 
local level 

l  May be different for a policy analysis at the national 
level 

§  1000 kg disposed in a landfill at time zero  
§  1000 kg in a landfill regardless of time (the landfill is then 

the functional unit) 
§  The best way to deliver 500 mL of beer 
§  Waste elimination or “source reduction” 



Observations:  Simplicity vs Complexity 
§  What is the intended use?  Who is the intended user? 

l  Education 
l  An LCA course 
l  Policy research and local decision making 

•  Engineering practice - still a screening tool 
§  Technology optimization/improvement assessment 
§  Challenging tradeoffs between simplicity and complexity 

(model flexibility) that must be considered in model design 
l  Municipal solid waste vs ~30 waste components 
l  Choices for the equipment configuration at a sorting 

plant vs. one option 
l  Choices in impact factors and weighting schemes 
l  Flexible energy grids 



Advanced Models 
§  Solid waste management life-cycle optimization framework 

(SWOLF)  
l  Allows user to explore alternate strategies in 

consideration of constraints 
l  Multi-stage optimization model 

•  Waste composition and energy grid are dynamic – 
allowed to change in 5 year intervals 

l  Maximally flexible 
l  Use in optimization or accounting mode 

§   EASETECH 
l  Comprehensive model of the solid waste system; 

incorporates additional waste types and processes 
l  Accounting mode only, superior interface 
l  Uncertainty assessment 



Used must maintain mass balance 
WARM Inputs (U.S. EPA) (GHG Only) 

https://www3.epa.gov/warm/Warm_Form.html 

User maintains mass balance 



SWOLF- EDU: used in undergraduate environmental science 
class 

•  Introduces students to LCA, 
tradeoffs, systems thinking 

•  Includes costs, forces mass 
balance; some flexibility 



SWOLF 

go.ncsu.edu/swolf 



SWOLF 

go.ncsu.edu/swolf 



EASETECH 

Clavreul, J.; Baumeister, H.; Christensen, T. H.; Damgaard, A. An environmental assessment system for environmental technologies. Environ. Model. Softw. 
2014, 60, 18–30. 

http://www.easetech.dk/ 



Application: 
Modeling Solid Waste Management in 

Delaware: A Statewide Analysis 

Kaplan, P. O.; Ranjithan, S. R.; Barlaz, M. a. Use of life-cycle analysis to support solid waste 
management planning for Delaware. Environ. Sci. Technol. 2009, 43 (5), 1264–1270. 

§  Use optimization modeling to evaluate multiple 
alternatives for solid waste management for State 
of Delaware 
l  Consider cost, emissions, energy consumption 
l  Consider scenarios that may differ from 

current practice 
§  Work conducted using the Municipal Solid Waste 

Decision Support tool (MSW-DST) (first 
generation tool) 



Modeling Solid Waste Management in 
Delaware: A Statewide Analysis 

§  Challenge:  3 counties and the 
funding authority does not control 
waste collection 

§  New Castle County  
l  Urban 
l  64% of the state population 

§  Kent County 
l  Suburban to rural  
l  16% of the state population 

§  Sussex County 
l  Suburban to rural 
l  20% of the state population 



How Do we Combine Counties to Provide the 
State a Meaningful Roadmap? 
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The manner in which waste is 
handled is similar … 



How Do we Combine Counties to Provide the 
State a Meaningful Roadmap? 
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Variation of Waste Flows, Cost, & GHE with 
Diversion 

[curbside recycling + yard waste composting + combustion] 
New Castle County 
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•  In Sussex County, a mixed waste MRF is utilized upstream of combustion to 
reduce transport costs 

•  Composting and curbside recycling only used near maximum diversion with 
resultant increases in GHE emissions 

•  Larger GHG decreases possible in New Castle County (more populated) 



Using an Optimization Approach: 
Observations from County-Wide Summary 
§  Non-uniform utilization of curbside collection, combustion 

subject to a cost constraint 
§  Optimization model led to counter-intuitive results 

l  MRF upstream of combustion 
l  Effectiveness of recycling and yard waste composting 

influenced by transport distance 



Identify the Cost-effective 30% Statewide  Diversion Strategy? 

DIVERSION  Cost [$/yr] 

New Castle Kent Sussex State-wide New Castle Kent Sussex Total 
30% 30% 30% 30.0%  42,050,377   21,070,666   35,903,768   99,024,811  

30% 35% 30% 30.7%  42,050,377   21,363,049   35,903,768   99,317,194  

30% 30% 35% 30.9%  42,050,377   21,070,666   36,282,751   99,403,794  

30% 40% 25% 30.5%  42,050,377   21,683,004   35,524,785   99,258,166  

35% 25% 20% 30.7%  43,245,513   20,778,283   35,145,802   99,169,597  

35% 20% 25% 30.9%  43,245,513   20,485,900   35,524,785   99,256,197  

35% 25% 20% 30.7%  43,245,513   20,778,283   35,145,802   99,169,597  

35% 20% 20% 30.0%  43,245,513   20,485,900   35,145,802   98,877,214  

40% 20% 20% 33.3%  44,440,648   20,485,900   35,145,802   100,072,350  

… … … … … … … … 

… … … … … … … … 

… … … … … … … … 

Uniform 
diversion is not 
least cost case 

Least-Cost 30% 
Statewide 
Diversion 

§  The optimal statewide strategy is a combination of three unique 
SWM alternatives that are county-specific 
l  a uniform statewide strategy will be sub-optimal 



Generating Alternative SWM Strategies 

§  Optimal solution may not be appropriate 
l  political feasibility 
l  capital intensive 
l  facility siting 
l  Combustion prohibited 

§  Generate alternatives that maximize 
differences in unit operations & waste flow 
choices in SWM strategies using Modeling to 
Generate Alternatives (MGA) 



Cost-effective 30% statewide diversion strategy 
includes: 

•  cost-effective 35% diversion from New Castle 

Cost: $43.2 M/yr    $48 M/yr 

•  cost-effective 20% diversion from Kent 

Cost: $20.2 M/yr    $22.5 M/yr 

•  cost-effective 20% diversion from Sussex 

Cost: $34.6 M/yr    $38.7 M/yr 

Modeling to Generate Alternatives 
(MGA) 

relax the cost 

relax the cost 

relax the cost 



Waste Flows for Alternative SWM Strategies to 
Achieve 30% Statewide Diversion 

  
  Least-Cost  

NC-Alt 1 + K-Alt 2 
+ S-LC 

NC-Alt 2 + K-Alt 2 + 
S-Alt2  

Mixed Waste Transfer tons/yr 24394 19894 5330 

Pre-Sorted Transfer tons/yr 719 7185 5829 

Mixed Waste MRF tons/yr 73554 83665 124772 

Presorted MRF tons/yr 86696 32717 17290 

Commingled MRF tons/yr 0 7431 5745 

Yard Waste Composting tons/yr 0 13115 12496 

Combustion tons/yr 80564 118017 130325 

Diversion % 30 30 30 



Case Study for Wake County, North Carolina, 
USA 

§  12 independent cities with their own 
collection systems 
l  Each city contracts with county for some solid 

waste services, primarily the landfill 
l  The cities control residential but not 

commercial waste 
•  Commercial waste must be considered for capital 

investments 
l  Substantial data development 



Waste Generation Sectors 
§  Single-family (SF) residential waste generators 

l  Waste generation, composition, and collection details 
specified for each municipality (12) 

§  Multi-family (MF) residential waste generators 
l  Waste generation, composition, and collection details 

specified for 2 MF sectors: 1) Raleigh 2) other cities 
§  Convenience centers (CC) 

l  Generation at city and county sites combined 
§  Commercial waste generators (COM) 

l  Only includes residual waste – excludes any source-
separated recyclables or food waste 

l  Residual waste split between 2 landfills 
 



11/18/2015 

Wake County: Single Family Costs 



Next Steps 
§  We have represented the current system and 

have reasonable agreement to mass flows and 
costs with actual data 

§  Consider population growth and changes in 
waste composition over a 30 year time horizon 

§  Develop optimal scenarios for each city and 
combine 



Consumer Packaging Study: 
Is biodegradability a desirable attribute for 

discarded solid waste  ?  

§  Interest in the environmental footprint of consumer products 
l  Many disposed in landfills 
l  U.S. and globally 
l  Work to represent the national average landfill 

•  Weighted average of landfills that 
1.  Collect gas and use beneficially 
2.  Collect gas and flare 
3.  Do not collect gas 

 



Material modeling in landfills 
National Average landfill 

State-of-the art landfill 



Observations 
§  Slower biodegradation is better (national average) 
§  Recalcitrant biogenic carbon is optimal based on disposal 

l  Must now integrate this with the production process 

 

Levis, J. W.; Barlaz, M. A. Is biodegradability a desirable attribute for discarded solid waste  ? 
Environ. Sci. Technol. 2011, 45 (11), 5470–5476. 
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Observations 

§  Consider a developing country and disposal of a specific 
material in an uncontrolled landfill (open dump) 
l   allocation methodology now becomes critical  
l  plastic packaging may not leach or biodegrade 

•  Residual contents will 



Uncertainty in Solid Waste LCA 
Process Model Uncertainty Scenario 

Uncertainty 
Parameter 
Uncertainty 

General Linearity System boundaries, 
Spatial and temporal 
variation, Allocation 

Impact Assessment Modeling fate and 
effects 

Normalization and 
weighting methods 

Characterization 
factors 

Composition Choice of 
composition 

Waste fraction 
distribution, material 
properties 

Collection Collection model Choice of collection 
scheme 

Fuel efficiency, 
emission factors 

Treatment Process models and 
sub-process models 
(e.g., landfill gas) 

Choice of technology 
(e.g.,state-of-the art 
vs. average) 

Emission factors 

Beneficial recovery Process model Choice of offsets and 
technologies 

Substitution rate, 
emission factors 

Energy System Choice of marginal 
fuel(s) 

Emission factors, 
fuel efficiency 

Adopted from Clavreul, J.; Baumeister, H.; Christensen, T. H.; Damgaard, A. An environmental assessment 
system for environmental technologies. Environ. Model. Softw. 2014, 60, 18–30. 



Intrinsic LCA Modeling Uncertainties 
§  Lack of spatial/temporal information on environmental 

impacts 
§  Assumption of linearity 
§  Characterization factor choices and uncertainties 

l  Can be related to spatial/temporal uncertainty 
l  GWP for methane is 72, 25, or 7.6 kg CO2e/kg CH4 

using 20, 100, or 500 year horizons (static case) 



Tools to evaluate uncertainty and 
sensitivity 

§  Scenario analysis  
l  What significant parts of the analysis are likely to 

differ from what was modeled?  
§  Contribution analysis 

l  What processes, materials or emission have the 
largest effect on results? 

§  Parametric perturbation analysis 
l  How do results change if you change parameter 

values? 
§  Uncertainty propagation 

l  What is the actual distribution of result values and 
how are they correlated with parameter 
uncertainty? 



Scenario Analysis 

§  Useful for modeling alternative possibilities 
l  Use different allocation method(s) 
l  Use different offset(s) 
l  Use different fuel/electricity sources 

§  Provide a broad look at how changes to the 
system affect results 

§  Provides information on the robustness of the 
results 



Effect of 
composition 
•  Developed per capita 

generation trends for 30 
waste materials based on 
EPA 2012 MSW Facts and 
Figures data. 

Municipal solid waste generation, recycling, and 
disposal in the United States: Tables and figures 
2010; United State Environmental Protection 
Agency: Washington, DC, 2011. 

Levis, J. W.; Barlaz, M. A; Decarolis, J. F.; Ranjithan, S. 
R. A Systematic Exploration of Efficient Strategies to 
Manage Solid Waste in U.S. Municipalities: Perspectives 
from the Solid Waste Optimization Life-Cycle Framework 
(SWOLF). Environ. Sci. Technol. 2014. 



Effects of 
Composition 

38 

§  The WTE facility is used only in the first stage because there is more 
paper and less plastic than in the following stages and because of the 
decrease in electricity GHG intensity 

§  AD use over time increases as more food waste is generated 

 Levis, J. W.; Barlaz, M. A; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to Manage Solid Waste in 
U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). Environ. Sci. Technol. 2014. 



Electricity GHG Intensity 
Natural Gas (0.74 kg CO2e/kWh) Coal (1.3 kg CO2e/kWh) 

 

Food Waste Management Example 

Hodge, K. L.; Levis, J. W.; Barlaz, M. A; DeCarolis, A Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste 
Management Strategies in the U.S.. Environ. Sci. Technol. (Submitted). 

Base case used 55/45 Coal/Natural Gas split based on marginal split 
in the Southeastern Electricity Reliability Council (SERC) grid (0.89 kg CO2e/kWh)  



Contribution Analysis 
§  Compare the contributions of the various sub-processes 

and/or materials involved in your process or product to 
various impacts. 



Parameter Perturbation Analysis 



Methodology for Uncertainty Propagation: 
Monte Carlo Analysis 
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Methodology for Uncertainty 
Propagation 
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Example Result:  Monte Carolo Analysis 

0
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%

32% chance of exceeding the 
deterministic value of 33 
million 

Expected: 32 
Range: 27.6-37.0 



Monte Carlo Analysis 
Landfill GHG Emissions 

Levis, J. W.; Barlaz, M. A. Is biodegradability a desirable attribute for 
discarded solid waste  ? Supporting Information. Environ. Sci. Technol. 2011, 
45 (11), 5470–5476. 
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Base Case Least-cost with 30% Diversion Alternative 30% Diversion

Delaware system costs 

Kaplan, P. O.; Ranjithan, S. R.; Barlaz, M. a. Use of life-cycle analysis 
to support solid waste management planning for Delaware. Environ. 
Sci. Technol. 2009, 43 (5), 1264–1270. Food waste 

composting 
NOx emissions 

Levis, J. W.; Barlaz, M. a. What is the most environmentally beneficial way to 
treat commercial food waste? Environ. Sci. Technol. 2011, 45 (17), 7438–
7444. 

Are differences 
between scenarios 
robust? 



Time Dependent 
impact of GHGs 

•  The effect a GHG emission has on 
radiative forcing varies with time and 
with existing atmospheric 
concentrations of GHGs (which also 
vary with time).  

•  Dynamic GWIs  reduce the impact of 
future emissions based on the change 
in radiative forcing of those future 
emissions. 

•  Requires dynamic LCIs 
•  May include explicit discounting 

•  DNYCO2 Dynamic Carbon 
Footprinter - http://www.ciraig.org/
en/dynco2.php 

Levasseur, A.; Lesage, P.; Margni, M.; Deschěnes, L.; Samson, R. 
Considering time in LCA: Dynamic LCA and its application to global 
warming impact assessments. Environ. Sci. Technol. 2010, 44 (8), 3169–
3174. 
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Material Reprocessing Offsets: Important but … 

Levis, J. W.; Barlaz, M. a; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to 
Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle 
Framework (SWOLF). Environ. Sci. Technol. 2014. 



… Uncertain 

Primary Production 
Secondary Production 

Brogaard, L. K.; Damgaard, A.; Jensen, M. B.; Barlaz, M.; Christensen, T. H. Evaluation of life cycle inventory data for recycling 
systems, Rs. Cons. Recycling, 2014, 87, p. 30-45. 

Collection:  0.05 
Sorting:   0.01 
Landfill:   0.03 
Combustion:  0.40   

•  Energy grid is critical, not 
always separable 

•  Country of material 
processing may not be the 
country of use 



Impacts and trade-offs 

§  Laurent et al. (2012) found climate change was generally a reasonable proxy for 
impacts primarily affected by fossil energy use (e.g., acidification, photochemical 
oxidation) and potentially poor proxy for toxicity and non-fossil resource use impacts. 

§  Steinmann et al. (2016) found that marine ecotoxicity and climate change indicators 
covered 84% of the variance in life-cycle product rankings.  
l  The addition of land use and ozone depletion accounted for 90.1% 

Steinmann, Z. J. N.; Schipper, A. M.; Hauck, M.; Huijbregts, M. A. J. How Many Environmental Impact Indicators Are Needed in the 
Evaluation of Product Life Cycles? Environ. Sci. Technol. 2016, 50 (7), 3913–3919. 

Laurent, A.; Olsen, S. I.; Hauschild, M. Z. Limitations of carbon footprint as indicator of environmental sustainability. Environ. Sci. 
Technol. 2012, 46 (7), 4100–4108. 



Conclusions and Challenges 
§  Every study is different and will require different 

applications of available models 
§  The optimal system may require coordination between 

several cities or cities and commercial companies 
l  This may not be possible 

§  How do we express results simplistically so that non-LCA 
experts can use? 
l  Expressing uncertainty is critical to our collective 

credibility 
§  As LCA and waste experts, we are best prepared to 

analyze and interpret 
§  Do not forget that no one steals garbage, but some 

people will steal sorted aluminum cans 
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