Engineering Conferences International ECI Digital Archives

Life Cycle Assessment and Other Assessment Tools for Waste Management and Resource Optimization

Proceedings

6-7-2016

The Application of Life-Cycle Assessment to Solid Waste Management: Applications, Challenges and Modeling Techniques

Morton Barlaz North Carolina State University, barlaz@ncsu.edu

James W. Levis North Carolina State University

Follow this and additional works at: http://dc.engconfintl.org/lca_waste Part of the <u>Engineering Commons</u>

Recommended Citation

Morton Barlaz and James W. Levis, "The Application of Life-Cycle Assessment to Solid Waste Management: Applications, Challenges and Modeling Techniques" in "Life Cycle Assessment and Other Assessment Tools for Waste Management and Resource Optimization", Professor Umberto Arena, Second University of Naples, Italy Professor Thomas Astrup, Denmark Technical University, Denmark Professor Paola Lettieri, University College London, United Kingdom Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/lca_waste/13

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Life Cycle Assessment and Other Assessment Tools for Waste Management and Resource Optimization by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

The Application of Life-Cycle Assessment to Solid Waste Management: Applications, Challenges and Modeling Techniques

> James W. Levis Morton A. Barlaz North Carolina State University

NC STATE UNIVERSITY

Introduction and Objectives

- Perspective on accomplishments to date
 - Observations on tools
 - Range of applications to illustrate methods
 - Methodologies
 - Uncertainties
 - Tradeoffs
 - Challenges
- Somewhat focused on U.S and very focused on waste
 - hope will stimulate dialog
- Municipal solid waste (MSW)
 - Residential, multifamily, commercial
 - Not industrial, biosolids

Introduction and Objectives

- The application of life-cycle assessment to solid waste management has been discussed for about 25 years
 - Integrated Solid Waste Management: A Life-Cycle Inventory (McDougall, White, Franke and Hindle, 1994)

The Solid Waste System is Complex

Levis, J. W.; Barlaz, M. A; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). *Environ. Sci. Technol.* **2014**.

The Solid Waste System

- The beneficial use of products is included
 - Energy from anaerobic digestion, landfill, combustion
 - Land application of compost
 - Offsets from recyclable materials

The Solid Waste System and Study Objectives

- Defining the study objective is essential and the system definition may vary
 - We understand the solid waste system very well
 - We can help with product LCAs with rigorous evaluations of the waste management component
 - We need to do a better job of integrating our expertise with others working on product and process LCAs

Functional Units

- 1000 kg (1 Mg) of MSW at the curb
 - Neglects what happens in the house, backyard composting
 - Focus on what the local solid waste authority can influence which is useful for decision support at the local level
 - May be different for a policy analysis at the national level
- 1000 kg disposed in a landfill at time zero
- 1000 kg in a landfill regardless of time (the landfill is then the functional unit)
- The best way to deliver 500 mL of beer
- Waste elimination or "source reduction"

Observations: Simplicity vs Complexity

- What is the intended use? Who is the intended user?
 - Education
 - An LCA course
 - Policy research and local decision making
 - Engineering practice still a screening tool
- Technology optimization/improvement assessment
- Challenging tradeoffs between simplicity and complexity (model flexibility) that must be considered in model design
 - Municipal solid waste vs ~30 waste components
 - Choices for the equipment configuration at a sorting plant vs. one option
 - Choices in impact factors and weighting schemes
 - Flexible energy grids

Advanced Models

- Solid waste management life-cycle optimization framework (SWOLF)
 - Allows user to explore alternate strategies in consideration of constraints
 - Multi-stage optimization model
 - Waste composition and energy grid are dynamic allowed to change in 5 year intervals
 - Maximally flexible
 - Use in optimization or accounting mode
- EASETECH
 - Comprehensive model of the solid waste system; incorporates additional waste types and processes
 - Accounting mode only, superior interface
 - Uncertainty assessment

WARM Inputs (U.S. EPA) (GHG Only)

Steps 1 and 2. Baseline and Alternative Scenarios

	Baseline Scenario				Alternative Scenario					
Material	Tons Recycled	Tons Landfilled	Tons Combusted	Tons Composted	Tons Generated	Tons Source Reduced	Tons Recycled	Tons Landfilled	Tons Combusted	Tons Composted
Aluminum Cans				N/A	0					N/A
Aluminum Ingot				N/A	0					N/A
Steel Cans				N/A	0					N/A
Copper Wire				N/A	0					N/A
Glass				N/A	0					N/A
HDPE				N/A	0					N/A
LDPE	N/A			N/A	0		N/A			N/A
PET				N/A	0					N/A
LLDPE	N/A			N/A	0		N/A			N/A
PP	N/A			N/A	0		N/A			N/A
PS	N/A			N/A	0		N/A			N/A
PVC	N/A			N/A	0		N/A			N/A
PLA	N/A				0		N/A			

Step 3. Landfill Characteristics

- National Average
- No LFG Recovery
- LFG Recovery
 - Recover for energy
 - Flare

Step 4. Waste Transport Characteristics

- Use default distance
- Define distance

Management Option	Distance (miles)
Landfill	20
Combustion	20
Recycling	20
Composting	20

User maintains mass balance

Metric Tons of Carbon Equivalent (MTCE)

Units of Energy (million BTU)

Metric Tons of Carbon Dioxide Equivalent (MTCO2E)

Step 5. Results Output

https://www3.epa.gov/warm/Warm_Form.html

SWOLF- EDU: used in undergraduate environmental science

class

SWOLF-EDU - Solid Waste Management Life-Cycle Accounting Tool

Developed at North Carolina State University

Inputs - Generation and Composition

Input	Value	Units
Total generated mass	1,000	Mg = Megagram = 1000 kg = 1 metric ton

Composition

Materials	Generated Composition (%)	Generated Mass (Mg)
Food Waste	12.0	120
Yard Waste	12.0	120
Recyclable paper	12.0	120
Cardboard	12.0	120
Other Compostable Fiber	5.0	50
Other Paper	5.0	50
PET Bottles	5.0	50
HDPE Containers	5.0	50
Plastic Film	3.0	30
Other Plastic	3.0	30
Aluminum Cans	2.0	20
Steel Cans	2.0	20
Other metals	3.0	30
Glass Bottles	2.0	20
Other Glass	2.0	20
Miscellaneous	15.0	150
TOTAL	100	1,000

 Includes costs, forces mass balance; some flexibility

Waste Composition

SWOLF

x Solid Waste Optimization-Life cycle Framework (Accounting Mode) File Help SWM Network Regional Electricity Grid Edit SWM Database Notes < START > Collection Processes Waste Destination < ERROR CHECK > Mixed Waste Mixed Waste Anaerobic Mixed Waste Transfer Station Ash Landfill Transfer Station MRF Digestion Mixed Waste MRF < BUILD SYSTEM > Mixed Waste Collection Landfill Waste To Energy <RUN> Waste Destination Single Stream Transfer Station ✓ Single Stream Recyclables ✓ Single Stream MRF Single Stream Composting MRF Dual Stream Recyclables Residue To Residue To Mixed Waste TS Mixed Waste TS Landfill Landfill Multi Stream Drop Offs Waste To Energy Waste To Energy Multi Stream Crew Sorted Recyclables Single Stream Dual Stream Waste To < EDIT START POINT > Landfill Waste Destination Transfer Station MRF Energy Composting Landfill Leaf Vacuums < EDIT SECTORS # > Anaerobic Digestion Waste To Energy Waste Destination Composting Vardwaste/Source Separated Organics Anaerobic Digestion Dual Stream Presorted ** Waste-In - Residue = Waste to Remanufacturing Transfer Station MRF Dry Waste Collection Wet Waste Collection <NEXT>

go.ncsu.edu/swolf

SWOLF

Optimization Mode (Soli	d Waste Optimization Life Cycle Framework)	
File Help		
< START >	SWM Network Optimization Model	
< ERROR CHECK >	Objective Function	SWOLF QUICK TIPS:
< BUILD SYSTEM >	Lost (\$) (Minimize)	 > Define objective function by selecting parameter to be optimized
	Subject To Constraints,	> Define stagewise capacity constraints
	< Stagewise Capacity Constraints >	> Define stagewise mass flow constraints
	< Stagewise Collection Process Constraints >	> Define stagewise collection process availability constraints
	Restrict Parameters	> To restrict other optimizable parameters click "Add New Parameter", select the parameter and constraint type, enter RHS value
	Parameter Type of Constraint Value	Stage
	Carbon Equiv V Less Than Equal V 0	All Stages
	*	
Status: Inputs Pending		< NEXT >
	<u> </u>	

go.ncsu.edu/swolf

EASETECH

http://www.easetech.dk/

EASETECH - E	EASETECH paper*			and and an other states of the	the second lines			
File View Ca	atalogues							Development
Material proc	Material fractions	4a Scenario 1						
 Material 	Bementary exchanges	4b	(Sankey diagram 🔹 🛃
Resk	ICTA	Impact cataopping	10		Transport -	500 km	1	
Reci	LUM	umpact categories	40	1	(boat)		1	
Resi	Interfaces	4e Methods	4d		0 1	-		
1 Mun	Constants	4f		Decrease of		ra 💊	WITP - leachat	
> Mun	Material properties	4g generation Cont Co	election Transport -	anargy contant	ion T	<u> </u>		
D Other		┓╩╼╘╍╍┙╼╍╸		evaporation	K		Leachate	
Source separ	ration	1			Transport	- 50 km generation	collection groundwater	
Collection		1						1.0
D Transport		1						
P MRF	1	1				9	Stored ecotoxicity	
Mored waste	Landhis 2	1						
D Thermal treat	tment J							
P Landfill mine	ral waste	1						*
P Ash treatmen	nt							
D Biological tre	eatment	Charact. imp.						• ¢ X
D Use-on-land	E	Collection						
4 Template		Life cycle impact ass	essment: charac	terised impacts			•	
4 Generatio	on	ICIA Method	mmended .	Show par process view			2	
🖸 Energ	gy generation	ICO Meriod. ICO Tex	inimenaed .	anow per process view				
Mater	rial generation - manual	Name	Compartment	Sub compartment	IPCC 2007, climate	EDIP w/o LT, environmental	ReCiPe Midpoint (H) w/o LT,	ReCiPe Midpoint (H) w/o
Mater	rial generation				change, GWP 100a	impact w/o LT, stratospheric	photochemical oxidant	LT, terrestrial acidification
4 General					kg CO2-Eq	kg CFC-11-Eg	kg NMVOC	ka SO2-Ea
Basic Dicubert	terrestered as the start	Sum			10.02	1.214E-06	0.09516	0.05947
Subst	tance transfer - per fraction	Carbon diswide formil	air.	urban air close to pround	0.238	0	0	0
Mass	transfer to outputs	Carbon dioxide, fossil	air	non-urban air or from high stacks	0.5634	0	0	0
Chan	ge of energy content	Methane, fossil	air	non-urban air or from high stacks	0.124	0	5.027E-05	0
No ou	utput	Carbon dioxide, fossil	air	unspecified	0.06358	0	0	0
🖸 Water	r content	Carbon monoxide, fossil	air	urban air close to ground	0.01791	0	0.0005199	0
🖸 Addit	tion of substances	Methane, fossil	air	urban air close to ground	0.004834	0	1.96E-06	0
Emiss	sions to the environment	Dinitrogen monoxide	air	non-urban air or from high stacks	0.003523	0	0	0
4 Landfill		Dinitrogen monoxide	air	urban air close to ground	0.002598	0	0	0
Mass Mass	transfer over years	Carbon monoxide, fossil	air	non-urban air or from high stacks	0.001711	0	4.965E-05	0
Landf	fill gas generation	Carbon monoxide, fossil	air	unspecified	0.001217	0	3.533E-05	0
Leach	hate generation	Dinitrogen monoxide	air	unspecified	0.001086	0	0	0
a biblogica	whic direction	methane, bromotrifiuoro-, Hal	on 1301 av	non-urban air or from high stacks	* "	1.2031-00	U	
Ange	our orgesoon							
Material pr	Projects External pr	Material transfer Process exch	anges Documentation	LCI Charact. imp. Norm. imp.	Weight, imp. Comp	osition		
3a CH Se	3b Wiser 3c Desktop/C	ourseDat 2a 2b	2c	2d 2e 2f	2g 2	2h		

Clavreul, J.; Baumeister, H.; Christensen, T. H.; Damgaard, A. An environmental assessment system for environmental technologies. *Environ. Model. Softw.* **2014**, *60*, 18–30.

Application:

Modeling Solid Waste Management in Delaware: A Statewide Analysis

- Use optimization modeling to evaluate multiple alternatives for solid waste management for State of Delaware
 - Consider cost, emissions, energy consumption
 - Consider scenarios that may differ from current practice
- Work conducted using the Municipal Solid Waste Decision Support tool (MSW-DST) (first generation tool)

Kaplan, P. O.; Ranjithan, S. R.; Barlaz, M. a. Use of life-cycle analysis to support solid waste management planning for Delaware. *Environ. Sci. Technol.* **2009**, *43* (5), 1264–1270.

Modeling Solid Waste Management in Delaware: A Statewide Analysis

- Challenge: 3 counties and the funding authority does not control waste collection
- New Castle County
 - Urban
 - 64% of the state population
- Kent County
 - Suburban to rural
 - 16% of the state population
- Sussex County
 - Suburban to rural
 - 20% of the state population

How Do we Combine Counties to Provide the State a Meaningful Roadmap?

The manner in which waste is handled is similar ...

How Do we Combine Counties to Provide the State a Meaningful Roadmap?

... but collection costs per Mg are higher in the rural counties

Variation of Waste Flows, Cost, & GHE with Diversion

[curbside recycling + yard waste compositing + combustion]

- In Sussex County, a mixed waste MRF is utilized upstream of combustion to reduce transport costs
- Composting and curbside recycling only used near maximum diversion with resultant increases in GHE emissions
- Larger GHG decreases possible in New Castle County (more populated)

Using an Optimization Approach: Observations from County-Wide Summary

- Non-uniform utilization of curbside collection, combustion subject to a cost constraint
- Optimization model led to counter-intuitive results
 - MRF upstream of combustion
 - Effectiveness of recycling and yard waste composting influenced by transport distance

Identify the Cost-effective 30% Statewide Diversion Strategy?

	DIVERSION			Cost [\$/yr]				
	New Castle	Kent	Sussex	State-wide	New Castle	Kent	Sussex	Total
<	30%	30%	30%	30.0%	42,050,377	21,070,666	35,903,768	99,024,811
	30%	35%	30%	30.7%	42,050,377	21,3 <mark>63.049</mark>	35.903.768	99,317,194
	30%	30%	35%	30.9%	42,050,377	21,0 Unifo	rm	99,403,794
	30%	40%	25%	30.5%	42,050,377	21,6 divers	sion is not	99,258,166
	35%	25%	20%	30.7%	43,245,513	20,7 least	cost case	99,169,597
	35%	20%	25%	30.9%	43,245,513	20,485,900	35,524,785	99,256,197
	35%	25%	20%	30.7%	43,245,513	20,778,283	35,145,802	99,169,597
	35%	20%	20%	30.0%	43,245,513	20,485,900	35,145,802	98,877,214
	40%	20%	20%	33.3%	44,440,648	20,485,900	35,145,802	1()0,072,350
							act Cost 30	0/
							towido	/0
							rersion	

- The optimal statewide strategy is a combination of three unique SWM alternatives that are county-specific
 - a uniform statewide strategy will be sub-optimal

Generating Alternative SWM Strategies

- Optimal solution may not be appropriate
 - political feasibility
 - capital intensive
 - facility siting
 - Combustion prohibited
- Generate alternatives that maximize differences in unit operations & waste flow choices in SWM strategies using Modeling to Generate Alternatives (MGA)

Modeling to Generate Alternatives (MGA)

Cost-effective 30% statewide diversion strategy includes:

- cost-effective 35% diversion from New Castle
 Cost: \$43.2 M/yr relax the cost \$48 M/yr
- cost-effective 20% diversion from Kent

Cost: \$20.2 M/yr ______ *22.5 M/yr

cost-effective 20% diversion from Sussex

Waste Flows for Alternative SWM Strategies to Achieve 30% Statewide Diversion

		Lesst-Cost	NC-Alt 1 + K-Alt 2 + S-LC	NC-Alt 2 + K-Alt 2 + S-Alt2
Mixed Waste Transfer	tons/yr	24394	19894	5330
Pre-Sorted Transfer	tons/yr	719	7185	5829
Mixed Waste MRF	tons/yr	73554	83665	124772
Presorted MRF	tons/yr	86696	32717	17290
Commingled MRF	tons/yr	0	7431	5745
Yard Waste Composting	tons/yr	0	13115	12496
Combustion	tons/yr	80564	118017	130325
Diversion	%	30	30	30

Case Study for Wake County, North Carolina, USA

- 12 independent cities with their own collection systems
 - Each city contracts with county for some solid waste services, primarily the landfill
 - The cities control residential but not commercial waste
 - Commercial waste must be considered for capital investments
 - Substantial data development

Waste Generation Sectors

- Single-family (SF) residential waste generators
 - Waste generation, composition, and collection details specified for each municipality (12)
- Multi-family (MF) residential waste generators
 - Waste generation, composition, and collection details specified for 2 MF sectors: 1) Raleigh 2) other cities
- Convenience centers (CC)
 - Generation at city and county sites combined
- Commercial waste generators (COM)
 - Only includes residual waste excludes any sourceseparated recyclables or food waste
 - Residual waste split between 2 landfills

Wake County: Single Family Costs

Next Steps

- We have represented the current system and have reasonable agreement to mass flows and costs with actual data
- Consider population growth and changes in waste composition over a 30 year time horizon
- Develop optimal scenarios for each city and combine

Consumer Packaging Study: Is biodegradability a desirable attribute for discarded solid waste ?

Interest in the environmental footprint of consumer products

- Many disposed in landfills
- U.S. and globally
- Work to represent the national average landfill
 - Weighted average of landfills that
 - 1. Collect gas and use beneficially
 - 2. Collect gas and flare
 - 3. Do not collect gas

Material modeling in landfills

Observations

- Slower biodegradation is better (national average)
- Recalcitrant biogenic carbon is optimal based on disposal
 - Must now integrate this with the production process

Levis, J. W.; Barlaz, M. A. Is biodegradability a desirable attribute for discarded solid waste? *Environ. Sci. Technol.* **2011**, *45* (11), 5470–5476.

Observations

- Consider a developing country and disposal of a specific material in an uncontrolled landfill (open dump)
 - allocation methodology now becomes critical
 - plastic packaging may not leach or biodegrade
 - Residual contents will

Uncertainty in Solid Waste LCA

Process	Model Uncertainty	Scenario Uncertainty	Parameter Uncertainty
General	Linearity	System boundaries, Spatial and temporal variation, Allocation	
Impact Assessment	Modeling fate and effects	Normalization and weighting methods	Characterization factors
Composition		Choice of composition	Waste fraction distribution, material properties
Collection	Collection model	Choice of collection scheme	Fuel efficiency, emission factors
Treatment	Process models and sub-process models (e.g., landfill gas)	Choice of technology (e.g.,state-of-the art vs. average)	Emission factors
Beneficial recovery	Process model	Choice of offsets and technologies	Substitution rate, emission factors
Energy System		Choice of marginal fuel(s)	Emission factors, fuel efficiency

Adopted from Clavreul, J.; Baumeister, H.; Christensen, T. H.; Damgaard, A. An environmental assessment system for environmental technologies. *Environ. Model. Softw.* **2014**, *60*, 18–30.

Intrinsic LCA Modeling Uncertainties

- Lack of spatial/temporal information on environmental impacts
- Assumption of linearity
- Characterization factor choices and uncertainties
 - Can be related to spatial/temporal uncertainty
 - GWP for methane is 72, 25, or 7.6 kg CO₂e/kg CH₄ using 20, 100, or 500 year horizons (static case)

Tools to evaluate uncertainty and sensitivity

- Scenario analysis
 - What significant parts of the analysis are likely to differ from what was modeled?
- Contribution analysis
 - What processes, materials or emission have the largest effect on results?
- Parametric perturbation analysis
 - How do results change if you change parameter values?
- Uncertainty propagation
 - What is the actual distribution of result values and how are they correlated with parameter uncertainty?

Scenario Analysis

Useful for modeling alternative possibilities

- Use different allocation method(s)
- Use different offset(s)
- Use different fuel/electricity sources
- Provide a broad look at how changes to the system affect results
- Provides information on the robustness of the results

Effect of composition

 Developed per capita generation trends for 30 waste materials based on EPA 2012 MSW Facts and Figures data.

Municipal solid waste generation, recycling, and disposal in the United States: Tables and figures 2010; United State Environmental Protection Agency: Washington, DC, 2011.

Levis, J. W.; Barlaz, M. A; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). *Environ. Sci. Technol.* **2014**.

Effects of Composition

- The WTE facility is used only in the first stage because there is more paper and less plastic than in the following stages and because of the decrease in electricity GHG intensity
- AD use over time increases as more food waste is generated

Levis, J. W.; Barlaz, M. A; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). *Environ. Sci. Technol.* **2014**.

³⁸

Electricity GHG Intensity

Food Waste Management Example

Natural Gas (0.74 kg CO₂e/kWh)

Coal (1.3 kg CO₂e/kWh)

Base case used 55/45 Coal/Natural Gas split based on marginal split in the Southeastern Electricity Reliability Council (SERC) grid (0.89 kg CO₂e/kWh)

Hodge, K. L.; Levis, J. W.; Barlaz, M. A; DeCarolis, A Systematic Evaluation of Industrial, Commercial, and Institutional Food Waste Management Strategies in the U.S.. *Environ. Sci. Technol.* (Submitted).

Contribution Analysis

 Compare the contributions of the various sub-processes and/or materials involved in your process or product to various impacts.

Parameter Perturbation Analysis

Methodology for Uncertainty Propagation: Monte Carlo Analysis

Methodology for Uncertainty Propagation

Methodology for Uncertainty Propagation

Example Result: Monte Carolo Analysis

Monte Carlo Analysis

Landfill GHG Emissions

Levis, J. W.; Barlaz, M. A. Is biodegradability a desirable attribute for discarded solid waste? Supporting Information. *Environ. Sci. Technol.* **2011**, *45* (11), 5470–5476.

treat commercial food waste? *Environ. Sci. Technol.* **2011**, *45* (17), 7438–7444.

Delaware system costs

Kaplan, P. O.; Ranjithan, S. R.; Barlaz, M. a. Use of life-cycle analysis to support solid waste management planning for Delaware. *Environ. Sci. Technol.* **2009**, *4*3 (5), 1264–1270.

Are differences between scenarios robust?

Time Dependent impact of GHGs

- The effect a GHG emission has on radiative forcing varies with time and with existing atmospheric concentrations of GHGs (which also vary with time).
- Dynamic GWIs reduce the impact of future emissions based on the change in radiative forcing of those future emissions.
 - Requires dynamic LCIs
 - May include explicit discounting
 - DNYCO2 Dynamic Carbon Footprinter - http://www.ciraig.org/ en/dynco2.php

Levasseur, A.; Lesage, P.; Margni, M.; Deschěnes, L.; Samson, R. Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. *Environ. Sci. Technol.* **2010**, *44* (8), 3169– 3174.

Levis, J. W.; Barlaz, M. a; Decarolis, J. F.; Ranjithan, S. R. A Systematic Exploration of Efficient Strategies to Manage Solid Waste in U.S. Municipalities: Perspectives from the Solid Waste Optimization Life-Cycle Framework (SWOLF). *Environ. Sci. Technol.* **2014**.

... Uncertain

Brogaard, L. K.; Damgaard, A.; Jensen, M. B.; Barlaz, M.; Christensen, T. H. Evaluation of life cycle inventory data for recycling systems, Rs. Cons. Recycling, 2014, 87, p. 30-45.

Impacts and trade-offs

Laurent, A.; Olsen, S. I.; Hauschild, M. Z. Limitations of carbon footprint as indicator of environmental sustainability. *Environ. Sci. Technol.* **2012**, *46* (7), 4100–4108.

- Laurent et al. (2012) found climate change was generally a reasonable proxy for impacts primarily affected by fossil energy use (e.g., acidification, photochemical oxidation) and potentially poor proxy for toxicity and non-fossil resource use impacts.
- Steinmann et al. (2016) found that marine ecotoxicity and climate change indicators covered 84% of the variance in life-cycle product rankings.
 - The addition of land use and ozone depletion accounted for 90.1%

Steinmann, Z. J. N.; Schipper, A. M.; Hauck, M.; Huijbregts, M. A. J. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? *Environ. Sci. Technol.* **2016**, *50* (7), 3913–3919.

Conclusions and Challenges

- Every study is different and will require different applications of available models
- The optimal system may require coordination between several cities or cities and commercial companies
 - This may not be possible
- How do we express results simplistically so that non-LCA experts can use?
 - Expressing uncertainty is critical to our collective credibility
- As LCA and waste experts, we are best prepared to analyze and interpret
- Do not forget that no one steals garbage, but some people will steal sorted aluminum cans

Acknowledgements

- Ranji Ranjithan, Joe DeCarolis
- Many M.S. and Ph.D. students
- Collaborators at the Technical University of Denmark (Anders Damgaard)
- US Environmental Protection Agency
- National Science Foundation
- Environmental Research and Education Foundation
- Procter & Gamble
- Waste Management Inc.