Engineering Conferences International ECI Digital Archives

Beyond Nickel-Based Superalloys II

Proceedings

7-20-2016

A critical review of high entropy alloys (HEAs) and related concepts

D.B. Miracle AF Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, USA, daniel.miracle@us.af.mil

O.N. Senkov UES, Inc., 4401 Dayton-Xenia Road, Beavercreek, OH USA

Follow this and additional works at: http://dc.engconfintl.org/superalloys_ii Part of the <u>Engineering Commons</u>

Recommended Citation

D.B. Miracle and O.N. Senkov, "A critical review of high entropy alloys (HEAs) and related concepts" in "Beyond Nickel-Based Superalloys II", Chair: Dr Howard J. Stone, University of Cambridge, United Kingdom Co-Chairs: Prof Bernard P. Bewlay, General Electric Global Research, USA Prof Lesley A. Cornish, University of the Witwatersrand, South Africa Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/superalloys_ii/33

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Beyond Nickel-Based Superalloys II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

A CRITICAL REVIEW OF HIGH ENTROPY ALLOYS AND RELATED Seyond Nickel-Based Superalloys

Cambridge, UK 20 July 2016

A CRITICAL REVIEW OF HIGH ENTROPY ALLOYS AND RELATED CONCEPTS DBM and O.N. Senkov, *Acta Mater.*, OVERVIEW, In Review.

New Strategies and Tests to Accelerate Discovery and Development of Multi-PRINCIPAL ELEMENT STRUCTURAL ALLOYS DBM, B.S. Majumdar, K. Wertz and S. Gorsse, *Scripta Mater.*, Accepted.

D.B. Miracle¹ and O.N. Senkov^{1,2}

- 1. AF Research Laboratory, Materials & Manufacturing Directorate, Dayton, OH USA
- 2. UES, Inc., Dayton, OH USA

THE AIR FORCE RESEARCH LABORATORY LEAD | DISCOVER | DEVELOP | DELIVER

A Century of Scientific Excellence

INTRODUCTION

History, Definitions, Hypotheses, Visualizations

THERMODYNAMICS

Enthalpy and Entropy of Solid Solution and Intermetallic Phases

TAXONOMY

Elemental Constituents, Alloy Families

MICROSTRUCTURES

Definitions, Observed and Calculated Phases, Assessment

PROPERTIES

Functional, Mechanical, Assessment

APPLICATIONS & DESIGN

Functional, Structural

FUTURE WORK

Basic and Applied

MAJOR ACCOMPLISHMENTS

Ideas, Achievements, Closing Remarks

MANUSCRIPT APPROACH

A Century of Scientific Excellence

Each section is written in an independent style

- Extensively cross-referenced to other sections, separate summaries

Only major results are shown here

- Emphasize Mechanical Properties and Major Accomplishments

Critical review of main hypotheses recently published

- Scope is different but conclusions are the same

EARLY HEA HYPOTHESES *It's Time to Learn and Move Ahead!*

A Century of Scientific Excellence

If it's published often enough, it's accepted as fact, even if there are no data to support it!

- …more than expected 1-phase, solid solution microstructures with 'simple' crystal structures...
- ✓ ...unusually strong and ductile...
- ✓ ...sluggish diffusion...
- ✓ ...violates Gibbs phase rule...

NONE OF THESE STATEMENTS ARE CORRECT

THERE ARE GREAT REASONS TO STUDY HEAS, BUT NOT THESE

The problem lies not with the new ideas, but in lettinggo of the old ones.John Maynard Keynes

INTRODUCTION *Definitions and Use of Terms*

A Century of Scientific Excellence

Intended or not, HEAs are associated with controlling configurational entropy to produce 1-phase solid solutions

 This stirs unproductive controversy that distracts from the major objective of exploring vast composition space by placing limits on possibilities

We apply a careful use of terms to avoid these implications

- We use the term, "HEA" when configurational entropy or the intent to produce 1-phase, solid solution microstructures are important
- We use multi-principle element alloys (MPEAs) or complex concentrated alloys (CCAs) to evoke vast composition space with no restrictions concerning entropy or the phases present
- This is a practical approach to clarify discussion, to focus efforts, and to avoid an unproductive controversy, and is not intended to detract from contributions of pioneers in the field

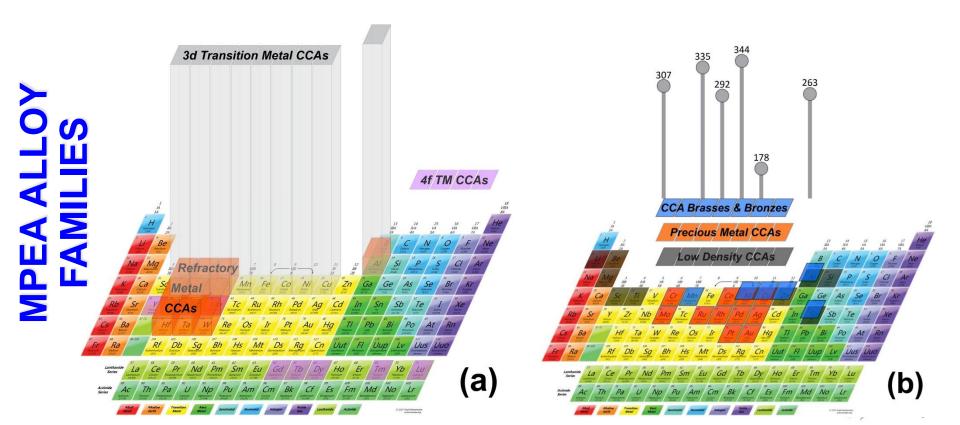
(CCA,MPEA) = HEA w/o (SS, 1-phase, entropy)

THERMODYNAMICS *All Terms Can Be Important*

A Century of Scientific Excellence

- Four primary thermodynamic terms must be considered in the competition between SS and IM phases
 - Each of these four terms can be significant
- The competition between phases is controlled by relatively small differences between these four larger values Usually (*but not always!*), ($H^{SS}-H^{IM}$) > 0 and ($S^{SS}-S^{IM}$) > 0
- No single value or pair of values consistently dominate phase selection
- These considerations make it difficult to accurately predict phases by focusing on a single thermodynamic term

$$\Delta G^{\text{SS-IM}} = G^{\text{SS}} - G^{\text{IM}} = (H^{\text{SS}} - H^{\text{IM}}) - T(S^{\text{SS}} - S^{\text{IM}})$$



A Century of Scientific Excellence

A remarkable focus is found on elements used in MPEAs, and in groupings of elements

A broader use of element groupings is now underway

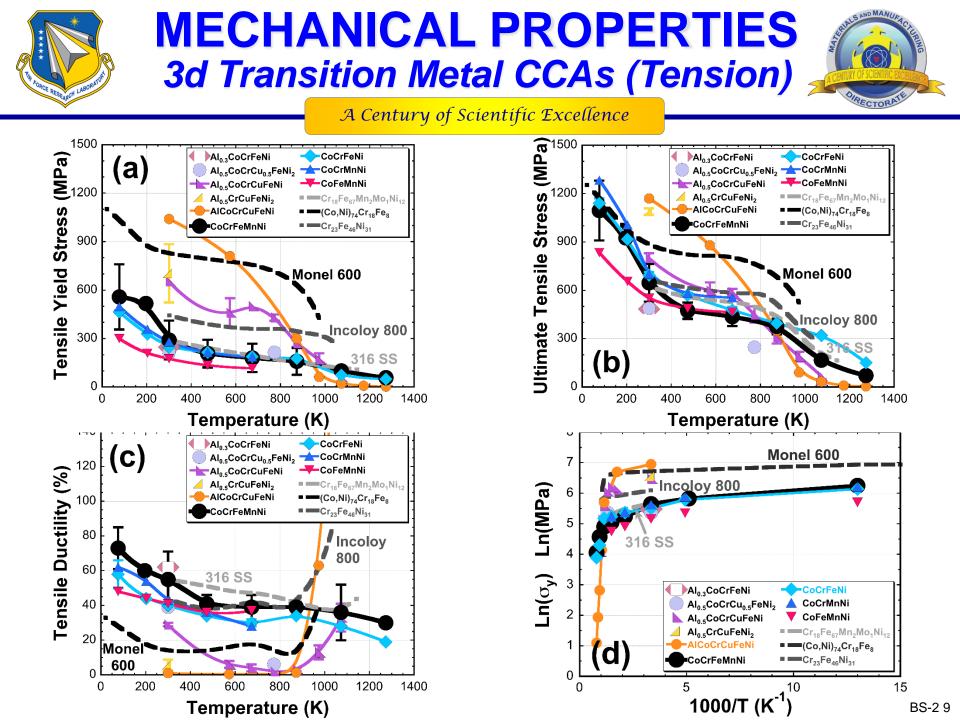
MECHANICAL PROPERTIES 3d Transition Metal MPEAs

A Century of Scientific Excellence

MPEAs are often claimed to be unusually strong and ductile, but available data don't support these claims

- 3d transition metal MPEAs have essentially the same properties as austenitic stainless steels and nickel alloys
 - Generally have RT σ_{y} below 300 MPa and σ_{uts} below 700 MPa
 - Significant strengthening from work-hardening and grain refinement are not expected to be effective above about $T_m/2$ (about 500C)

Austenitic stainless steels and nickel alloys are 3d transition metal CCAs


 All austenitic stainless steels and nickel alloys have Cr-Fe-Ni as principal elements and can also have significant additions of Co, Cu, Mn, Mo

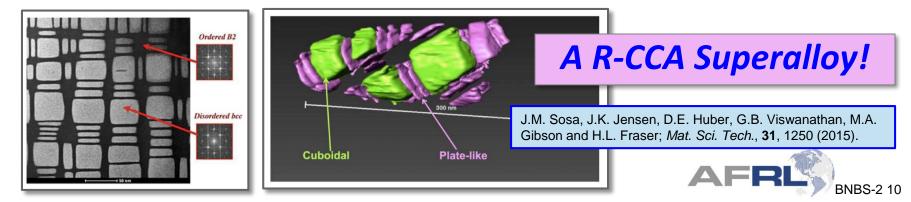
3d TM MPEA strengths do not compete with precipitation hardened stainless steels or nickel superalloys

– σ_y <100 MPa at about 1100 K, but superalloy sheet requires σ_y >200 MPa and blades require σ_y >600 MPa

IBS-2 8

REFRACTORY METAL CCAs Structural Properties Summary

A Century of Scientific Excellence

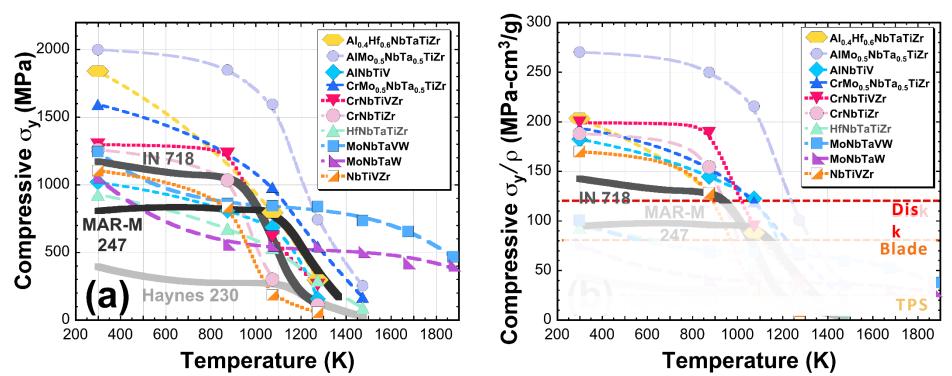

Refractory metal CCAs were created to compete with nickel superalloys

- Refractory metal CCAs are still in relatively early stages of exploration (only 26 alloys in this assessment)
- A wide range in elemental properties (density, modulus, environmental resistance) suggest a wide range in alloy properties

Densities range from 5.59 to 13.75 g cm⁻³

Most alloys have one or two BCC phases, one or more Laves phases, and one alloy reports a B2 phase

- The full extent of the BCC solid solution phase field has not been explored


REFRACTORY METAL CCAs Structural Properties Summary

A Century of Scientific Excellence

Most mechanical properties are measured in compression with only a few tensile studies

- Several alloys have yield and specific yield strengths that show potential to increase stresses and/or temperatures compared to superalloys
- The strongest alloys have ≥10% RT compressive ductility, offering the possibility of useful tensile ductility

A Century of Scientific Excellence

Continued exploration of principal element combinations

- New alloy bases
- Control the type, volume fraction, size, morphology and distribution of second phases to design precipitation strengthened microstructures
- Extent of solid solution phases

Tensile properties of alloys with compressive ductility ≥10% Characterize oxidation behavior and explore alloying to improve environmental stability

- Simple, hi-throughput oxidation screening tests are recommended

Effect of deformation processing on microstructure, properties

– Cold-rolling has been demonstrated in one alloy

RAPIDLY CHARACTERIZE

New Strategies and Tests to Accelerate Discovery and Development of Multi-Principal Element Structural Alloys DBM, B.S. Majumdar, K. Wertz and S. Gorsse, *Scripta Mater.*, Accepted.

Conventional Characterization

1st Tier

-Tensile strength, ductility

2nd Tier

- -Fracture toughness
- -Fatigue
- -Creep

Final Characterizations

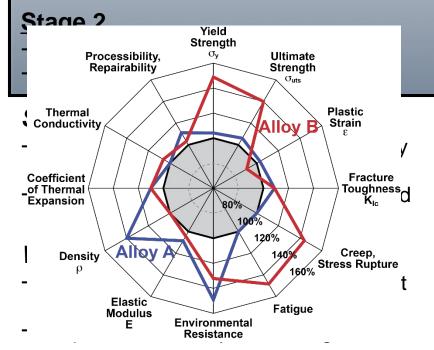
- -Environmental resistance
- -'...ilities'

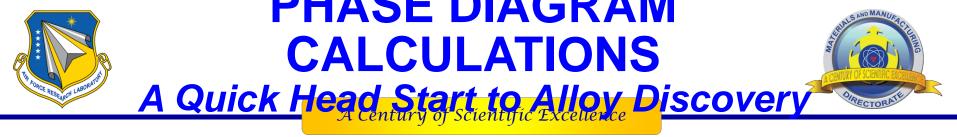
Strengths

 Enables intuitive 'pre-selection' when a knowledge base already exists for a small number of candidate alloy systems.

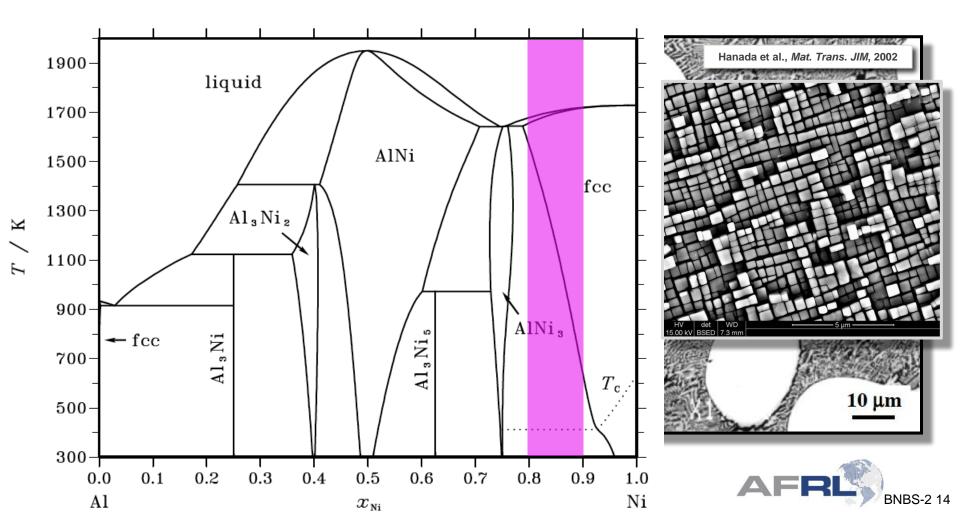
Weaknesses

 Starts with difficult-to-measure properties that depend on both composition and microstructure, making it hard to reject alloys quickly.


New Characterization Strategy

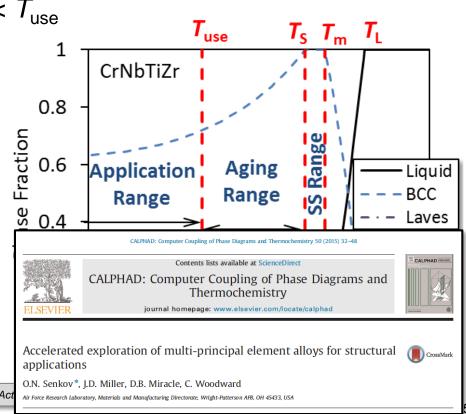

Stage 0

- Hi throughput phase diagram calculations


Stage 1

- Microstructure-independent properties
- Environmental resistance
- Modulus, density, thermal properties

Specific phase diagram features enable two-phase microstructures that may give a good balance of properties



Specific phase diagram features enable two-phase microstructures that may give a good balance of properties

Phase diagram criteria from <u>CAL</u>culated <u>PHA</u>se <u>Diagram</u> (CALPHAD) calculations

- $-T_{\rm m} > T_{\rm use}$, no phase transformation $< T_{\rm use}$
- At least 1 SS phase and no more than 1 IM phase at $T_{\rm use}$
- One phase must dissolve above T_{use}
- fcc, bcc, hcp or ordered derivative crystal structures
- These are selective criteria

Calculation of 135,000 phase diagrams has identified ~100 candidate high temperature structural alloy systems

EXPERIMENTS A Centur Stagle fiel Excellence

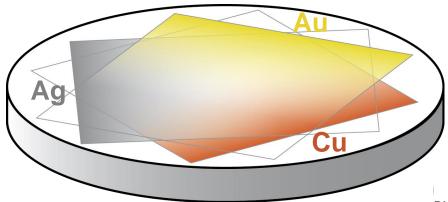
STAGE 0

Calculated Phase Diagrams

STAGE 1

Structure-Insensitive Properties

STAGE 2


Structure-Sensitive Properties

Materials libraries with controlled composition gradients

Density, modulus, T_m, environmental resistance

Environmental resistance is probably the most impactful test

- Possibility to reject many candidates early in the evaluation process
- Fast and conceptually straightforward
- Has not yet been demonstrated

EXPERIMENTS A Centus tage fi 2 Excellence

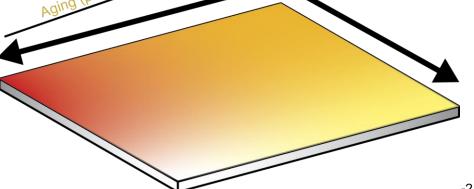
STAGE 0

Calculated Phase Diagrams

STAGE 1

Structure-Insensitive Properties

STAGE 2


Structure-Sensitive Properties

Fixed-composition materials libraries with controlled microstructure gradients

- Strength, tensile ductility, creep, fracture, fatigue
- Libraries are conceptually simple

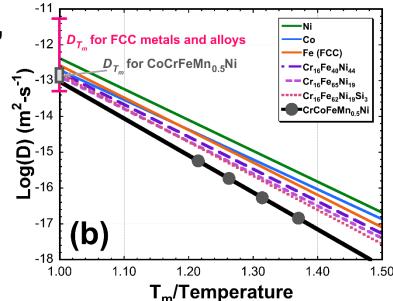
Stage 2 unmet charenges

- Strength can be as see see hardness
- There are no hi thrup put tests for ductility, creep, fatigue, toughness
- This is a major barrier

MAJOR ACCOMPLISHMENTS Four HEA Core Effects

A Century of Scientific Excellence

Present data & analyses do not support an observable effect of configurational entropy on preferred formation of 1-phase alloys, solid solution phases or simple crystal structures


- Two direct experiments and two computational studies do not support the 'high entropy' hypothesis
- Six issues bias observations toward 1-phase/ SS/ 'simple' microstructures
- A simple 'structure in structure out' (SISO) analysis links observed alloy microstructures to the structures of the constituent elements

Limited data show that MPEA diffusion is not unusually 'sluggish'

 In the same range as FCC elements and conventional alloys

Insufficient data to evaluate the 'lattice distortion' hypothesis

The 'cocktail effect' is a colorful phrase for 'non-linearity' of elemental combinations in general

MAJOR ACCOMPLISHMENTS

- Introduced and established the concept of exploring the vast compositional realm of multi-principle element alloys.
- Establish importance not dominance of configurational entropy as a control variable in phase selection.
- Define/explore 7 new alloy families and 122 new base alloys, emphasizing 3d transition metal and refractory metal alloys.
- Expand the known 3d transition metal FCC phase field and discover up to 10 other extended 1-phase fields.
- Establish composition/ microstructure/ properties relations for 3d transition metal MPEAs
- Expand initial ideas to include multi-phase microstructures, functional materials and high-throughput evaluations.
- High throughput calculations identify over 200 alloy bases as potential high temperature structural materials.

RECOMMENDATIONS

A Century of Scientific Excellence

Continue to explore and develop MPEAs for structural use

- Expand the range of alloy families, possibilities have barely been scratched
- Include both SS and precipitation strengthened microstructures
- Expand thermo-mechanical processing efforts to control microstructure

Apply strategy linking high-throughput computations & experiments to develop high temperature MPEAs

- High throughput experiments for structural materials requires new tools

Establish basic scientific concepts

- Strengthening models
- Lattice distortion effects

A Century of Scientific Excellence

All but 2 allotropic transformations convert to BCC at T_m Crystal structures at RT and at T_m

Element	Atomic Number	Used in # of alloys	Structure at RT*	Structure at T _m *	Element	Atomic Number	Used in # of alloys	Structure at RT*	Structure at T _m *
Н	1				Rh	45	1	A1 (FCC)	
Li	3	7	A2 (BCC)		Pd	46	3	A1 (FCC)	
Be	4	1	A3 (HCP)	A2 (BCC)	Ag	47	1	A1 (FCC)	
В	5	3	– (hR105)		Cd	48		A3 (HCP)	
С	6	7	A3 (HCP)		In	49	. –	A6 (tl2)	
N	7				Sn	50	17	A5 (tl4)	
0	8				Sb	51		A7 (hR2)	
Na	11		A2 (BCC)		Те	52		A8 (hP3)	
Mg	12	8	A3 (HCP)		Cs	55		A2 (BCC)	
Al	13	263	A1 (FCC)		Ba	56		A2 (BCC)	
Si	14	15	A4 (cubic) [¶]		La	57		A3 (DHCP)	A1 (FCC)
P	15		- (oC8)		Ce	58		A3 (HCP)	A2 (BCC)
S	16		– (oF128)		Pr	59	4	A3 (DHCP)	A2 (BCC)
K	19		A2 (BCC)		Nd	60	1	A3 (DHCP)	A2 (BCC)
Ca	20	4	A1 (FCC)	A2 (BCC)	Sm	62		C19 (hR3)	A2 (BCC)
Sc Ti	21 22	1		A2 (BCC)	Eu Ca	63	2	A2 (BCC)	
V	22 23	101 55	A3 (HCP)	A2 (BCC)	Gd Tb	64 65	2 2		A2 (BCC)
v Cr	23 24	307	A2 (BCC)			66	2		A2 (BCC)
Mn	24 25	307 79	A2 (BCC) A12 (cl58)	A2 (BCC)	Dy Ho	67	Ζ	A3 (HCP) A3 (HCP)	A2 (BCC)
Fe	25 26	79 335	A12 (CISO) A2 (BCC)	A2 (BCC) A2 (BCC)	Er	68		A3 (HCP)	
Co	20	292	A2 (BCC) A3 (HCP)	A2 (BCC) A1 (FCC)	Tm	69	1	A3 (HCP)	
Ni	28	292 344	A1 (FCC)	AT (FCC)	Yb	70	I	A3 (FCC)	A2 (BCC)
Cu	29	178	A1 (FCC)		Lu	71	2	A3 (HCP)	A2 (DCC)
Zn	30	7	A3 (HCP)		Hf	72	5	A3 (HCP)	A2 (BCC)
Ga	31	'	A11 (oC8)		Та	73	13	A2 (BCC)	A2 (000)
Ge	32	1	A4 (cubic) [¶]		W	74	2	A2 (BCC)	
As	33		A7 (hR2)		Re	75	2	A3 (HCP)	
Se	34		A8 (hP3)		Os	76		A3 (HCP)	
Rb	37		A2 (BCC)		lr	77		A1 (FCC)	
Sr	38		A1 (FCC)	A2 (BCC)	Pt	78		A1 (FCC)	
Y	39	6	A3 (HCP)	A2 (BCC)	Au	79	2	A1 (FCC)	
Żr	40	33	A3 (HCP)	A2 (BCC)	Hg	80	-	A10 (hR1)	
Nb	41	29	A2 (BCC)		TI	81		A3 (HCP)	A2 (BCC)
Мо	42	49	A2 (BCC)		Pb	82		A1 (FCC)	- (
Ru	44	1	A3 (HCP)		Bi	83		A7 (mC4)	

Table 3