Engineering Conferences International ECI Digital Archives

Design and Manufacture of Functional Microcapsules and Engineered Products

Proceedings

4-5-2016

Engineering microencapsulated PCM slurry with improved performance for cold storage

Fideline Tchuenbou-Magaia University of Birmingham, f.l.tchuenboumagaia@bham.ac.uk

Yaoting Huang University of Birmingham

Zhibing Zhang University of Birmingham

Yulong Ding University of Birmingham

Yongliang Li University of Birmingham

Follow this and additional works at: http://dc.engconfintl.org/microcapsules

Recommended Citation

Fideline Tchuenbou-Magaia, Yaoting Huang, Zhibing Zhang, Yulong Ding, and Yongliang Li, "Engineering microencapsulated PCM slurry with improved performance for cold storage" in "Design and Manufacture of Functional Microcapsules and Engineered Products", Chair: Simon Biggs, University of Queensland (Aus) Co-Chairs: Olivier Cayre, University of Leeds, UK Orlin D. Velev, North Carolina State University, USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/microcapsules/17

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Design and Manufacture of Functional Microcapsules and Engineered Products by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

ENGINEERING MICROENCAPSULATED PCM SLURRIES WITH IMPROVED PERFORMANCE FOR COLD STORAGE

Fídelíne L. Tchuenbou-Magaía, Zhíbíng Zhang Yulong Díng & Yonglíang. Lí

Bírmíngham centre for energy storage/Centre for Formulation engineering, University of Bírmíngham, Edgbaston, Bírmíngham B15 2TT, UK

Engineering and Physical Sciences Research Council 05/04/2016

Talk layout

I. **Project overview:** Why? What ? How?

II. Different types of Microencapsulated PCM Slurry Systems: MPCMs/EG-W; MPCMs/Silicon fluid

II. Conclusions & Outlook

Project overview: Why? What ? How?

Drivers

C1		-+-	- 1	 -
		are		26
and the second	in the local division of			 9~

Jon Henley

< Shares

4.230

World set to use more energy for cooling than heating

Rising demand for air conditioning and refrigeration threatens to make planet hotter and undermine pledges to rein in emissions

How keeping cool is making us hot

http://www.theguardian.com/environment/2015/o ct/26/cold-economy-cop21-globalwarming-carbon-emissions

Aims: Reduce energy consumption Increase cooling technologies efficiency & Minimise their environmental impact

Microencapsulated PCMs in Slurries for cold storage:

Opportunities and Challenges

- Dual role, both transport
 medium & thermal storage
 medium;
- ✓ Increase energy density (e.g. 40% Φ);
- Make PCM easy to handle when phase change occurs;
- Increase heat transfer surface;
- Possibility of cascade cold storage with different F.P.
 PCMs

Encapsulation (appropriate shell and core materials (e.g. poor thermal conductivity), capsules size, production cost, scalability);

 Durability and long lifespan of MPCMSs (phase segregation, capsules agglomeration; stability under extended heating/cooling cycle).

The provision of cold: Our approach

Development of microencapsulated PCMs in Slurries for cold storage

MPCMs/carrier fluids: Possible MPCMSs formulations

Hydrophobic core/ Hydrophilic carrier F. Hydrophilic core/ Hydrophobic carrier F. Hydrophobic core/ Hydrophobic carrier F.

Microencapsulated PCM Slurry Systems: MPCMs/EG-W; MPCMs/Silicon fluid

Enhancement of Heat transfer fluid thermal conductivity: effect of SiO₂ concentration

 $K = \propto \rho C_p$; K, Thermal Conductivity (W / (m K)

 \propto , Thermal Diffusivity (m²/s); Cp, specific heat (J/(kg K); ρ , Density (kg/m³)

Enhancement of Heat transfer fluid thermal conductivity: effect of particles concentration

Encapsulation of Dowtherm Q

Case1 : Hydrophobic core/Hydrophilic carrier F. MPCMs or structured MPCMs with melamine formaldehyde (MF) shell or MF coated silica pickering PCM emulsion

Dowtherm Q loaded inside MF (Q1)

MF coated silica pickering Dowtherm Q emulsion ((Q2)

Dowtherm Q structured with hydrophobic silica nanoparticles loaded inside MF (Q3)

Encapsulation of Dowtherm

Encapsulation via sol gel polymerisation of tetraalkoxysilane to form silica shell.

Structured MPCMs with melamine formaldehyde (MF) shell

Cryo-SEM of MPCM structured with Hydrophobic SiO₂

Microencapsulated Dowtherm Q/EG-Water

Dowtherm Q loaded inside MF

Dowtherm Q structured with 1% hydrophobic SiO₂ loaded inside MF

1% Hydrophilic SiO₂

Conclusion: PCMSs with hydrophobic particles/EG-Water system look promising Microencapsulated diethyl benzene loaded inside MF-cu via electroless plating Case 2 : Hydrophobic core/Hydrophobic carrier F.

Microencapsulated diethyl benzene structured with hydrophobic Al₂O₃ loaded inside MF-Cu

Cross-sectional Cryo-SEM image

Microencapsulated diethyl benzenehydrophobic Al₂O₃ loaded inside MF-cu

SEM (a) image and (b) EDS spectrum of copper-coated microcapsules

Microencapsulated diethyl benzeneloaded inside MF-cu

SEM (a) image and (b) EDS spectrum of copper-coated microcapsules

Microencapsulated diethyl benzeneloaded inside MF-cu

Dowtherm J

Element	Weight%	Atomic%
С	28.60	58.96
0	11.72	18.13
S	0.20	0.16
Cu	56.82	22.14
Pd	1.91	0.44
Sn	0.75	0.16
Totals	100.00	

Dowtherm J structured with hydrophobic Al₂O₃

Element	Weight%	Atomic%
С	37.53	66.23
0	11.35	15.04
Al	3.74	2.93
Si	0.13	0.10
S	0.12	0.08
Cl	0.21	0.12
Cu	45.74	15.26
Pd	0.90	0.18
Sn	0.28	0.05
Totals	100.00	

Encapsulation methanol structured with CAB coated with calcium alginate/CaCO₃ Hydrophilic core/Hydrophobic carrier F.

1 week

1 day

Encapsulation methanol structured with CAB coated with CaCO3

Hydrophilic core/Hydrophobic carrier F.

One month

One day

Encapsulation methanol structured with CAB coated with CaCO3

Conclusion and Outlook

- A range of microencapsulated PCMS in slurries have been formulated;
- Structured PCMS with hydrophobic nanoparticles yielded better results when compared to hydrophilic ones;
- Thermal conductivity enhancement seems not to have a linear relation with particles concentration. Critical concentration, 1% SiO₂ and 2.5%Al₂O₃;
- MF microcapsules coated with copper look promising & need optimisation.

Conclusion and Outlook

The journey continues

- Study thermal and mechanical properties of MPCMS & MPCMSs;
- ✓ Study leakage;
- Study MPCMSs rheological behaviour & their stability under repeatable pumping & cycling;
- Explore coating with other metals;
- Explore different shapes and types of nanoparticles

Thank you for your attention

Acc.V Spot Magn Det WD |------ 5 μm 20.0 kV 4.8 3791x SE 10.1