Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Fall 4-12-2016

The value of CO2-geothermal bulk energy storage to CO2

Jonathan Ogland-Hand The Ohio State University, ogland-hand.1@osu.edu

Jeffrey Bielicki The Ohio State University

Thomas Buscheck *LLNL*

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Jonathan Ogland-Hand, Jeffrey Bielicki, and Thomas Buscheck, "The value of CO2-geothermal bulk energy storage to CO2" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/ Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/co2_summit2/19

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

The Value of CO₂-Geothermal Bulk Energy Storage for Reducing CO₂ Emissions

Jonathan D. Ogland-Hand CO₂ Summit II: Technologies and Opportunities April 10-14, 2016

Mentors

Jeffrey M. Bielicki, Ph.D.

Civil, Environmental, and Geodetic Engineering and The John Glenn College of Public Affairs The Ohio State University bielicki.2@osu.edu

Thomas A. Buscheck, Ph.D.

Atmospheric, Earth, and Energy Division Lawrence Livermore National Laboratory buscheck1@IInl.gov

Sustainable Energy Pathways program (grant 1230691)

The Ohio State University

Two Primary Challenges

Earth Battery

CO₂-Geothermal Bulk Energy Storage (CO₂-BES)

Buscheck, T.A. et al., 2016. Multi-Fluid Geo-Energy Systems: Using Geologic CO₂ Storage for Geothermal Energy Production and Grid-Scale Energy Storage in Sedimentary Basins. *Geospheres*

The Ohio State University

Earth Battery

CO₂-BES

Earth Battery

CO₂-BES

This Evening

Using geologic CO₂ storage for enhanced geothermal energy and water recovery and energy storage

Time: 17:25-17:50

The Ohio State University

What is the Value?

Indirect CO₂ Emissions Reductions (time-shift)

Direct CO₂ Emissions Reductions (CO₂ sequestration)

What is the value of CO_2 -BES for reducing CO_2 emissions?

http://www.eia.gov/todayinenergy/images/2012.08.17/DispatchCurve.png

Value
$$\left[\frac{\$}{MWh}\right] = f(Price of CO_2)$$

Changes in dispatch order due to differences in CO₂ intensity

Optimization Model

Choose generation from:

- 1. Nuclear
- 2. Coal
- 3. Natural Gas
- 4. Wind
- 5. CO₂-BES
- Diurnal operation
- Perfect foresight

Minimize:

$$\Sigma_{t=0}^{T} \frac{\left(\sum_{i} [Q_{i,t}(V_{i} + \Omega * \varsigma_{i})\right) + \frac{(1+\eta)*Q_{B,t}}{\eta}(V_{B} + \Omega * \varsigma_{B}) + X_{t} * \left(\frac{E*V_{B}}{m} + K - \Omega\right)\right)}{i \in \{1, 2, 3, 4\}}$$

subject to:

$$0 \notin Q_{1,t} \notin \overline{Q_{1}}$$

$$Q_{1,t} = Q_{1,t-1}$$

$$M_{k} \notin Q_{k,t} \notin \overline{Q_{k}}$$

$$k \hat{1} \{2,3\}$$

$$Q_{k,t} \stackrel{3}{} Q_{k,t-1} - R_{k}$$

$$Q_{k,t} \notin Q_{k,t-1} + R_{k}$$

$$0 \notin Q_{4,t} \notin W_{t}$$

$$C_{t} = C_{t-1} + \sum_{i} [Q_{i,t}] - (D_{t} + \frac{X_{t} * E}{m})$$

$$Q_{B,t} \notin h \cdot C_{t-1}$$

$$D_{t} + \frac{X_{t} * E}{m} \leq \sum_{i} [Q_{i,t}] + Q_{B,t}$$

$$X_{t} \leq Q_{2,t} * \varsigma_{2} + Q_{3,t} * \varsigma_{3}$$

THE OHIO STATE UNIVERSITY En

Electricity System Data: ERCOT

Variable Costs: Congressional Research Service

CO₂ Emissions Factors: Environmental Protection Agency

Electricity System Component	Capacity [MWh]	Ramp Rate [MWh]	Minimum Required Generation [MWh]	Variable Cost [\$/MWh]	CO2 Emission Rate [tCO2/MWh]
Nuclear	1,240.00	0.00	N/A	8.23	0.00
Coal	3,644.00	0.00	1,356.00	17.31	0.91
Natural Gas	5,921.00	525.00	592.00	33.27	0.45
Wind	N/A	N/A	N/A	6.67	0.00
CO ₂ -BES	N/A	N/A	N/A	13.69	0.00

CO₂-BES Parameters

CO₂ Injection Pump Efficiency: 75%

CO₂ Injection Rate: 120 kg/s Reservoir Depth: 4 km

ΔP Between Production and Injection Well: 10 MPa

Cost of CO₂ Capture: \$74/tCO₂

Price of $CO_2 = \frac{0}{tCO_2}$

THE OHIO STATE UNIVERSITY

Lessons

Bulk Energy Storage (BES):

- time-shift electricity production
- indirectly reduce CO₂ emissions

Lessons

Bulk Energy Storage (BES):

- time-shift electricity production
- indirectly reduce CO₂ emissions

CO₂-BES:

- *directly and* indirectly reduce CO₂ emissions
- generation and value influenced by price on CO₂ emissions
- potential value of reducing CO₂ emissions is greater than operating cost
- direct benefits are greater than indirect benefits

Lessons

Bulk Energy Storage (BES):

- time-shift electricity production
- indirectly reduce CO₂ emissions

CO₂-BES:

- *directly and* indirectly reduce CO₂ emissions
- generation and value influenced by price on CO_2 emissions
- potential value of reducing CO₂ emissions is greater than operating cost
- direct benefits are greater than indirect benefits

CO₂-BES may be more attractive for energy storage than CAES or PHES

Jonathan D. Ogland-Hand

PhD Student

Environmental Science Graduate Program The Ohio State University ogland-hand.1@osu.edu

