Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Spring 4-12-2016

Update on the NET Power 50 MWth zero emission power station

David Freed 8 *Rivers Capital*, david.freed@8rivers.com

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

David Freed, "Update on the NET Power 50 MWth zero emission power station" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/co2_summit2/24

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

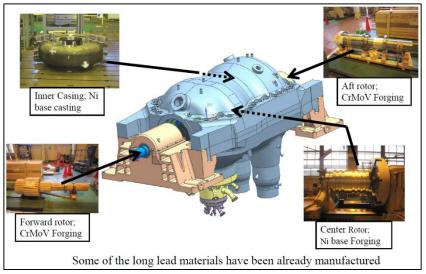
NET Power

Truly Clean, Cheaper Energy

April 2016

The NET Power Advantage

- NET Power makes electricity from natural gas
- NET Power costs the same as, or less than, electricity from existing natural gas power plants
- NET Power will capture substantially all of the carbon and non-carbon atmospheric emissions without any additional cost
- NET Power also does not need to use water (at a small reduction in efficiency)

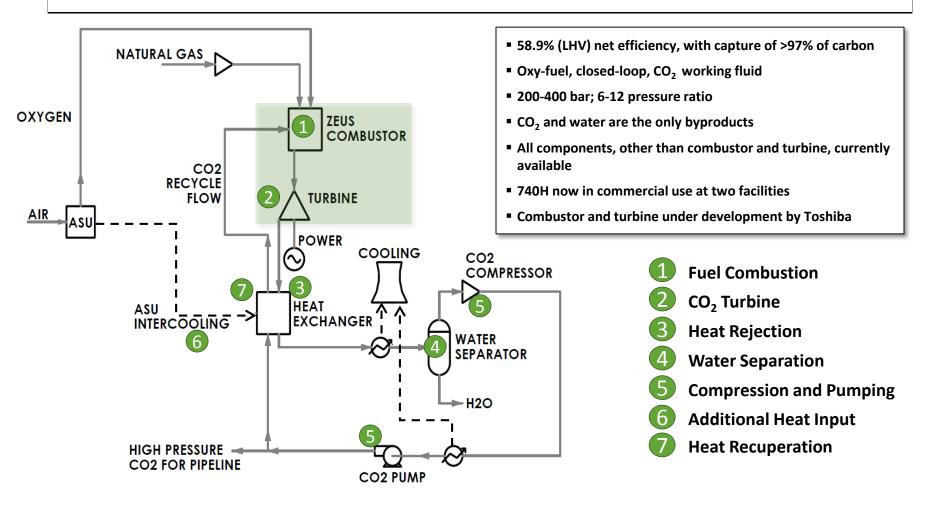


Readiness

Every single item of equipment is commercially available, except the turbine

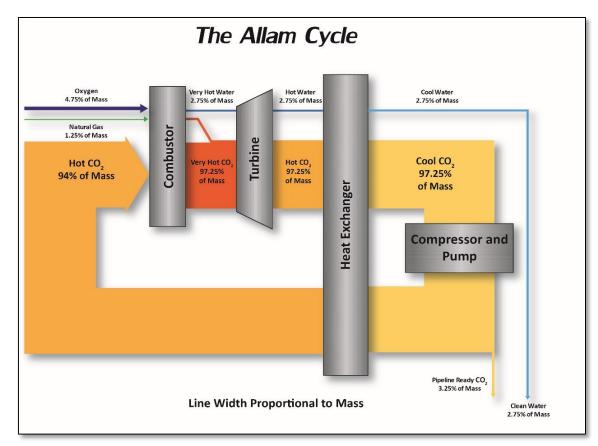
The turbine is in an advanced state of readiness

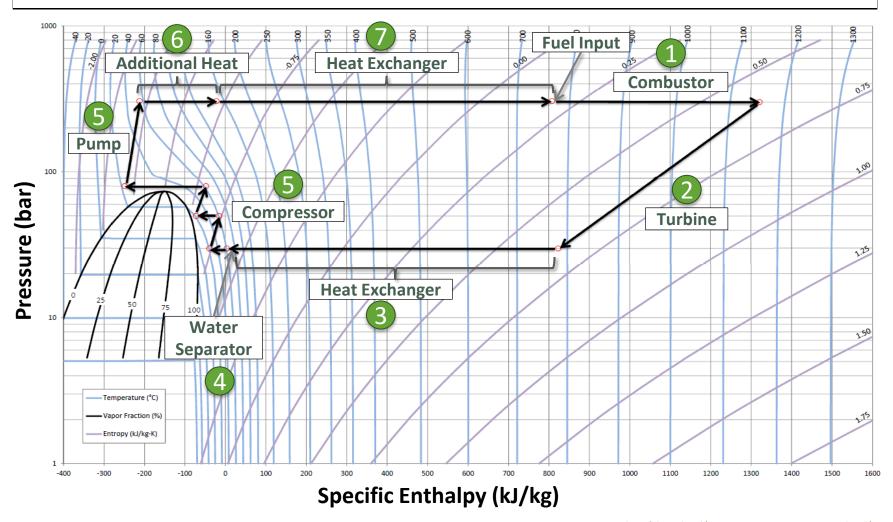
- It is being engineered, designed and manufactured by Toshiba.
- The blades, stages and pressure shells are not new.
- Only the combustor is new.
- A 5MWt test combustor has been operating since January 2013.



Technology Overview and Status

The Supercritical CO₂ Allam Cycle


NET Power is based on the Allam Cycle platform


The supercritical CO₂ Allam Cycle is simple

- Oxy-combustion is a wellknown method for simplifying carbon capture
- The main problem is that oxygen is too expensive to produce to make the process economic
- The Allam Cycle makes oxycombustion economic by:
 - Relying on a more efficient core power cycle
 - Reducing ASU and O₂ costs by requiring less O₂ through recycling heat within the system

The Allam Cycle natural gas power system

NET Power's Development Program

Performance and Economics Overview

Development pathway

- Thermodynamic modelling
- Costing
- Program development

- 295MWe commercial plant pre-FEED
- 50MWth demonstration plant FEED
- 5MWth combustor testing
- 50MWth demonstration construction and testing
- 295MWth commercial development

295MWe commercial construction and operation

Current Stage

Construction is underway on NET Power's 50MW demonstration plant

50MWth natural gas demonstration plant

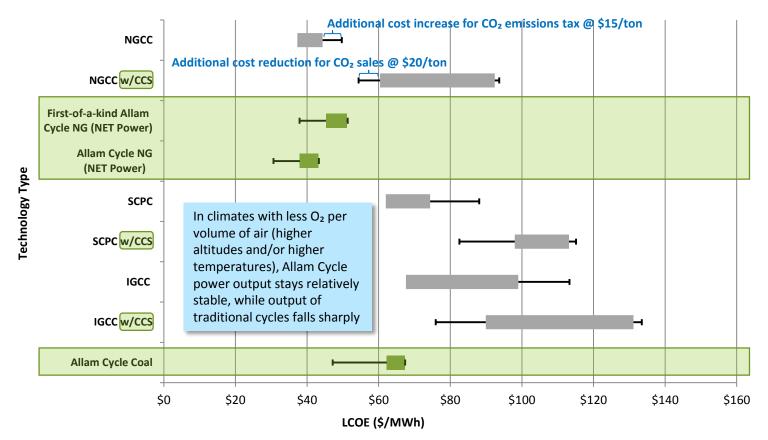
- Plant design scaled down from 500MWth pre-FEED design to ensure scalability to commercial size
- Site is in La Porte, TX

TETPOWER

Plant includes all core components of the Allam Cycle

- Combustor/turbine, heat exchangers, pumps and compressors, control system, and ancillary equipment
- Plant will undergo full performance evaluation (startup, shutdown, ramping, hot/warm/cold starts, emergency operations)
- Oxygen will be pulled from a pipeline as opposed to a dedicated ASU
- CO₂ will be generated at high pressure and quality, but will be emitted
 - CO₂ off-take found to be impractical for variable testing operation period
 - CO₂ quality will be confirmed and monitored to ensure viability for commercial facility

Program is fully funded


 \$140 million program includes first of a kind engineering, all construction, and testing period

NET Power's Benefits

Performance and Economics Overview

NET Power is competitive without CO₂ sales

- LCOE calculated using EPRI methodology
- Assumes natural gas at \$2.85/MMBTU and coal at \$1.73/MMBTU
- Every move of \$1 in natural gas moves LCOE \$6
- Cost ranges represent range of data combined from: EIA (2013), Parsons Brinkerhoff (2013); Black & Veatch (2012); DOE NETL (2012)

NET Power plants are highly efficient

NET Power and Combined Cycle: Efficiency Comparison					
	ННУ		LHV		
Energy Components	F-Class US NGCC Plant (0% CC)*	NET Power NG Plant (100% CC)	F-Class US NGCC Plant (0% CC)*	NET Power NG Plant (100% CC)	
Gross Turbine Output	51.06%	74.65%	58.7%	82.7%	
CO ₂ Compressor Power	(Compressors mechanically coupled)	-10.47%	(Compressors mechanically coupled)	-11.6%	Parasitic Load Provides Opportunity for
Plant Parasitic Auxiliary	-0.86%	-11.01%	-1.2%	-12.2%	Efficiency Improvement
Power					ASU 91.8%
Net Efficiency	50.20%	53.17%	57.5%	58.9%	NG Compressor 8.2%

*Performance data from NETL Cost and Performance Baseline Report, 2013.

NET Power's low cost-of-capture solves the CO2 utilization and storage problem

CO₂ capture

- at no extra cost
- already at pressure (available from 30 bar/450 psi to 300 bar/4500 psi)
- already high quality
- Cheaper than geologic CO₂ used for Enhanced Oil Recovery (no associated lifting costs or mineral lease costs)
- Significantly lower-cost CO2 enables much more economic utilization in a variety of ways
 - Sequestration
 - Enhanced oil recovery
 - Enhanced coal bed methane recovery
 - Building materials
 - Biomass production
 - Chemical processes

The NET Power advantage summarized

Low-Cost

- Utilizes abundant, low-cost natural gas
- No additional cost for CO₂ capture

Cleaner

- Near-100% capture of all carbon emissions (>97%)
- No other air emissions, including NOx
- Water usage can be eliminated

Flexible

- Less sensitive to changes in siting conditions (high altitude and temp)
- Siting not water or air permit constrained
- Capable of full electrical turndown without emissions issues, enabling fast response

NET Power

+1 (919) 667-1800

www.NETPower.com / www.8Rivers.com