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Synergistic	Programs	

•  CCSMC-	Carbon	Capture	Simula:on	
Mul:-disciplinary	Center	

•  Created	by	PSAAP	II,	an	NNSA	
program	

•  Oversight	and	technical	support	
from	NNSA	labs	(LANL,	SNL,	LLNL)	

•  Primary	goal	of	promo:ng	super	
compu:ng	in	the	community	

•  CCSI	I	

•  DoE	Office	of	Fossil	Energy	

•  Primary	goal	of	assis:ng	industry	in	
making	carbon	capture	a	feasible	
reality	

•  Provides	tools	for	industry	friendly	
(small	cluster	and	desktop)	models	
and	simula:on	based	design	

Basic	data	models	from	CCSMC	are	improved	via	tools	designed	in	CCSI.	



Oxy-fuel	combustion	

•  Inject	high	purity	O2	
•  Recycle	the	flue	gas	
•  maintains	a	reasonable	temperature	
•  reduces	the	volume	of	the	gas	to	be	treated	
•  results	in	a	more	easily	captured	CO2	stream	

•  Dras:cally	changes	the	furnace	environment	
•  CO2,	H2O,	and	O2	all	become	important	
•  Radia:on,	O2	diffusion,	and	combus:on	regimes	all	change	
•  Endothermic	reac:ons	occur	concurrently	with	oxida:on	

	

Figure	1:	Pulverized	Coal	Boiler	

A	poten9al	retrofit	technology		to	give	industrial	coal	power	plants	a	
rela9vely	cost-effec9ve	carbon	capture	system.	



Char	Conversion	(my	work	in	
Basic	Data	Models)	

Raw	coal	heats	and	reacts	in	several	steps:	
•  Par:cle	hea:ng	(typical	industrial	hea:ng	rates	at	~	105	K/s)	
•  Devola:liza:on/Swelling/Crosslinking	
•  Char	conversion		

•  Exothermic	(O2)	
•  Endothermic	(	CO2	and	H2O)	
•  Needs	to	be	modeled	with	detailed	transport	and	kine:cs	
•  Current	work	is	focused	on	the	thermal	annealing	of	coal	char	

	

	

My	work	takes	basic	data	submodels,	builds	basic	data	macro-models,	and	
propagates	the	uncertainty.	

Figure	2-	Pyrolyzed	char	



CCSI	Calibration/UQ	Paradigm	
•  General	UQ:	Find	a	plausible	set	of	model	

parameter	values	(θ)	that	best	produce	
the	reality	of	experimental	data.	

•  Bayesian	paradigm:	put	a	prior	distribu:on	
on	θ	and	condi:on	on	the	experimental	
data	to	refine	this	prior	distribu:on.	

•  Represent	the	physical	system	as	the	
model	(η)	plus	discrepancy	func:on	(δ)	
plus	the	measurement	error	(ε)	

	

Many	tradi9onal	UQ	methods	substan9ally	exaggerate	the	actual	uncertainty,	
and	those	that	don’t	exaggerate	uncertainty	typically	fail	to	account	for	
systema9c	model	bias.	



	Past	CCSI	UQ	Applications	–	Solvent	and	
Sorbent	Models	

•  Sample	Equa:ons:	
•  Thermodynamics	(assumed	known)	
•  Mass	transport	(calibrated)	
•  Kine:cs	(calibrated)	

	

Sorbent	apparatus	schema9c	

I	men9on	these	models	very	briefly	to	highlight	the	flexibility	of	the	tool	set.	



Prior	Distributions	–	Domain	
Expert	Belief	about	the	System	
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The	domain	expert	had	past	experience	to	give	him	some	idea	
about	where	the	true	parameters	might	be.	



Past	Basic	Data	Models	–	
Solvent	Posteriors	
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The	domain	expert’s	ini9al	belief	was	generally	incorrect,	but	the	data	as	
a	whole	led	to	well	defined	peaks	of	parameter	density.	



My	Work	–							
A	Radically	Different	Model	

•  CCK\oxy	is	single	par:cle	model	with	detailed	physics	for	all	stages	
of	combus:on	and	gasifica:on	from	raw	coal	to	complete	burnout	

•  Direct	and	indirect	industrial	applica:on	
•  CCSCM	uses	exascale	compu:ng	to	op:mize	industry	designs	
•  Industry	directly	applies	the	comprehensive	code	to	train	surrogates	

•  Each	sub-model	contains	uncertain	parameters	and	model	
discrepancy	

•  The	most	sensi:ve	parameters	are	targeted	and	addressed	

The	next	several	slides	are	a	prac9cal	example	applying	the	CCSI	tool	suit	to	
a	model	and	relevant	data.	The	output	is	a	calibrated	model	with	informed	
discrepancy	from	reality	and	quan9fied	uncertainty.	



CCSI	UQ	Tools	–1	
Sensitivity	Analysis	

•  Sensi:vity	analysis	over	~25	(confirmed	with	CCSI	decomposi:on	of	
variance	tool)	

•  Excludes	kine:c	parameters	
Table 1 – Total sensitivity measures for all O2 conditions and each individual 
condition 

Mean Sensitivity 
Measures 

Sensitivity for O2 
Mole Fraction=0.12 

Sensitivity for O2 
Mole Fraction=0.24 

Sensitivity for O2 
Mole Fraction=0.36 

Variable Importance Variable Importance Variable Importance Variable Importance 
EA 0.74 EA 0.76 EA 0.72 EA 0.75 
N 0.51 N 0.55 N 0.51 N 0.48 
Ω 0.27 Ω 0.40 Ω 0.22 α 0.22 
α 0.20 gd 0.20 α 0.22 σ 0.20 
gd 0.20 tr 0.18 gd 0.21 gd 0.19 
σ 0.18 α 0.18 σ 0.17 Ω 0.17 
tr 0.14 σ 0.17 tr 0.12 tr 0.11 

 

An	important	first	step	to	refining	complex	models:	Determine	which	
submodels	are	worth	the	9me	it	takes	to	improve	them.	



Sample	data	
•  The	body	of	literature	data	
shows	that	annealing	
depends	on	many	things,	
but	most	especially	on	
•  Hea:ng	rate	
•  Soak	:me	
•  Peak	par:cle	temperature	
•  Coal	precursor	
	
This	sample	shows	that	
annealing	condi:ons	(or	
pyrolysis	condi:ons)	DO	in	
fact 	have	an	enormous	
impact.	

Sample	raw	data	used	in	the	calibra9on	
(from	a	South	African	bituminous	coal,	
Senneca	et	al.	1999	)	

Virtually	constant	
reac:vity	
	

Widely	varying	
reac:vity	
	



Calibration	Step	1:	
De/ine	the	Model	

	 !!!
!" = −! ∗ !"#(−!!_!""#!$,!! ∗ ! ) ∗ !! 

•  k		–	the	Arrhenius	preexponen:al	factor	
•  EA	–	the	ac:va:on	energy	of	bin	i	
•  fi		–	the	frac:on	of	ac:ve	sites	assigned	to	bin	i	

Sample	“binned”	log-normal	distribu9on	



Calibration	Step	2:	
Choose	Parameters	and	Priors	

•  Choose	the	parameters	and	their	priors		
•  Informed	by	sensi:vity	analysis	
•  In	this	case,	find	k	and	the	right	ac:va:on	energy	distribu:on	
•  Parameters:	σ,	μ,	and	k	
•  Priors	limited	by	the	ac:va:on	energy	of	amorphous	carbon	
reordering	to	crystalline	graphite	(~800	kJ/mol)	and	observed	
rates	of	ac:vity	decrease	

Priors	contain	any	past	informa9on/experience	that	lead	a	domain	expert	to	
believe	parameter	values	lie	in	a	given	range	and	probability	distribu9on		



Calibration	Step	2:	
Choose	Parameters	and	Priors	

•  Literature	ahempts	(past	
experience)	found	a	
shallow	bowl	of	parameter	
space	

•  No	jus:fica:on	to	weight	
the	priors,	but	some	
jus:fica:on	to	bound	them	

Op9mized	data	fit	from	mid-90’s	literature	

Figure	4:	Original	CBK	annealing	model	



Calibration	Step	2:	
Choose	Parameters	and	Priors	

Uniform	probability	density	priors	for	μ,	σ,	and	k	



Calibration	Step	3:	
Train	the	Emulator	

•  The	emulator	is	a	surrogate	model	with	uncertainty	
•  It	is	“trained”	using	the	annealing	model	outputs	and	is	able	to	
predict	outputs	for	the	model	at	any	set	of	input	condi:ons,	even	
if	the	model	was	not	actually	run	at	those	condi:ons	

•  Every	predic:on	comes	with	defined	uncertainty	
	



Calibration	Step	4:	
Execute	the	CCSI	tool	

•  Matrices	of	model	inputs	and	outputs	train	the	emulator	
•  The	emulator	executes	tens	of	thousands	of	model	runs	
to	produce	posterior	distribu:ons	

•  The	posteriors	show	the	uncertainty	of	the	parameter	
space	

The	GPMSA	code	ul9mately	shows	both	model	predic9ons	(and	a[endant	
uncertainty)	and	model	+	discrepancy	predic9ons.	This	allows	the	engineer	to	
quan9fy	how	precisely	the	model	predicts	data,	and	how	accurately	the	model	
mimics	reality.	



Calibration	Step	4:	
Execute	the	CCSI	tool	

Approach to Model Calibration w/Discrepancy

Represent the output of the physical system ⇥ as the simulator plus a
discrepancy term to account for any remaining bias, plus the
measurement error, i.e.,

yi = ⇤(xi ,�) + �(xi ) + ⌅i ,

where

(i) the simulator ⇤ and the measurement errors ⇥i are as before.

(ii) �(x) is a discrepancy function to alow for model bias.

Typically it is assumed that �(x) � GP(0,K ), for some covariance
function K , most commonly the squared exponential.

LA-UR xx-xxxxx Unclassified 20/69

Red	lines:	η	only	
	
Black	Dots:	data	points	
	



Calibration	Step	4:	
Execute	the	CCSI	tool	

Approach to Model Calibration w/Discrepancy

Represent the output of the physical system ⇥ as the simulator plus a
discrepancy term to account for any remaining bias, plus the
measurement error, i.e.,

yi = ⇤(xi ,�) + �(xi ) + ⌅i ,

where

(i) the simulator ⇤ and the measurement errors ⇥i are as before.

(ii) �(x) is a discrepancy function to alow for model bias.

Typically it is assumed that �(x) � GP(0,K ), for some covariance
function K , most commonly the squared exponential.

LA-UR xx-xxxxx Unclassified 20/69

Red	lines:	η	only	
	
Black	Dots:	data	points	
	
Black	Lines:	η+δ+ε	



Calibration	Step	5	(iterative):	
•  Consider	possibili:es	to	reduce	discrepancy	and	error	
•  More	data	
•  Beher	quality	data	
•  Improved	experimental	design	
•  Updated	physics	in	the	model	
•  If	the	model	requires	the	discrepancy	func:on	to	match	data	
points,	the	model	lacks	important	physics	that	should	be	
iden:fied	and	added.	
•  Here	we	know	that	hea:ng	rate,	peak	temperature	and	coal	type	
play	an	important	roll	that	is	neglected	by	the	annealing	model.		



Calibration	Step	5:	
Improve	the	Experimental	Design	

•  Reduce	ranges	from	maximum	
poten:al	values	to	ranges	that	
include	the	data	

•  Transform	variables	to	more	
heavily	sample	the	most	
important	regions	of	parameter	
space	

												μ																σ															log(k)	

When	the	majority	of	the		probability	density	is	piled	up	on	a	boundary,	the	
model	is	very	likely	deficient.	



Calibration	Step	5:	
Original	Annealing	Model	with	Expanded	Data	

•  Expand	the	data	set	(legacy	code	is	common,	new	data	might	well	be	
available)	

Approach to Model Calibration w/Discrepancy

Represent the output of the physical system ⇥ as the simulator plus a
discrepancy term to account for any remaining bias, plus the
measurement error, i.e.,

yi = ⇤(xi ,�) + �(xi ) + ⌅i ,

where

(i) the simulator ⇤ and the measurement errors ⇥i are as before.

(ii) �(x) is a discrepancy function to alow for model bias.

Typically it is assumed that �(x) � GP(0,K ), for some covariance
function K , most commonly the squared exponential.

LA-UR xx-xxxxx Unclassified 20/69

Red	lines:	η	only	
	
Black	Dots:	data	points	
	

More	data	improves	the	frac9on	of	points	that	the	model	can	capture,	but	s9ll	
fails	to	capture	about	1/3	of	the	data.	



Calibration	Step	5:	
Original	Annealing	Model	with	Expanded	Data	

•  Expand	the	data	set	(legacy	code	is	common,	new	data	might	well	be	
available)	
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Represent the output of the physical system ⇥ as the simulator plus a
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where

(i) the simulator ⇤ and the measurement errors ⇥i are as before.
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LA-UR xx-xxxxx Unclassified 20/69

Red	lines:	η	only	
	
Black	Dots:	data	points	
	
Black	Lines:	η+δ+ε	

Discrepancies	can	now	capture	all	the	data,	and	are	greatly	reduced,	but	are	s9ll	
far	from	0.	



Calibration	Step	5:	
Original	Annealing	Model	with	Expanded	Data	

•  Expand	the	data	set	(legacy	code	is	common,	new	data	might	well	be	
available)	

						μ															σ											log(k)	

More	and	be[er	data	sharpen	the	peaks	and	narrow	the	parameter	space,	but	
no	amount	of	data	can	overcome	a	model	that	has	inadequate	physics.	



Calibration	Step	5:	
New	Annealing	Model	with	Expanded	Data	

•  Manipulate	the	model	form	
•  Add	addi:onal	physics	

Addi9onal	physics	(especially	more	advanced	methods	to	account	for	hea9ng	
rate	and	coal	type)	greatly	improve	the	model.	

				μ=a*Coal	Quan:fican:on+b															a																	b												log(k)	



Update	CCK\oxy	

•  Add	in	the	annealing	code	
•  Minor	updates	to	other	sensi:ve	parameters	(swelling,	mode	of	
burning,	etc.)	

•  Calibrate	kine:c	parameters	for	both	gasifica:on	and	oxida:on	
•  Hope	to	make	the	code	coal-general	
•  At	the	very	least	we	will	have	incremental	improvement	and	quan:fy	
the	uncertainty	

Input:	
Coal	proximate	and	
ul:mate	analysis	and	

environmental	condi:ons	

Output:		
Complete	par:cle	

temperature	and	burnout	
profile,	including	
devola:liza:on	



Applications	

•  CCK\oxy	will	predict,	in	detail,	the	evolu:on	of	coal	par:cle	
conversion	and	temperature	in	:me	

•  A	collec:on	of	CCK\oxy	runs	will	serve	as	easily	generated	
data	in		combus:ons	condi:ons	to	train	less	flexible	global	
models	for	desktop	simula:ons	

	

Poten9al	form	of	the	global	model	



Conclusions	
•  The	original	annealing	model	is	unable	to	explain	all	the	data.	
•  Addi:onal	data	gives	more	informa:on	about	model	parameters,	
but	not	enough.	Addi:onal	physics	were	needed.	

•  In	this	case,	the	ac:va:on	energy	curve	should	become	a	func:on	of	
coal	type,	hea:ng	rate,	and	(poten:ally)	peak	temperature	

•  The	primary	advantages	of	the	uncertainty	quan:fica:on	used	here	
are:	
1.  The	outputs	include	discrepancy	to	show	where	and	how	physics	

need	to	be	improved	
2.  The	outputs	are	in	the	form	of	probability	distribu:ons,	which	is	

conducive	to	uncertainty	propaga:on	
3.  The	method	reduces	uncertainty	to	as	low	as	it	can	be	given	the	

data	and	the	model	physics	(tradi:onal	methods	ouen	ar:ficially	
inflate	sensi:vity)	
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Uncertainty	Quanti/ication	–	
General	Principles		

Single	best	fit	point	

Annealing	sub-model	curve	

Char	burnout	from	
comprehensive	code	

Any	calibra:on	
method	accomplishes	
something	similar.	
The	remainder	of	
these	slides	highlight	
the	unique	virtues	of	
the	CCSI	tool	set.	



Calibration	Step	4:	
Original	Annealing	Model	with	Original	Data	

Approach to Model Calibration w/Discrepancy

Represent the output of the physical system ⇥ as the simulator plus a
discrepancy term to account for any remaining bias, plus the
measurement error, i.e.,

yi = ⇤(xi ,�) + �(xi ) + ⌅i ,

where

(i) the simulator ⇤ and the measurement errors ⇥i are as before.

(ii) �(x) is a discrepancy function to alow for model bias.

Typically it is assumed that �(x) � GP(0,K ), for some covariance
function K , most commonly the squared exponential.

LA-UR xx-xxxxx Unclassified 20/69

Red	lines:	η	only	
	
Black	Dots:	data	points	
	

The	ini9al	model	does	not	capture	the	data	at	all.	
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Represent the output of the physical system ⇥ as the simulator plus a
discrepancy term to account for any remaining bias, plus the
measurement error, i.e.,

yi = ⇤(xi ,�) + �(xi ) + ⌅i ,

where

(i) the simulator ⇤ and the measurement errors ⇥i are as before.

(ii) �(x) is a discrepancy function to alow for model bias.

Typically it is assumed that �(x) � GP(0,K ), for some covariance
function K , most commonly the squared exponential.

LA-UR xx-xxxxx Unclassified 20/69

Red	lines:	η	only	
	
Black	Dots:	data	points	
	
Black	Lines:	η+δ+ε	

With	the	addi9on	of	a	large	discrepancy,	the	model	mostly	(but	not	
en9rely)	captures	the	data.	
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