Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Spring 4-13-2016

Metallic membranes for N2 separation & postcombustion CO2 capture improvement

Simona Liguori Stanford University, sliguori@stanford.edu

Kyoungjin Lee Stanford University

Jennifer Wilcox Stanford University

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Simona Liguori, Kyoungjin Lee, and Jennifer Wilcox, "Metallic membranes for N2 separation & post-combustion CO2 capture improvement" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/co2_summit2/37

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

METALLIC MEMBRANES FOR N₂ SEPARATION & POST-COMBUSTION CO₂ CAPTURE IMPROVEMENT

Simona LIGUORI, Kyoungjin LEE, Jennifer WILCOX CEC Lab., Stanford University

*CO*₂ *Summit II: Technologies and Opportunities*

April 10 - 14, 2016 – Santa Ana Pueblo, New Mexico, USA

- I. Introduction
- II. Motivations
- III. Gas separation by membrane
 - i. N_2 separation
- IV. Conclusion and Future Works

CO₂ Emissions

5.0

4.5

4.0

3.5

3.0

2.5

2.0

CO₂ emissions (PgC)

Stanford University

Introduction

CO₂ emissions in US^[2]

 CO_2 emissions are growing Atmospheric CO_2 concentration is correlated with global average temp.

Fossil fuel combustion for electricity generation and transportation is the major contribution to the current CO_2 emissions

[1] Peters, Glen P, et. al.. "Rapid Growth in Co2 Emissions after the 2008-2009 Global Financial Crisis." *Nature Climate Change* 2, no. 1 (2012): 2-4.
[2] Ref. 2012 U.S. Greenhouse Gas Inventory Report, Chapter 2

Membrane use

Motivation

1 - Pd-based Membrane Reactor \rightarrow for Producing/Separating H₂ \rightarrow for onboard application

PEM Fuel Cell

Hydrogen powered Fuel Cell vehicles only emit *water*.

2 – Metallic Membrane \rightarrow for Gas Separation

Inorganic Metallic Membranes

Stanford University

Gas Separation

Solution/diffusion mechanism

- 1. adsorption
- 2. dissociation
- 3. the chemisorbed molecule dissociates into atomic form $H \cdot$ or $N \cdot$
- 4. diffusion
- 5. recombination
- 6. desorption

Gas Separation

Permeating Flux through dense membranes is governed by:

Permeability of the membrane, Pe

Thickness of the membrane, δ

Difference in partial pressure across the membranes, $(p^n_{i,retentate} - p^n_{i,permeate})$

$$\mathbf{J}_{i} = \frac{Pe}{\delta} \cdot (\mathbf{p}_{i-retentate}^{n} - \mathbf{p}_{i-permeate}^{n})$$

Where i = N_2 or H_2

Limiting step determined by exponent:

- n = 0.5, bulk permeation limited diffusion
- n = 1.0, surface reaction limited diffusion

(Ideal selectivity)
$$\alpha_{i/\text{He, CO}_2} = \frac{\text{Permeance}_i}{\text{Permeance}_{\text{He, CO}_2}}$$

Set-up for N₂ Permeation Tests

Stanford University

 N_2 - Separation

Metallic Foil Membranes:

- Niobium
- Vanadium
- Tantalum

Permeation Test Operating Conditions:

- Temperature: 400 °C
- Permeate pressure: 1 bar
- Sweep gas: Ar (50 mL/min)
- Retentate pressure: 3 6 bar

<u>Gases Used</u>:

- N₂

- CO₂

- He

Nb Foil (40 μ m) - N₂ permeation tests

University

Stanford

N₂ - Separation

Similar to a Pd-based membrane for H_2 separation, N_2 molecules preferentially permeate through metallic membrane by the solution-diffusion mechanism

V Foil (40 μ m) - N₂ permeation tests

University N₂ - Separation

Stanford

Ta Foil (40 μm) - N₂ permeation tests

University N₂ - Separation

Stanford

High N₂ Selectivity, Very Low Flux

N₂ - Separation

Stanford

400 °C

N₂ Permeating Flow rate [L/m²/day]

∆p [bar]	Nb	Та	V
2	34	28	40
3	45	40	57
4	62	45	62
5	68	57	73

0

Metallic membranes (V, Nb, Ta) are entirely selective for N₂ over He and CO₂ ($\alpha = \infty$)

Fluxes are low

Metallic thin films, an order of magnitude thinner than foils, may lead to significantly higher fluxes

Surface Characterization by SEM and EDX

N₂ - Separation

Thin V membrane – Work in Progress

- □ Vanadium target: 99.95% purity
- □ Sputtering conditions
 - Base pressure: 1E-6 Torr
 - Ar pressure and mass flow: 5E-3 Torr, 30 mlpm
 - DC power: 75W
- □ Ceramic support furnished by OSU
 - 600 nm of V on the ceramic support (2 membranes)

Permeation measurement

	V#1 (600 nm)	V#2 (600 nm)
Temperature [°C]	RT, 400	RT, 100, 200, 300, 400
Δp [bar]	3, 4, 5	3, 4, 5

N₂ - Separation

Stanford

University

Thin V#1 membrane – Main Results

N₂ - Separation

As deposited Mirror-like finish

Membrane cracked after 400 °C, Ar exposure

Thin V#2 membrane – Main Results

 N_2 - Separation

As deposited Mirror-like finish

V#1 - After 400 °C

V#2 - After slow heat up to 400 °C

Same color changes regardless of exposure time (surface oxide)

Heating profile

- Ramp rate of 2 °C/min for all temperature changes
- Direct heat up: RT to 400 °C (6h dwell, broken) \rightarrow RT
- Slow heat up: RT → 100 °C (12h dwell) → 200 °C (18h dwell) → 300 °C (19h dwell) → 400 °C (10h dwell) → RT (Not broken)

<u>Permeation measurement</u> \rightarrow No significant selectivity observed for N₂/Ar (Knudsen ratio) No selectivity found probably due to the dominant Knudsen flux

Gas Separation: Metallic Membranes for N₂ Separation

Conclusion

- \Box Metallic Membrane for N₂ separation has been investigated
 - V, Nb, Ta, Fe show infinite ideal selectivity \rightarrow only N₂ can permeate through the membranes
 - N₂ permeation flux through the membrane is extremely low and affected by oxidation of the surface
 - Membrane performance are improved by increasing pressure, temperature

Future work

- □ Prepare defect-free inorganic membrane able to work for long periods
- Fabricate composite alloy membranes for enhancing N₂ permeation flux and reducing oxidation effect.

