Engineering Conferences International ECI Digital Archives

CO2 Summit II: Technologies and Opportunities

Proceedings

Spring 4-13-2016

Kinetic enhancement of adsorbent for CO2 capture from atmosphere by porous material

Tao Wang State Key Laboratory of Clean Energy Utilization, oatgnaw@zju.edu.cn

Jun Liu State Key Laboratory of Clean Energy Utilization

Kun Ge State Key Laboratory of Clean Energy Utilization

Zhongyang Luo State Key Laboratory of Clean Energy Utilization

Follow this and additional works at: http://dc.engconfintl.org/co2_summit2 Part of the <u>Environmental Engineering Commons</u>

Recommended Citation

Tao Wang, Jun Liu, Kun Ge, and Zhongyang Luo, "Kinetic enhancement of adsorbent for CO2 capture from atmosphere by porous material" in "CO2 Summit II: Technologies and Opportunities", Holly Krutka, Tri-State Generation & Transmission Association Inc. Frank Zhu, UOP/Honeywell Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/co2_summit2/44

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in CO2 Summit II: Technologies and Opportunities by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

CO2 Summit II: Technologies and Opportunities

Kinetics Enhancement of Adsorbents for CO₂ Capture from Atmosphere by porous Materials

Tao Wang, <u>Kun Ge</u>

State Key Laboratory of Clean Energy Utilization, Zhejiang University

Outline

Background

1

2

Experiments and model

Results and discussion

R&D — Capture Material

Wild absorbent

Na- or Ca-based sorbents with high heats of adsorption and high regeneration temperatures, e.g. 800 to 1200 K

Mild absorbent

Amine-functionalized porous solids, slow kinetics

Institute	Absorbent	Reaction	Capacity	Application
		atmosphere	mmol/g	
Georgia	PEI/silica	air	2.36	CO_2 air capture
Tech.				
Columbia	Ion exchange	air	1.73	CO_2 air capture
Uni.	resin			
Hamburg	Amino - silica	2500ppm	1.55	CO ₂ removal submarines,
Uni. of Tech.				space crafts or aircraft
United Tech.	HSC+	2%	1.82	CO_2 removal in space
Res. Center				shuttle applications
Korea Uni.	MOFs	Air	2.82	CO_2 air capture

Refs: J. Am. Chem. Soc. 2012, 134,7056–7065; Environ. Sci. Technol. 2011, 45, 9101–9108; Environ. Sci. Technol. 2011, 45, 6670-6675; Environ. Sci. Technol. 2011, 45, 2420–2427.

R&D — Capture Material

Research on CO₂ removal under ultra-dilute atmosphere in China

Institute	Absorbent	Reaction atmosphere	Capacity	Application
Zhejiang university	CNTs/TEPA、 TETA	2% CO ₂	2.52-3.56 mmol/g	CO ₂ removal in confined space
PLA University of Science and Technology	LiOH	1% CO ₂	1.89 mmol/g	CO ₂ removal in submarine .etc
Tianjin university	5A molecular sieve	0.3%		CO ₂ removal in spacecraft
Zhejiang university	Ion-exchange resin	air	1.72 mmol/g	Air capture
The 718 research institute of CSIC	Hollow fiber membrane contactor	0.1%-0.5% CO ₂		CO ₂ removal in confined space

R&D—Air Capture Kinetics

 Could be much lower compared to flue gas capture due to the lower CO₂ partial pressure;

Inlet Concentration: 12 kPa : 40 Pa = 300:1

Outlet Concentration : 1.2 kPa : 40 Pa = 30:1

Adsorption kinetics is crucial to **reactor design** and the **optimization of adsorption material**, but reports related are limited.

R&D—Air Capture Kinetics

The kinetics is expected to be improved by immobilizing functional group onto solid supports with large surface area, such as mesoporous silica, alumina and carbon black.

Material	Pore size (<i>nm</i>)	Surface area m ² /g (Before)	Surface area m ² /g (After)	Adsorption half time, (mins)	
FS-PEI	1.057		79.9	300	
T-PEI/silica				210	
HAS6	5-6	200-500	71	100-150	
AEAPDMS-		26.8	7.1	100	
NFC-FD					
MOFS	-	3270	70	30	
RFAS	7		150-300	10-20	I: E
Carbon Black		223	21	10	

I: Boundary diffusion, II: Support diffusion III: Product diffusion, IV: Reaction

However, the inappropriate material selection or treatment process for sorbent could result in unexpected diffusion resistance.

Refs: J. Am. Chem. Soc. 2012, 134,7056–7065; Environ. Sci. Technol. 2011, 45, 9101–9108 Environ. Sci. Technol. 2011, 45, 2420–2427

Methodology of Kinetics Analysis

Int. J. Greenhouse Gas Control, 2013, 17, 332-340

Environ. Sci. Technol. 2011, 45, 9101-9108

Experiment- The resistance from gas side diffusion is hard to be avoided on the fixed bed reactor.

Model- The existing indicator of half time is too simple to reflect the real reaction process under ultra low CO₂ concentration.

Outline

Background and motivation

2 Experiments and model

Results and discussion

4 Conclusion

Experimental material

^{) + H₂O Ion Exchanged Resin Material}

Developed and tested by Columbia University Eur. Phys. J., 2009, 176, 93-106; Environ. Sci. Technol., 2011, 45, 6670-6675.

<u>An economically viable air</u> <u>capture method</u> by avoiding expensive heating/cooling cycles or significant pressure changes.

Preparation of adsorption material

Resin with uniform size

Membrane with Porous structure

Experimental system

Experiment- A revolving bed reactor is built to characterize the mass transfer limitations of CO_2 adsorption with relatively low kinetics.

Kinetics model

Model-*the shrinking core model is modified to analyze the resistance during* CO_2 *absorption*

Support layer diffusion

Fick' Law: $-\frac{dN'_{CO_{2}}(t)}{dt} = SQ_{A} = SD_{e1} \frac{2(C_{1} - C_{2})}{L}$ Product layer $C_{AS} = C_{A}$ Support layer diffusion rate: $C_{AS} = C_{A}$ $C_{AS} = C_{A}$ $C_{AS} = C_{A}$

Kinetics model

Product layer diffusion rate :

$$V_{\rm diff} = \frac{3D_{e2}C_0}{R^2 \rho_2 [(1 - \theta / \theta_{\rm max})^{-1/3} - 1]}$$

The unknown parameter: product layer diffusion coefficient

Chemical reaction rate:

$$V_{\rm diff} = \frac{3kC_0(1-\theta/\theta_{\rm max})^{2/3}}{\rho_2 R}$$

The unknown parameter: Chemical reaction rate coefficient

The total resistance during CO2 adsorption:

$$\lambda = \frac{L^2 \rho_1}{2D_{e1}C_0} + \frac{\rho_2 R^2 [(1 - \theta / \theta_{max})^{-1/3} - 1]}{3D_{e2}C_0} + \frac{\rho_2 R}{3kC_0 (1 - \theta / \theta_{max})^{2/3}}$$

2

Experiments and model

3 Results and discussion

4 Conclusion

The effect of particle size

Kinetics at different sorbent size (dots are experimental data, square: diameter of 80 μ m; triangle: diameter of 40 μ m; circle: diameter of 30 μ m; solid lines are the fitting date)

Resistance contributions from different steps at 0.5% vapor concentration. (square: total resistance; diamond: reaction resistance; triangle: production resistance; circle: support resistance; dashed line: total resistance (L/2); solid line: total resistance (10k))

The effect of particle size

Decomposition of mass transfer resistance under different particle size. (20 °C and 21.2% relative humidity)

The adsorption rate increases significantly with decreasing sorbent size, indicating a resin particle dominated kinetics, rather than support layer dominated kinetics.

The effect of humidity

Decomposition of mass transfer resistance under different humidity.

The relative humidity affects the rates of physical diffusion and chemical reaction simultaneously, and it impacts the chemical reaction more significantly than physical diffusion in the moisture swing adsorption.

Absorption rate under different temperature. (particle size: 30µm, 50% relative humidity)

Temperature dependence of chemical reaction rate, k (m/s) and effective product layer diffusion coefficient, D_{e2} (m²/s).

$$\omega_i = A_i \exp(-E_{a-i}/(R_c T))$$

Where ω_i is the rate constant, A_i is the frequency factor, E_{a-i} is the activation energy, and R_c is the universal gas constant. The A_i and E_{a-i} can be determined by linear fitting as shown in Fig. The activation energy of chemical reaction is 31.7 kJ/mol, which is at the same level as reported for amine based reaction with CO₂

Comparison of CO_2 adsorption half time with different adsorbents. Solid line: 30 µm, dash line: 10 µm, dot line: 5 µm. Scattered dots are experimental data in literatures.

Refs: Energy Environ. Sci., 2013; 6, 488-493; J. Am. Chem. Soc., 2012; 134, 7056-7065; Environ. Sci. Technol. 2011, 45, 9101-9108; Chemical engineering journal, 2012; 189-190, 13-23.

Conclusion

- the adsorption kinetics could be enhanced by employing sorbent with smaller particles
- Both the diffusion coefficient and chemical reaction constant drop significantly with decreasing temperature or increasing relative humidity.
- The sorbent exhibits significant product layer diffusion controlled kinetics
- ➢ By preparing sorbent with µm sized particles, the halftime of sorbent in this study could reach the same level of recently developed air capture sorbent with much more expensive material, such as MOFs and nanomaterial.