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Figure 5: Schematic representation of the research areas covered by the SPP 

All these processes rely on the transport of matter, which strongly depends on the presence of 
defects:  

• Most solid-solid phase transformations in materials processing are diffusion-controlled (except 
for the martensitic transformations, which are not considered here)  

• Typical densification mechanisms rely on the diffusion in the lattice or at interfaces (grain 
boundaries) 

• Grain boundary migration rate (related to the grain growth rate) is determined by the rate at 
which atoms diffuse across the boundary 

• Viscoplastic deformation can be purely diffusional or involve interactions with dislocations and 
grain boundaries. 

 
 
One central question of the SPP is therefore: What are the interplays between electric / magnetic 
fields and defect formation, structure and mobility? 
 
The defects to consider are manifold and include single or clustered point defects, single or networks 
of dislocations, to interfaces between two reacting solids or crystalline phases (grain boundaries), 
solid/vapour interface at pores, and oxide layers at the surface of metal particles. Their properties - in 
particular their stability and mobility- will determine the response of the whole material and its 
processing ability.  

Our objective is to provide a theoretical basis based on experimental evidence for intentionally using 
electromagnetic energy and exploring new ways of materials processing. The energy transfer to the 
material can be large enough to influence the thermodynamics of the system, or perhaps more 
interestingly it can be used to control its kinetics. Magnetization/electrical energy is therefore an 
additional parameter to tailor microstructures, assist and modify established/classical processes, and 
achieve selective control of diffusion. Field-driven processes can use different, new kinetic pathways 
leading to the desired final thermodynamic state. But how large does a field need to be to have an 
impact on the reaction/process? What is the effect of frequency or pulse pattern? Under which 
conditions are the field effects enhanced? These are questions which urgently need to be answered to 
progress on a sound basis and not by trial and error.  

Phase 
formation 

Densification 
Coarsening 

Deformation 
Pressure assisted  
sintering 

Phase formation  
with 

local deformation 

Reactive sintering 

Defect formation, 

structure, mobility 

What are the interplays between electric / magnetic fields and  
defect formation, structure and mobility?  
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Mo#va#on	
To obtain dense ceramics with nano-grain size à improved properties  

§  Understanding of mechanisms involved in coarsening is critical to the retention of 

nanocrystallinity 

§  Powder quality, storage conditions, processing and sintering process all play a role 

 

Ø  Doping, modification of chemical composition and properties 

Ø  Promote the densification mechanisms instead of grain growth  

-  High mechanical pressure (but reduced sample size) 

-  Assistance by electric field/current 

S	

Hea?ng	elements	

Alumina	discs	
Pt	electrodes	

Pt	wire	

Sample	

Sinter-forging (flash sintering) FAST/SPS 
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Mo#va#on	

§  Full densification with final nanosized 
grains is very challenging 

§  Mechanical pressure decreases grain 
size for a given sintering density 

 
§  Reduction of initial particle size does not 

necessarily result into smaller grain size 

To find a new strategy to fully densify bulk ceramics with nano-grain size 

Electric field and water will be used to promote sintering of ZnO ceramic 

materials.   

ZnO 

Objective: 
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ZnO	powder	

NG20; purity >99.99 wt.% 

10 nm 

§  Polyhedral, nearly spherical shape 

§  Same aspect ratio 

§  TEM and XRD in agreement 

§  Storage in environmental chamber (humid /dry conditions)  

O2- 

Zn2+ 
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§  DC pulsed current process 
§  External mechanical pressure 
§  Joule heating effect 
§  High heating rates and short dwell time 
§  Temperature control by pyrometer 

•  50 MPa uniaxial pressure 

•  Maximal temperature of 400 °C or 800 °C 

•  Heating rates of 10, 50, 100 or 200 K/min 

•  10 min isothermal sintering time 

sintering conditions 

FAST/SPS	of	ZnO	
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§  Full densification takes place only for high heating rates in presence of bound water 
 
§  Therefore, kinetics of water desorption may play a significant role and limit the 

temperature-time window in which crystal interfaces are modified.  

FAST/SPS:	Effect	of	hea#ng	rate	

Guillon and Langer, J. Mat. Sci.,  45 (2010) 

Al2O3 
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§  Increasing amount of water enhances densification 

§  Loss of water can be tracked by measuring partial pressure in FAST/SPS chamber 

FAST/SPS:	Effect	of	water	content	
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Hypothesis:  Decrease of  Ea because of easier OH- 
diffusion (lower valence and ionic radius) 

Master-Sinter-Curve 

50-200 K/min 
Ea = 130 kJ/mol 

Literature: 215 – 268 kJ/mol 

Assumption: Limitation of mass transport by 
diffusion of O2- along grain boundaries 

99 pm 140 pm 

O2- OH- 

Hydroxide-Ion Oxygen-Ion 

FAST/SPS:	Densifica#on	mechanism	
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Hydrogen-related defects are indicated in the Near Band Edge domain  

Photoluminescence at low temperature (5 K) 

Defect	analysis	
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XPS 

Zn 
[at%] 

O 
[at%] 

C 
[at%] 

humid (Tmax = 400 °C/ w = 1,6 %) 
 

59,9 40,1 --- 

dry 53,8 41,0 4,3 

H [at%] Zn [at%] O [at%] 

humid (Tmax = 400 °C/ w = 1,6 %) 0,5 ± 0,3 51,2 ± 0,1 48,3 ± 0,1 

dry ---* 50,8 ± 0,1 49,2 ± 0,1 

GD-OES 

* Detection limit  ~ 50 ppm 

Measurement of a fresh 
fracture surface in high 
vacuum  

Incorporation of hydrogen in humid samples 

No presence of carbonates in humid samples  
which normally hinder densification 

Chemical	analysis	
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§  Alumina disks between punch and powder prevent 
the flow of electrical current through ZnO sample 

Does the electrical current play a role? 

§  Same sintering behavior for 
aqueous and dry conditions  

§  No effect of current 

FAST/SPS	sintering:	Field	effect?	
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§  Sintered dry powder shows more than one order of magnitude larger grain size than 
humid powder, as high temperature is required for densification 

§  Anisotropic grain morphology is observed for sintered humid ZnO. 

Microstructure		analysis	
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§  Full densification of ZnO with nanosized grains is possible through the 
addition of water and high heating rates 

§  The process is rapid and requires only low temperature 

Microstructure	analysis	
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Electric	field	assisted	sintering	of	ZnO	

§  Sintering behaviour is strongly affected by the electric field 
§  Maximal density obtained for 40 V/cm 
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Electric	field	assisted	sintering	of	ZnO	
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§  Current flows through the specimen and causes drop of electric field and temperature 
increase 

§  Massive Joule heating due to electric current flow 

nevertheless very limited in time, as evidenced by the brevity
of the flash event. In addition, electrodes and flash-sintered
specimens (80 and 160 V/cm) were stuck, suggesting the
increment of the temperature. The evolution of temperature
and electrical quantities in the vicinity of the runaway, which
is typical for flash sintering, is illustrated in Figs. 4(a) and
(b) for 40 and 80 V/cm samples, respectively. The figures
start at the time of the first measureable current (0.017 mA/
mm²) at a temperature of about 490°C. Current density and

power density rise exponentially with the specimen tempera-
ture, as expected for zinc oxide. Both parameters are
calculated within the specimen, finally controlled by the cur-
rent limitation and become constant in the steady state of
the experiments. Current densities rise to 54 and 151 mA/
mm², whereas the power densities end up at 109 and 269
mW/mm³ for the respective samples. Similar to earlier
reports,19 we observe a power peak at the time of the flash
sintering for samples at higher electric fields. This short peak
might result from the switching from voltage to current con-
trol at the runaway. Note that the runaway was observed at
lower temperatures with a stronger electric field (80 and
160 V/cm), and not for the 40 V/cm samples.

At power densities below 4mW/mm³, furnace temperature
and specimen temperature are the same. Later in the experi-
ment, the calculated specimen temperature rises over that of
the furnace temperature with a smooth transition to the
steady state for the 40 V/cm sample. The 80 V/cm specimen
shows the same increase until a threshold is reached, where
flash sintering happens followed by a steady state imposed
by the current limitation of the power supply. Previously to
this steady state, the electric fields increase to 46 and 92 V/
cm for 40 and 80 V/cm specimens, respectively, as the sam-
ples start to shrink. Electrical field increases slightly due to
sample shrinkage and drops once current starts flowing. This
effect becomes dominant as the current rises exponentially
with temperature. The electric fields end up at 23 and 20 V/
cm during the final stage of the experiments.

(2) Development of the Microstructure
Figure 5 shows the microstructure of specimens sintered at
80 V/cm before and after the flash event and under the influ-
ence of AC electrical fields between 0 and 160 V/cm. The use
of AC fields leads to homogeneous, nongraded microstruc-
tures as ionomigration is not preferentially promoted along
one direction, as it was demonstrated under DC conditions
by Kim et al.15 Homogeneous porous distribution and grain
size were observed in all the samples between the rim and
center in the middle cross section of the specimen, revealing
a homogenous thermal distribution. However, all the speci-
mens have a convex shape after the sintering process due to
the friction between sample and electrodes. Sintering condi-
tions, relative density, and grain size of the sintered speci-
mens are given in Table I. The experiment at 80 V/cm was
stopped as the current density reached 7.5 mA/mm², about
5 s before the runaway would have happened [Fig. 5(a)]. In
addition, a 0 V/cm experiment was also stopped at the same
density to compare the microstructure. No significant differ-
ence in terms of grain size and porosity could be found
between these two specimens. It shows that grain growth
already takes place in the early stages of sintering as the
starting powder with a particle size of 16 ! 4 nm grows to
grains of 206 ! 20 nm at 82% of relative density. This is
unfortunately the general case for nanoparticles, which show
major coarsening during the early stage of densification.23,24

Interestingly, the sample sintered at 80 V/cm and stopped
exactly after the flash event [Fig. 5(b)] shows a grain size of
970 ! 210 nm. There are less than 10 s elapsed between the
stages of Figs. 5(a) and (b) and nevertheless a grain growth
factor of almost five. The peak temperature increase is esti-
mated to be about 450 K. Highly dense samples obtained
without [Fig. 5(c)] or under electric fields of 40 V/cm
[Fig. 5(d)], 80 V/cm [Fig. 5(e)] and 160 V/cm [Fig. 5(f)] were
sintered at 700°C (furnace temperature) with different dwell
times, 1 or 2 h, to achieve similar densities, as detailed in
Table I. Relative densities used for the grain size comparison
range between 97.2% and 98.3%.The microstructure of a ref-
erence field-free sample [Fig. 5(c)] with a final density of
97.2% exhibits a grain size of 400 ! 50 nm. The sample that
underwent sintering at 40 V/cm with Joule heating to about
200 K over furnace temperature without flash runaway

Fig. 3. Specimen temperatures estimated by thermal expansion as a
function of current and current density.

(a)

(b)

Fig. 4. Evolution of electric field, furnace and specimen
temperatures, and current and power densities in ZnO sintered under
an electrical field of (a) 40 and (b) 80 V/cm.

June 2014 Flash Sintering of Zinc Oxide 1731
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§  Electric field/current determines the evolution of the microstructure 
§  Fine grains (< 1 µm) for low fields and large grains (> 1 µm) for high fields 
§  Thermally activated diffusional process (massive matter transport) + ? 

500	nm	 500	nm	

500	nm	

500	nm	

2500	nm	2500	nm	

206	±20	nm	

Before	flash	 82.2	%	 AQer	flash	 96.8	%	

970	±210	nm	

0	V/cm	 97.2	%	

404	±	50	nm	

40	V/cm	 98.3	%	

700	±140	nm	

80	V/cm	 97.3	%	

1720	±400	nm	

160	V/cm	 98.1	%	

4690	±960	nm	

Electric	field	assisted	sintering	of	ZnO	

80	V/cm	80	V/cm	
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§  Increase of NBE/DLE à higher crystal quality (less defects) 
§  0 and 40 V/cm insulated have same grain size (400 nm) but different 

defects distributions 
§  Mobility of point defects under electric field? 

NBE Near Band Edge 
DLE Deep level emission 

B-DLE  
Donor-acceptor pair transition 

G-DLE  
Zinc on oxygen site  

R-DLE  
Oxygen interstitial 
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Photoluminescence	of	ZnO:	Defects	
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§  Full densification of ZnO with nano-grain sizes can be 

attained at only 400 °C using FAST sintering under high 
heating rate and the presence of water 

§  A s e v i d e n c e d b y c h e m i c a l a n a l y s i s a n d 
photoluminescence, hydrogen is incorporated and 
modifies densification behavior, color and electrical 
properties of ZnO 

§  Sintering path and densification are not affected by 
electrical current in standard FAST/SPS  

§  In contrast, higher electric fields can significantly modify 
the sintering behavior of ZnO, especially if current flows 
through the sample, leading to different defect 
configurations and exaggerated grain growth. 

Conclusions	
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