Engineering Conferences International ECI Digital Archives

Fluidization XV

Proceedings

5-25-2016

CLC, a promising concept with challenging development issues

Thierry Gauthier IFP Energies nouvelles, France

M. Yazdanpanah Total, Research & Technology Gonfreville (TRTG), France, mahdi.yazdanpanah@total.com

A. Forret *IFP Energies nouvelles, France*

B. Amblard IFP Energies nouvelles, France

A. Lambert *IFP Energies nouvelles, France*

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Thierry Gauthier, M. Yazdanpanah, A. Forret, B. Amblard, A. Lambert, and S. Bertholin, "CLC, a promising concept with challenging development issues" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/108

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

Thierry Gauthier, M. Yazdanpanah, A. Forret, B. Amblard, A. Lambert, and S. Bertholin

CLC, a promising concept with challenging development issues

<u>Th.Gauthier</u>, M.Yazdanpanah*, A.Forret, B.Amblard , A.Lamber and S.Bertholin

IFP Energies nouvelles, BP3 69360 Solaize, France *Total, Research & Technology Gonfreville (TRTG), 76700 Harfleur, France

Fluidization XV : may 25th, 2016

Agenda

- CCS : CO₂ Capture and Storage
- CLC status
 - Concept
 - Economics
 - Materials
 - Pilot plant testing
- CLC technology and scale-up issues for solid fuels
 - CLC scales for coal power plants
 - Fuel reactor concept
 - Control of solid circulation
 - Control of PSD
 - Attrition procedures for oxygen carrier screening
 - Limit ΔP in the Air Reactor to minimize energy penalty
- Concluding Remarks

CO₂ Capture and Storage status

- 2° C Scenario → Avoid 7 Gt by 2050 (50% from coal power plants)
 - 2016 : 15 CCS projects in operation : 28 Mt CO2 captured

this is about 0.4% of the $\ll 2^{\circ}$ C target $\gg !!$

- **Capture** : pre-combustion, post combustion, *oxycombustion*
 - Large additional investment , energy penalty
- Transport by boat or pipeline (≈1 M€/m(\$) /km (L))
 - Infrastructures are not there yet -permitting issue
- Storage in aquifers, oil and gas reservoir, coal beds
 - Storage capacity estimates are very encouraging
 - Public acceptance can be a challenge

CCS is a cost with no benefit (except for EOR projects or CO_2 use)

- CO2 storage cost CO2 capture cost
- 15 €/tCO2 (1 Mt/an) / 5 €/tCO2 (10 Mt/an) > 30-40 €/t CO2 avoided
- CO2 transport cost > 1- 3 €/t CO2 avoided

CO2 market / policy

- Huge investments will happen only with strong CO2 market perspectives
- There are encouraging signs ...
 - Regional strategies (China, US, EU, Japan...)
 - Recent global COP 21 Consensus reached in Paris

but only 12% of CO2 emissions under local market regulations yet

Reaching consensus takes time A time to market delay of 10 -15 years is expected for CCS

Chemical Looping Combustion concept

CLC for CCS applications first proposed by Ishida (1987, 1994)

Ref: Fan et al., AIChE J, (2015) 61, 1-22 Adanez et al., Progress in Energy and combustion Science (2012), 38, 2, 215-282

		Reference	Amine	
		CFB unit	MEA30%	
	Net Electric production (MWe)	630	630	630
	Net Electric yield (%)	44.9	34.9	40
	Coal consumption (t/h)	198	255	222
	Capex (M€)	1215	2064	1785
	Opex (M€)	156	220	206
	Cost of Electricity (€/MWh)	63	98	88
	CO2 avoidance cost [€/t/CO2)		53	37

Impacts of CCS for a 630 MWe Coal power plant IFPEN Total study (basis= France 2012)

Benefits

- Low energy penalty
 (5% with 4% related to CO2 compression cost)
- Low CO2 avoidance cost our estimate 37€/t CO2
- A promising G2 concept to be demonstrated

CLC material : oxygen carrier

Several potential oxygen carrier materials (hundreds evaluated already)

Metal oxydes : Ni, Fe, Mn, Co, Cu (…) , perovskites ….

Several points to consider

Oxygen transfer capacity, Reactivity, Aging , Availability, syn.materials or mining ores ?

	Mining Ore	Synthetic material		
Process	grinding / sieving	spray drying / granulation granulation		
Price	0.15 (crude) → <mark>1 €/kg</mark> prepared	in the range of <mark>10 €/kg</mark>		
Recycling	back to the ore industry ?	Treatment (hydro/pyrometallurgy? 3-5 €/kg)		
Shape	low sphericity	high sphericity		

Redox aging is the issue

- No report of successfull operation > 500 cycles
- Relates to ionic migration and volume changes (Fan, 2015)

Industrial perspective =15000-30000 cycles per year

Impact of aging on process economics is significant

We need to improve oxygen carrier aging performance

Ilmenite in Chalmer's 100kW_{th} pilot plant *(Knutsson et al, (2014)*

CLC tools for testing

Coal injection -

Steam

Steam

Air Reactor

• For solid fuels: gasification is a limiting step and fuel reactor design is critical

Several pilot plants all over the world

CLC continuous operation successfully achived (100-200 redox cycles max) There is a need for optimisation of technology

Investigation of new concepts

- **Staged Fluidized bed** (TU Hamburg)
- **CFB** fuel reactor with internals (TU Vienna)

is an issue

Fuel Reactor design?

Ref: Berguerand et al., Fuel, (2008), 87, 2713-2726, Lyngfelt and Linderholm, Energy Procedia (2014) 63, 98-112, Strohle et al., Applied energy (2014), 113, 1490-1495 Ohlemuller et al., J. of Energy Ressources and Technology (2016) 138, 1-7 Guio-Perez et al., CERD, (2014) 92, 1107-1118, Thon et al., 2nd Int; conference on CLC, Darmstadt, (2012)

Ifpen-Total CLC process concepts

Control of solid circulation

Large flowrates in between interconnected reactors

ightarrow Control of temperature / oxygen carrier reduction rate

CLC is high temperature > 850° C

■ Not suitable for mechanical valves (FCC Slide valves…)
→Use of non mechanical L-valves

 \rightarrow Use group B material oxygen carrier

L-valve Solid flow control

> External Aeration

© 2010 - IFP Energies nouvelles

Control of PSD : 3 different solids to consider

- Oxygen carrier (100-300 microns design choice)
 Large PSD (L-Valve, carbon stripper separation)
- Coal (50-100 microns design choice)
 Small PSD (Fast gasification, carbon stripper separation)
 > high efficiency cyclones to keep char in the FR

Ash

- Fly Ash (0-100 microns -no choice)
 Avoid accumulation in the unit (L-valve)
 Fly ash elutriation has to be considered
- Agglomerated Ash ? (depends from coal and T_{Fuel reactor}) Relates to coal composition and T fuel reactor Avoid settling at the fuel reactor bottom

Account for PSD changes: - along the loop - function of aging

Attrition procedures for oxygen carrier screening

Screening \rightarrow small samples available with different physical properties (d_{sv}, ρ_p)

Challenge : use a workable attrition index use comparable testing conditions with similar stress

	AI(20) (wt%)	AI(44) (wt%)	TPGI (wt%)
Group A particles	15	26	27
Group B particles	3	5	15

© 2010

Conclusions

• CLC is a promising G2 concept for CCS

- Favourable economics and limited energy penalty
- Demonstrated at pilot scale with a limited number of redox cycles (<500)</p>

Next step is demonstration:

- But aging of oxygen carrier is an important issue to be solved
- Efforts needed for process optimization, scaling up and other aspects such as flexibility of operation

CLC future in the CCS perspective ?

- Demos are very expensive
 - We need a clear CO2 market perspective
- Time to market delay to 2025-2030 for CCS ?
 - Opportunity to optimize oxygen carrier materials and technology

Acknowledgement to Total and Ifpen research teams that were actively involved and collaborating in the CLC project over the past eight years

15