Engineering Conferences International ECI Digital Archives

Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium

Proceedings

Winter 3-6-2016

Influence of an electric field on grain growth and sintering in strontium titanate

Wolfgang Rheinheimer Karlsruhe Institute of Technology, wolfgang.rheinheimer@kit.edu

Fabian Lemke , Karlsruhe Institute of Technology

Michael Hoffman , Karlsruhe Institute of Technology

Follow this and additional works at: http://dc.engconfintl.org/efa_sintering Part of the <u>Engineering Commons</u>

Recommended Citation

Wolfgang Rheinheimer, Fabian Lemke, and Michael Hoffman, "Influence of an electric field on grain growth and sintering in strontium titanate" in "Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium", Rishi Raj (University of Colorado at Boulder, USA) Thomas Tsakalakos (Rutgers University, USA) Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/efa_sintering/12

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Electric Field Assisted Sintering and Related Phenomena Far From Equilibrium by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Impact of electric fields on grain growth in SrTiO₃

Fabian Lemke, Wolfgang Rheinheimer and Michael J. Hoffmann

Institute for Applied Materials - Ceramic Materials and Technologies

Outline

• Experimental setup

- Growth length of single crystal
- · Grain growth in the polycrystal
- Impact of defect chemistry

- Impact of an electric field at higher temperatures
- Strong effect at negative electrode

1550°C / 0.5h

- Experimental setup
- Growth length of single crystal
- · Grain growth in the polycrystal
- Impact of defect chemistry

Evaluation of the growth length

Growth length of single crystals

7

Growth length of single crystals

8

- Experimental setup
- Growth length of single crystal
- · Grain growth in the polycrystal
- Impact of defect chemistry

Grain growth in Strontium Titanate

Grain growth in electric field

• Up to 1425°C weak impact of an electrical field

- Above 1425°C fast growth at negative electrode
 → Effect is stronger for higher electric field
- \rightarrow Effect is stronger for higher electric field
- → Effect is similar for single and polycrystal

- \rightarrow Defect redistribution
- Oxygen vacancies $D(V_0^{"}, 1400^{\circ}C) \approx 10^{-6} cm^2/s$
- Strontium vacancies $D(V_{Sr}'', 1400^{\circ}C) \approx 10^{-14} cm^2/s$

Moos, Härdtl, *J. Am. Ceram. Soc. 80* (1997) Meyer, Waser, Helmbold, Borchardt, *Phys. Rev. Lett. 90* (2003)

Institute for Applied Material

- Experimental setup
- Growth length of single crystal
- · Grain growth in the polycrystal
- Impact of defect chemistry

Oxygen vacancies and grain growth

Oxygen vacancies and grain growth

Reducing atmosphere creates more oxygen vacancies. \rightarrow Increase in growth rate of single crystal with $high[V_0]$

Strontium vacancies and grain growth

1425°C 1h in oxygen

Sr-rich compositions reveal a stronger grain growth than Ti-rich ones. \rightarrow Increase in growth rate of polycrystal with *low* [$V_{Sr}^{\prime\prime}$]

Effect of electric fields on grain growth

Summary and conclusions

- Strong impact of the electric field on grain growth in SrTiO₃ above 1425°C
 - Appears in both single and polycrystal
 - Faster growth at <u>negative</u> electrode
 - Effect is stronger in <u>higher</u> electric field
- Fast growth at negative electrode is caused by
 - Redistribution of defects in the electric field
 - High oxygen vacancy concentration
 - Low strontium vacancy concentration

Defects are important for grain growth in perovskites ! Grain growth <u>with</u> and <u>without</u> field can be treated similarly !

Thanks for your attention!

