Engineering Conferences International ECI Digital Archives

Fluidization XV

Proceedings

5-23-2016

Modelling study of two chemical looping reforming reactor configurations: Looping vs. switching

Joana F. Morgado University of Coimbra,Portugal ; Norwegian University of Science and Technology, Norway, joana.f.morgado@sintef.no

Schalk Cloete SINTEF Materials and Chemistry, Flow Technology Department, Norway

John Morud SINTEF Materials and Chemistry, Flow Technology Department, Norway

Thomas Gurker ANDRITZ AG, Austria

Shahriar Amini SINTEF Materials and Chemistry, Flow Technology Department, Norway

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xv Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Joana F. Morgado, Schalk Cloete, John Morud, Thomas Gurker, and Shahriar Amini, "Modelling study of two chemical looping reforming reactor configurations: Looping vs. switching" in "Fluidization XV", Jamal Chaouki, Ecole Polytechnique de Montreal, Canada Franco Berruti, Wewstern University, Canada Xiaotao Bi, UBC, Canada Ray Cocco, PSRI Inc. USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/fluidization_xv/33

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Fluidization XV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Modelling study of two Chemical Looping Reforming reactor configurations: Looping vs. Switching

Joana Francisco Morgado^{2,3}, Schalk Cloete¹, John Morud¹, Thomas Gurker⁴ Rosa M. Quinta-Ferreira³, Shahriar Amini¹*

¹ SINTEF Materials and Chemistry, Flow Technology Department, Norway

² Norwegian University of Science and Technology, Dept. of Energy and Process Engineering, Norway

³ University of Coimbra, Dept. of Chemical Engineering, Portugal

⁴ ANDRITZ AG GmbH, Austria

Presenter e-mail: joana.f.morgado@ntnu.no

Montebello, 23 May 2016

Norwegian University of Science and Technology

Universidade de Coimbra

Outline

- 1. Objective
- 2. CLR vs. GSR principles
- 3. Simulations
- 4. Results and discussion
- 5. Conclusions

2. Objective of the work

3. CLR vs. GSR

CLR

- Two interconnected FBR reactors (AR and FR);
- OC continuously transported between AR and FR;
- No mixing between N₂ and fuel;
- Scale-up and operational challenges.

GSR

- One FBR for oxidation and reduction of the OC – switching concept;
- Alternating feed of air and fuel to the reactor unit;
- **Undesired mixing** between N₂ and fuel;
- Facilitates scaling-up under pressurized conditions.

1-D phenomenological model for FBR

- Generic formulation based on the generic model developed by Abba *et al.* (2003)^[1];
- Uses an averaging probabilistic approach by Thompson et al. (1999)^[2];
- Two-phase model by Toomey and Johnstone (L- and H-phases) [3,4];

Differential Balances

- Mass balance
 - Gas total mass balance
 - Gas species mass balance for each phase
 - Total solids species mass balance
- Total Energy balance
- Pressure Balance

Numerical scheme:

- Method of lines (MATLAB routine *ode15s*)
- Finite volume method (discretization in space)
 - Non-uniform grid
 - **Convective term**: 1st order upwind scheme
 - **Diffusion term**: central differences scheme
- 1. Abba, I.a., et al., Spanning the flow regimes: Generic fluidized-bed reactor model. AIChE Journal, 2003. 49: p. 1838-1848.
- 2. Thompson, M.L., H. Bi, and J.R. Grace, A generalized bubbling / turbulent fuidized-bed reactor model. Chemical Engineering Science, 1999. 54: p. 3-10.
- 3. Kunii, D. and O. Levenspiel, *Fluidization Engineering*. second ed. 1991: Butterworth-Heinemann.
- 4. Mahecha-Botero, A., et al., *Pure hydrogen generation in a fluidized bed membrane reactor: Application of the generalized comprehensive reactor model.* Chemical Engineering Science, 2009. **64**(17): p. 3826-3846.

^{1.} Xu, J. and G.F. Froment, *Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics.* AIChE Journal, 1989. **35**(1): p. 88-96.

^{2.} Abad, A., et al., *Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion.* Chemical Engineering Science, 2007. **62**(1-2): p. 533-549.

Simulation Parameters

Steam flowrate	170 ton/h	
Fuel flowrate	250 ton/h	
Maximum temperature	1100 °C	
Fuel inlet temperature	205 °C	
Steam inlet temperature	400 °C	
Operating pressure	17.3 bar	
OC density	3446 kg/m3	
Particle diameter	250 μm	
Reactor diameter	6 m	
Reactor height	7 m	
Axial resolution	20 cells	

How to compare these two technologies?

Same simulation parameters and physical properties

Study variable: Degree of Oxygen Carrier utilization

CLR: Oxygen carrier flux

 \downarrow OC flux: \uparrow OC residence time

GSR: Cycle time flux

 \uparrow cycle time: \uparrow reduction + \uparrow oxidation

Higher oxygen carrier conversion

	CLR	GSR		
Degree of OC utilization (%)	OC flux (kg/m² s)	Oxidation stage time (s)	Reduction stage time (s)	Reforming stage time (s)
10	466	25	13	25
20	233	68	34	68
40	116.5	198	99	198
60	82.4	400	200	400
80	58.25	-	-	-

5. Results: Profiles

Chemical Looping Reforming: Fuel Reactor

- Reforming reactions dominate at the beginning of the reactor → system far from equilibrium conditions → production of H₂ → density decrease
- Reduction reactions dominate at the end;
- Low amount of NiO through the bed;
- Temperature almost constant → good axial mixing

Maximum values: 2.94 kg/m3 for the gas density, 1 for the void fraction, 2.4 m/s for the superficial velocity and 989 °C for the temperature

5. Results

Gas Switching Reforming

5. Results

Performance Measures

Higher OC utilization

- Lower reduction temperature → low CH₄ conversion (by reforming endothermic reactions)→productivity of H₂ decreases
- Lower CO selectivity → WGS reaction Lower OC utilization
- Lower CO selectivity \rightarrow To supply heat

H₂ production performance

Higher OC utilization

- Lower CH₄ conversion → Reforming stage is higher
- Lower H_2 productivity \rightarrow lower CH_4 conversion

Lower OC utilization

 Higher amount of N₂ mixed with fuel → Short cycle times

6. Conclusions

1. CLR

- Lower degree of OC utilization (higher OC circulation rate) → higher temperature in fuel reactor → better reforming performance
- However, high OC circulation rate can bring practical and economic challenges

2. GSR

- Lower degree of OC utilization (shorter stage times) \rightarrow higher temperature in reforming stage \rightarrow higher CH₄ conversion and H₂ production
- However, undesired mixing of N_2 with CO_2 and syngas increases with shorter stage times

6. Conclusions

3. CLR vs. GSR

- H₂ production and CO conversion is higher in GSR
- Fuel conversion is higher for CLR with higher CO₂ content
- CLR is best suited to thermal power production with pre-combustion CO_2 capture and GSR to pure H_2 production

Thank you for your Patience!!!

Questions?